首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing the density of natural reserves in the forest landscape may provide conservation benefits for biodiversity within and beyond reserve borders. We used 2 French data sets on saproxylic beetles and landscape cover of forest reserves (LCFR) to test this hypothesis: national standardized data derived from 252 assessment plots in managed and reserve stands in 9 lowland and 5 highland forests and data from the lowland Rambouillet forest, a forested landscape where a pioneer conservation policy led to creation of a dense network of reserves. Abundance of rare and common saproxylic species and total saproxylic species richness were higher in forest reserves than in adjacent managed stands only in highland forests. In the lowland regional case study, as LCFR increased total species richness and common species abundance in reserves increased. In this case study, when there were two or more reserve patches, rare species abundance inside reserves was higher and common species richness in managed stands was higher than when there was a single large reserve. Spillover and habitat amount affected ecological processes underlying these landscape reserve effects. When LCFR positively affected species richness and abundance in reserves or managed stands, >12‐20% reserve cover led to the highest species diversity and abundance. This result is consistent with the target of 17% forested land area in reserves set at the Nagoya biodiversity summit in 2010. Therefore, to preserve biodiversity we recommend at least doubling the current proportion of forest reserves in European forested landscapes.  相似文献   

2.
The trade in wild animals involves one‐third of the world's bird species and thousands of other vertebrate species. Although a few species are imperiled as a result of the wildlife trade, the lack of field studies makes it difficult to gauge how serious a threat it is to biodiversity. We used data on changes in bird abundances across space and time and information from trapper interviews to evaluate the effects of trapping wild birds for the pet trade in Sumatra, Indonesia. To analyze changes in bird abundance over time, we used data gathered over 14 years of repeated bird surveys in a 900‐ha forest in southern Sumatra. In northern Sumatra, we surveyed birds along a gradient of trapping accessibility, from the edge of roads to 5 km into the forest interior. We interviewed 49 bird trappers in northern Sumatra to learn which species they targeted and how far they went into the forest to trap. We used prices from Sumatran bird markets as a proxy for demand and, therefore, trapping pressure. Market price was a significant predictor of species declines over time in southern Sumatra (e.g., given a market price increase of approximately $50, the log change in abundance per year decreased by 0.06 on average). This result indicates a link between the market‐based pet trade and community‐wide species declines. In northern Sumatra, price and change in abundance were not related to remoteness (distance from the nearest road). However, based on our field surveys, high‐value species were rare or absent across this region. The median maximum distance trappers went into the forest each day was 5.0 km. This suggests that trapping has depleted bird populations across our remoteness gradient. We found that less than half of Sumatra's remaining forests are >5 km from a major road. Our results suggest that trapping for the pet trade threatens birds in Sumatra. Given the popularity of pet birds across Southeast Asia, additional studies are urgently needed to determine the extent and magnitude of the threat posed by the pet trade.  相似文献   

3.
The conservation implications of large‐scale rainforest clearing and fragmentation on the persistence of functional and taxonomic diversity remain poorly understood. If traits represent adaptive strategies of plant species to particular circumstances, the expectation is that the effect of forest clearing and fragmentation will be affected by species functional traits, particularly those related to dispersal. We used species occurrence data for woody plants in 46 rainforest patches across 75,000 ha largely cleared of forest by the early 1900s to determine the combined effects of area reduction, fragmentation, and patch size on the taxonomic structure and functional diversity of subtropical rainforest. We compiled species trait values for leaf area, seed dry mass, wood density, and maximum height and calculated species niche breadths. Taxonomic structure, trait values (means, ranges), and the functional diversity of assemblages of climbing and free‐standing plants in remnant patches were quantified. Larger rainforest patches had higher species richness. Species in smaller patches were taxonomically less related than species in larger patches. Free‐standing plants had a high percentage of frugivore dispersed seeds; climbers had a high proportion of small wind‐dispersed seeds. Connections between the patchy spatial distribution of free‐standing species, larger seed sizes, and dispersal syndrome were weak. Assemblages of free‐standing plants in patches showed more taxonomic and spatial structuring than climbing plants. Smaller isolated patches retained relatively high functional diversity and similar taxonomic structure to larger tracts of forest despite lower species richness. The response of woody plants to clearing and fragmentation of subtropical rainforest differed between climbers and slow‐growing mature‐phase forest trees but not between climbers and pioneer trees. Quantifying taxonomic structure and functional diversity provides an improved basis for conservation planning and management by elucidating the effects of forest‐area reduction and fragmentation. Efectos de la Forma de Crecimiento y Atributos Funcionales en la Respuesta de Plantas Leñosas al Desmonte y Fragmentación de Bosque Lluvioso Subtropical  相似文献   

