首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Production rates, chlorophyll concentrations and general composition of periphytic diatom communities growing on glass slides were studied in relation to environmental parameters during one seasonal cycle in the Bay of Paranaguá, southern Brazil. Slides were routinely submersed at 1, 2 and 3 m depth and recovered weekly for microscopic examinations, analyses of chlorophyll, cell counts and in situ photosynthetic incubations using the Winkler titration method. Water samples were also collected at surface and bottom layers for determinations of temperature, salinity, nutrients and chlorophyll in the water. The periphytic community was mainly formed by epipelic and epipsammic species, dominated by Navicula phyllepta, Cylindrotheca closterium, Navicula spp. and Amphora sp. Weekly chlorophyll a and cell accumulations on slides varied from <1–32 mg m−2 and up to 31 × 108 cells m−2, respectively. Photosynthetic rates varied from <1 to 35 mg oxygen mg chlorophyll a −1 h−1, with higher values in summer. Daily production varied from 5 to 3,600 mg oxygen m−2 day−1 (<0.01–1.4 g carbon m−2 day−1). Multiple regression analysis revealed that vertical differences in light conditions and grazing pressure jointly affected the influence of temperature on the seasonal patterns of cell densities and chlorophyll concentrations according to depth. Received: 27 April 2000 / Accepted: 16 August 2000  相似文献   

2.
Grazing of phytoplankton by copepods in eastern Antarctic coastal waters   总被引:1,自引:0,他引:1  
Chlorophyll a, primary productivity and grazing by copepods on phytoplankton were measured in the upper water column during the summer of 1994/1995 at a coastal site near Davis Station, East Antarctica. Chlorophyll a was at a maximum in mid-December, then dropped markedly as the coastal fast ice melted and broke‐out. Phytoplankton biomass increased again from mid‐ to late‐February. Copepods accounted for at least 65% of zooplankton biomass in the water column before sea ice break‐out, whereas larval polychaetes and ctenophores dominated after ice break‐out. Oncaeacurvata was the numerically dominant species throughout the study. The highest grazing rate (8.7 mg C␣m−3␣d−1) was recorded on 21 December when O.␣curvata accounted for 64% of the total. Grazing had decreased markedly by 28 December (0.9 mg C m−3 d−1); again O. curvata accounted for over 50% of the total ingested. Copepod grazing increased after ice break-out until the last experiment on 20 February (⋍5 mg C␣m−3␣d−1). The main species responsible for grazing during this period were O. curvata, Oithonasimilis, Calanoidesacutus and unidentified copepod nauplii. It was estimated that copepods removed between 1 and 5% of primary productivity. Received: 11 October 1996 / Accepted: 22 October 1996  相似文献   

3.
Artemia franciscana was grown on Isochrysis galbana Green (clone T. Iso) at saturated food concentrations (13 to 20 mg C l−1) for 11 d at 26 to 28 °C, and 34 ppt salinity. Three groups of brine shrimp were used in the feeding experiments: metanauplius III and IV (Group 1), post-metanauplius II and III (Group 2) and