4.
Habitat loss and fragmentation alter the composition of bird assemblages in rainforest. Because birds are major seed dispersers in rainforests, fragmentation‐induced changes to frugivorous bird assemblages are also likely to alter the ecological processes of seed dispersal and forest regeneration, but the specific nature of these changes is poorly understood. We assessed the influence of fragment size and landscape forest cover on the abundance, species composition, and functional properties of the avian seed disperser community in an extensively cleared, former rainforest landscape of subtropical Australia. Bird surveys of fixed time and area in 25 rainforest fragments (1–139 ha in size across a 1800 km2 region) provided bird assemblage data which were coupled with prior knowledge of bird species’ particular roles in seed dispersal to give measurements of seven different attributes of the seed disperser assemblage. We used multimodel regression to assess how patch size and surrounding forest cover (within 200 m, 1000 m, and 5000 m radii) influenced variation in the abundance of individual bird species and of functional groups based on bird species’ responses to fragmentation and their roles in seed dispersal. Surrounding forest cover, specifically rainforest cover, generally had a greater effect on frugivorous bird assemblages than fragment size. Amount of rainforest cover within 200 m of fragments was the main factor positively associated with abundances of frugivorous birds that are both fragmentation sensitive and important seed dispersers. Our results suggest a high proportion of local rainforest cover is required for the persistence of seed‐dispersing birds and the maintenance of seed dispersal processes. Thus, even small rainforest fragments can function as important parts of habitat networks for seed‐dispersing birds, whether or not they are physically connected by vegetation. Respuestas de Aves Dispersoras de Semillas al Incremento de Selvas en el Paisaje Alrededor de Fragmentos  相似文献   

5.
Ecosystem function and resilience are compromised when habitats become fragmented due to land‐use change. This has led to national and international conservation strategies aimed at restoring habitat extent and improving functional connectivity (i.e., maintaining dispersal processes). However, biodiversity responses to landscape‐scale habitat creation and the relative importance of spatial and temporal scales are poorly understood, and there is disagreement over which conservation strategies should be prioritized. We used 160 years of historic post‐agricultural woodland creation as a natural experiment to evaluate biodiversity responses to habitat creation in a landscape context. Birds were surveyed in 101 secondary, broadleaf woodlands aged 10–160 years with ≥80% canopy cover and in landscapes with 0‐17% broadleaf woodland cover within 3000 m. We used piecewise structural equation modeling to examine the direct and indirect relationships between bird abundance and diversity, ecological continuity, patch characteristics, and landscape structure and quantified the relative conservation value of local and landscape scales for bird communities. Ecological continuity indirectly affected overall bird abundance and species richness through its effects on stand structure, but had a weaker influence (effect size near 0) on the abundance and diversity of species most closely associated with woodland habitats. This was probably because woodlands were rapidly colonized by woodland generalists in ≤10 years (minimum patch age) but were on average too young (median 50 years) to be colonized by woodland specialists. Local patch characteristics were relatively more important than landscape characteristics for bird communities. Based on our results, biodiversity responses to habitat creation depended on local‐ and landscape‐scale factors that interacted across time and space. We suggest that there is a need for further studies that focus on habitat creation in a landscape context and that knowledge gained from studies of habitat fragmentation and loss should be used to inform habitat creation with caution because the outcomes are not necessarily reciprocal.  相似文献   

6.
Abstract: Anthropogenic disturbances such as fragmentation are rapidly altering biodiversity, yet a lack of attention to species traits and abundance patterns has made the results of most studies difficult to generalize. We determined traits of extinction‐prone species and present a novel strategy for classifying species according to their population‐level response to a gradient of disturbance intensity. We examined the effects of forest fragmentation on dung beetle communities in an archipelago of 33 islands recently created by flooding in Venezuela. Species richness, density, and biomass all declined sharply with decreasing island area and increasing island isolation. Species richness was highly nested, indicating that local extinctions occurred nonrandomly. The most sensitive dung beetle species appeared to require at least 85 ha of forest, more than many large vertebrates. Extinction‐prone species were either large‐bodied, forest specialists, or uncommon. These explanatory variables were unrelated, suggesting at least 3 underlying causes of extirpation. Large species showed high wing loading (body mass/wing area) and a distinct flight strategy that may increase their area requirements. Although forest specificity made most species sensitive to fragmentation, a few persistent habitat generalists dispersed across the matrix. Density functions classified species into 4 response groups on the basis of their change in density with decreasing species richness. Sensitive and persistent species both declined with increasing fragmentation intensity, but persistent species occurred on more islands, which may be due to their higher baseline densities. Compensatory species increased in abundance following the initial loss of sensitive species, but rapidly declined with increasing fragmentation. Supertramp species (widespread habitat generalists) may be poor competitors but strong dispersers; their abundance peaked following the decline of the other 3 groups. Nevertheless, even the least sensitive species were extirpated or rare on the smallest and most isolated islands.  相似文献   

7.
Abstract: Despite many studies on fragmentation of tropical forests, the extent to which plant and animal communities are altered in small, isolated forest fragments remains obscure if not controversial. We examined the hypothesis that fragmentation alters the relative abundance of tree species with different vegetative and reproductive traits. In a fragmented landscape (670 km2) of the Atlantic Forest of northeastern Brazil, we categorized 4056 trees of 182 species by leafing pattern, reproductive phenology, and morphology of seeds and fruit. We calculated relative abundance of traits in 50 1‐ha plots in three types of forest configurations: forest edges, small forest fragments (3.4–83.6 ha), and interior of the largest forest fragment (3500 ha, old growth). Although evergreen species were the most abundant across all configurations, forest edges and small fragments had more deciduous and semideciduous species than interior forest. Edges lacked supra‐annual flowering and fruiting species and had more species and stems with drupes and small seeds than small forest fragments and forest interior areas. In an ordination of species similarity and life‐history traits, the three types of configurations formed clearly segregated clusters. Furthermore, the differences in the taxonomic and functional (i.e., trait‐based) composition of tree assemblages we documented were driven primarily by the higher abundance of pioneer species in the forest edge and small forest fragments. Our work provides strong evidence that long‐term transitions in phenology and seed and fruit morphology of tree functional groups are occurring in fragmented tropical forests. Our results also suggest that edge‐induced shifts in tree assemblages of tropical forests can be larger than previously documented.  相似文献   

8.
The impacts of land‐use change on biodiversity in the Himalayas are poorly known, notwithstanding widespread deforestation and agricultural intensification in this highly biodiverse region. Although intact primary forests harbor many Himalayan birds during breeding, a large number of bird species use agricultural lands during winter. We assessed how Himalayan bird species richness, abundance, and composition during winter are affected by forest loss stemming from agriculture and grazing. Bird surveys along 12 elevational transects within primary forest, low‐intensity agriculture, mixed subsistence agriculture, and intensively grazed pastures in winter revealed that bird species richness and abundance were greatest in low‐intensity and mixed agriculture, intermediate in grazed pastures, and lowest in primary forest at both local and landscape scales; over twice as many species and individuals were recorded in low‐intensity agriculture than in primary forest. Bird communities in primary forests were distinct from those in all other land‐use classes, but only 4 species were unique to primary forests. Low‐, medium‐, and high‐intensity agriculture harbored 32 unique species. Of the species observed in primary forest, 80% had equal or greater abundance in low‐intensity agricultural lands, underscoring the value of these lands in retaining diverse community assemblages at high densities in winter. Among disturbed landscapes, bird species richness and abundance declined as land‐use intensity increased, especially in high‐intensity pastures. Our results suggest that agricultural landscapes are important for most Himalayan bird species in winter. But agricultural intensification—especially increased grazing—will likely result in biodiversity losses. Given that forest reserves alone may inadequately conserve Himalayan birds in winter, comprehensive conservation strategies in the region must go beyond protecting intact primary forests and ensure that low‐intensity agricultural lands are not extensively converted to high‐intensity pastures.  相似文献   

9.
Multibillion dollar investments in land restoration make it critical that conservation goals are achieved cost‐effectively. Approaches developed for systematic conservation planning offer opportunities to evaluate landscape‐scale, temporally dynamic biodiversity outcomes from restoration and improve on traditional approaches that focus on the most species‐rich plantings. We investigated whether it is possible to apply a complementarity‐based approach to evaluate the extent to which an existing network of restoration plantings meets representation targets. Using a case study of woodland birds of conservation concern in southeastern Australia, we compared complementarity‐based selections of plantings based on temporally dynamic species occurrences with selections based on static species occurrences and selections based on ranking plantings by species richness. The dynamic complementarity approach, which incorporated species occurrences over 5 years, resulted in higher species occurrences and proportion of targets met compared with the static complementarity approach, in which species occurrences were taken at a single point in time. For equivalent cost, the dynamic complementarity approach also always resulted in higher average minimum percent occurrence of species maintained through time and a higher proportion of the bird community meeting representation targets compared with the species‐richness approach. Plantings selected under the complementarity approaches represented the full range of planting attributes, whereas those selected under the species‐richness approach were larger in size. Our results suggest that future restoration policy should not attempt to achieve all conservation goals within individual plantings, but should instead capitalize on restoration opportunities as they arise to achieve collective value of multiple plantings across the landscape. Networks of restoration plantings with complementary attributes of age, size, vegetation structure, and landscape context lead to considerably better outcomes than conventional restoration objectives of site‐scale species richness and are crucial for allocating restoration investment wisely to reach desired conservation goals.  相似文献   

10.
Abstract: By 2050, 70% of the world's population will live in urban areas. In many cases urbanization reduces the richness and abundance of native species. Living in highly modified environments with fewer opportunities to interact directly with a diversity of native species may adversely affect residents’ personal well‐being and emotional connection to nature. We assessed the personal well‐being, neighborhood well‐being (a measure of a person's satisfaction with their neighborhood), and level of connection to nature of over 1000 residents in 36 residential neighborhoods in southeastern Australia. We modeled these response variables as a function of natural features of each neighborhood (e.g., species richness and abundance of birds, density of plants, and amount of vegetation cover) and demographic characteristics of surveyed residents. Vegetation cover had the strongest positive relations with personal well‐being, whereas residents’ level of connection to nature was weakly related to variation in species richness and abundance of birds and density of plants. Demographic characteristics such as age and level of activity explained the greatest proportion of variance in well‐being and connection to nature. Nevertheless, when controlling for variation in demographic characteristics (examples were provided above), neighborhood well‐being was positively related to a range of natural features, including species richness and abundance of birds, and vegetation cover. Demographic characteristics and how well‐being was quantified strongly influenced our results, and we suggest demography and metrics of well‐being must be considered when attempting to determine relations between the urban environment and human well‐being.  相似文献   

11.
Mutualistic networks are critical to biological diversity maintenance; however, their structures and functionality may be threatened by a swiftly changing world. In the Amazon, the increasing number of dams poses a large threat to biological diversity because they greatly alter and fragment the surrounding landscape. Tight coevolutionary interactions typical of tropical forests, such as the ant–myrmecophyte mutualism, where the myrmecophyte plants provide domatia nesting space to their symbiotic ants, may be jeopardized by the landscape changes caused by dams. We analyzed 31 ant–myrmecophyte mutualistic networks in undisturbed and disturbed sites surrounding Balbina, the largest Central Amazonian dam. We tested how ant–myrmecophyte networks differ among dam‐induced islands, lake edges, and undisturbed forests in terms of species richness, composition, structure, and robustness (number of species remaining in the network after partner extinctions). We also tested how landscape configuration in terms of area, isolation, shape, and neighborhood alters the structure of the ant–myrmecophyte networks on islands. Ant–myrmecophytic networks were highly compartmentalized in undisturbed forests, and the compartments had few strongly connected mutualistic partners. In contrast, networks at lake edges and on islands were not compartmentalized and were negatively affected by island area and isolation in terms of species richness, density, and composition. Habitat loss and fragmentation led to coextinction cascades that contributed to the elimination of entire ant–plant compartments. Furthermore, many myrmecophytic plants in disturbed sites lost their mutualistic ant partners or were colonized by opportunistic, nonspecialized ants. Robustness of ant–myrmecophyte networks on islands was lower than robustness near lake edges and in undisturbed forest and was particularly susceptible to the extinction of plants. Beyond the immediate habitat loss caused by the building of large dams in Amazonia, persistent edge effects and habitat fragmentation associated with dams had large negative effects on animal–plant mutualistic networks. Efectos de la Fragmentación del Paisaje Inducida por Presas sobre Redes Mutualistas Hormiga‐Planta Amazónicas  相似文献   

12.
Protected area delineation and conservation action are urgently needed on marine islands, but the potential biodiversity benefits of these activities can be difficult to assess due to lack of species diversity information for lesser known taxa. We used linear mixed effects modeling and simple spatial analyses to investigate whether conservation activities based on the diversity of well‐known insular taxa (birds and mammals) are likely to also capture the diversity of lesser known taxa (reptiles, amphibians, vascular land plants, ants, land snails, butterflies, and tenebrionid beetles). We assembled total, threatened, and endemic diversity data for both well‐known and lesser known taxa and combined these with physical island biogeography characteristics for 1190 islands from 109 archipelagos. Among physical island biogeography factors, island area was the best indicator of diversity of both well‐known and little‐known taxa. Among taxonomic factors, total mammal species richness was the best indicator of total diversity of lesser known taxa, and the combination of threatened mammal and threatened bird diversity was the best indicator of lesser known endemic richness. The results of other intertaxon diversity comparisons were highly variable, however. Based on our results, we suggest that protecting islands above a certain minimum threshold area may be the most efficient use of conservation resources. For example, using our island database, if the threshold were set at 10 km2 and the smallest 10% of islands greater than this threshold were protected, 119 islands would be protected. The islands would range in size from 10 to 29 km2 and would include 268 lesser known species endemic to a single island, along with 11 bird and mammal species endemic to a single island. Our results suggest that for islands of equivalent size, prioritization based on total or threatened bird and mammal diversity may also capture opportunities to protect lesser known species endemic to islands. Beneficios de los Taxa Poco Estudiados para la Conservación de la Diversidad de Aves y Mamíferos en Islas  相似文献   

13.
Biodiversity indices often combine data from different species when used in monitoring programs. Heuristic properties can suggest preferred indices, but we lack objective ways to discriminate between indices with similar heuristics. Biodiversity indices can be evaluated by determining how well they reflect management objectives that a monitoring program aims to support. For example, the Convention on Biological Diversity requires reporting about extinction rates, so simple indices that reflect extinction risk would be valuable. We developed 3 biodiversity indices that are based on simple models of population viability that relate extinction risk to abundance. We based the first index on the geometric mean abundance of species and the second on a more general power mean. In a third index, we integrated the geometric mean abundance and trend. These indices require the same data as previous indices, but they also relate directly to extinction risk. Field data for butterflies and woodland plants and experimental studies of protozoan communities show that the indices correlate with local extinction rates. Applying the index based on the geometric mean to global data on changes in avian abundance suggested that the average extinction probability of birds has increased approximately 1% from 1970 to 2009. Conectando Índices para el Monitoreo de la Biodiversidad con la Teoría de Riesgo de Extinción  相似文献   

14.
Biodiversity surrogates and indicators are commonly used in conservation management. The focal species approach (FSA) is one method for identifying biodiversity surrogates, and it is underpinned by the hypothesis that management aimed at a particular focal species will confer protection on co‐occurring species. This concept has been the subject of much debate, in part because the validity of the FSA has not been subject to detailed empirical assessment of the extent to which a given focal species actually co‐occurs with other species in an assemblage. To address this knowledge gap, we used large‐scale, long‐term data sets of temperate woodland birds to select focal species associated with threatening processes such as habitat isolation and loss of key vegetation attributes. We quantified co‐occurrence patterns among focal species, species in the wider bird assemblage, and species of conservation concern. Some, but not all, focal species were associated with high levels of species richness. One of our selected focal species was negatively associated with the occurrence of other species (i.e., it was an antisurrogate)—a previously undescribed property of nominated focal species. Furthermore, combinations of focal species were not associated with substantially elevated levels of bird species richness, relative to levels associated with individual species. Our results suggest that although there is some merit to the underpinning concept of the FSA, there is also a need to ensure that actions are sufficiently flexible because management tightly focused on a given focal species may not benefit some other species, including species of conservation concern, such of which might not occur in species‐rich assemblages. Una Evaluación Empírica de la Hipótesis de Especie Focal  相似文献   

15.
Abstract: Systematic conservation assessment (an information‐gathering and prioritization process used to select the spatial foci of conservation initiatives) is often considered vital to conservation‐planning efforts, yet published assessments have rarely resulted in conservation action. Conservation assessments may lead more directly to effective conservation action if they are reoriented to inform conservation decisions. Toward this goal, we evaluated the relative priority for conservation of 7 sites proposed for the first forest reserves in the Union of the Comoros, an area with high levels of endemism and rapidly changing land uses in the western Indian Ocean. Through the analysis of 30 indicator variables measured at forest sites and nearby villages, we assessed 3 prioritization criteria at each site: conservation value, threat to loss of biological diversity from human activity, and feasibility of reserve establishment. Our results indicated 2 sites, Yiméré and Hassera‐Ndrengé, were priorities for conservation action. Our approach also informed the development of an implementation strategy and enabled an evaluation of previously unexplored relations among prioritization criteria. Our experience suggests that steps taken to ensure the closer involvement of practitioners, include a broader range of social data, encourage stakeholder participation, and consider the feasibility of conservation action can improve the relevance of assessments for conservation planning, strengthen the scientific basis for conservation decisions, and result in a more realistic evaluation of conservation alternatives.  相似文献   

16.
Abstract: The lack of long‐term baseline data restricts the ability to measure changes in biological diversity directly and to determine its cause. This hampers conservation efforts and limits testing of basic tenets of ecology and conservation biology. We used a historical baseline survey to track shifts in the abundance and distribution of 296 native understory species across 82 sites over 55 years in the fragmented forests of southern Wisconsin. We resurveyed stands first surveyed in the early 1950s to evaluate the influence of patch size and surrounding land cover on shifts in native plant richness and heterogeneity and to evaluate changes in the relative importance of local site conditions versus the surrounding landscape context as drivers of community composition and structure. Larger forests and those with more surrounding forest cover lost fewer species, were more likely to recruit new species, and had lower rates of homogenization than smaller forests in more fragmented landscapes. Nearby urbanization further reduced both alpha and beta understory diversity. Similarly, understory composition depended strongly on local site conditions in the original survey but only weakly reflected the surrounding landscape composition. By 2005, however, the relative importance of these factors had reversed such that the surrounding landscape structure is now a much better predictor of understory composition than are local site conditions. Collectively, these results strongly support the idea that larger intact habitat patches and landscapes better sustain native species diversity and demonstrate that humans play an increasingly important role in driving patterns of native species diversity and community composition.  相似文献   

17.
Land‐use dynamics and climatic gradients have large effects on many terrestrial systems. Exurban development, one of the fastest growing forms of land use in the United States, may affect wildlife through habitat fragmentation and building presence may alter habitat quality. We studied the effects of residential development and temperature gradients on bird species occurrence at 140 study sites in the southern Appalachian Mountains (North Carolina, U.S.A.) that varied with respect to building density and elevation. We used occupancy models to determine 36 bird species’ associations with building density, forest canopy cover, average daily mean temperature, and an interaction between building density and mean temperature. Responses varied with habitat requirement, breeding range, and migration distance. Building density and mean temperature were both included in the top occupancy models for 19 of 36 species and a building density by temperature interaction was included in models for 8 bird species. As exurban development expands in the southern Appalachians, interior forest species and Neotropical migrants are likely to decline, but shrubland or edge species are not likely to benefit. Overall, effects of building density were greater than those of forest canopy cover. Exurban development had a greater effect on birds at high elevations due to a greater abundance of sensitive forest‐interior species and Neotropical migrants. A warming climate may exacerbate these negative effects. Efectos del Desarrollo Exurbano y de la Temperatura sobre Especies de Aves en las Apalaches del Sur  相似文献   

18.
Theoretical and empirical studies demonstrate that the total amount of forest and the size and connectivity of fragments have nonlinear effects on species survival. We tested how habitat amount and configuration affect understory bird species richness and abundance. We used mist nets (almost 34,000 net hours) to sample birds in 53 Atlantic Forest fragments in southeastern Brazil. Fragments were distributed among 3 10,800‐ha landscapes. The remaining forest in these landscapes was below (10% forest cover), similar to (30%), and above (50%) the theoretical fragmentation threshold (approximately 30%) below which the effects of fragmentation should be intensified. Species‐richness estimates were significantly higher (F= 3715, p = 0.00) where 50% of the forest remained, which suggests a species occurrence threshold of 30–50% forest, which is higher than usually occurs (<30%). Relations between forest cover and species richness differed depending on species sensitivity to forest conversion and fragmentation. For less sensitive species, species richness decreased as forest cover increased, whereas for highly sensitive species the opposite occurred. For sensitive species, species richness and the amount of forest cover were positively related, particularly when forest cover was 30–50%. Fragment size and connectivity were related to species richness and abundance in all landscapes, not just below the 30% threshold. Where 10% of the forest remained, fragment size was more related to species richness and abundance than connectivity. However, the relation between connectivity and species richness and abundance was stronger where 30% of the landscape was forested. Where 50% of the landscape was forested, fragment size and connectivity were both related to species richness and abundance. Our results demonstrated a rapid loss of species at relatively high levels of forest cover (30–50%). Highly sensitive species were 3‐4 times more common above the 30–50% threshold than below it; however, our results do not support a unique fragmentation threshold. Asociaciones de la Cobertura Forestal, Superficie del Fragmento y Conectividad con la Riqueza y Abundancia de Aves Neotropicales de Sotobosque  相似文献   

19.
Biological sampling in marine systems is often limited, and the cost of acquiring new data is high. We sought to assess whether systematic reserves designed using abiotic domains adequately conserve a comprehensive range of species in a tropical marine inter‐reef system. We based our assessment on data from the Great Barrier Reef, Australia. We designed reserve systems aiming to conserve 30% of each species based on 4 abiotic surrogate types (abiotic domains; weighted abiotic domains; pre‐defined bioregions; and random selection of areas). We evaluated each surrogate in scenarios with and without cost (cost to fishery) and clumping (size of conservation area) constraints. To measure the efficacy of each reserve system for conservation purposes, we evaluated how well 842 species collected at 1155 sites across the Great Barrier Reef seabed were represented in each reserve system. When reserve design included both cost and clumping constraints, the mean proportion of species reaching the conservation target was 20–27% higher for reserve systems that were biologically informed than reserves designed using unweighted environmental data. All domains performed substantially better than random, except when there were no spatial or economic constraints placed on the system design. Under the scenario with no constraints, the mean proportion of species reaching the conservation target ranged from 98.5% to 99.99% across all surrogate domains, whereas the range was 90–96% across all domains when both cost and clumping were considered. This proportion did not change considerably between scenarios where one constraint was imposed and scenarios where both cost and clumping constraints were considered. We conclude that representative reserve systems can be designed using abiotic domains; however, there are substantial benefits if some biological information is incorporated.  相似文献   

20.
Conservation actions need to be prioritized, often taking into account species’ extinction risk. The International Union for Conservation of Nature (IUCN) Red List provides an accepted, objective framework for the assessment of extinction risk. Assessments based on data collected in the field are the best option, but the field data to base these on are often limited. Information collected through remote sensing can be used in place of field data to inform assessments. Forests are perhaps the best‐studied land‐cover type for use of remote‐sensing data. Using an open‐access 30‐m resolution map of tree cover and its change between 2000 and 2012, we assessed the extent of forest cover and loss within the distributions of 11,186 forest‐dependent amphibians, birds, and mammals worldwide. For 16 species, forest loss resulted in an elevated extinction risk under red‐list criterion A, owing to inferred rapid population declines. This number increased to 23 when data‐deficient species (i.e., those with insufficient information for evaluation) were included. Under red‐list criterion B2, 484 species (855 when data‐deficient species were included) were considered at elevated extinction risk, owing to restricted areas of occupancy resulting from little forest cover remaining within their ranges. The proportion of species of conservation concern would increase by 32.8% for amphibians, 15.1% for birds, and 24.7% for mammals if our suggested uplistings are accepted. Central America, the Northern Andes, Madagascar, the Eastern Arc forests in Africa, and the islands of Southeast Asia are hotspots for these species. Our results illustrate the utility of satellite imagery for global extinction‐risk assessment and measurement of progress toward international environmental agreement targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号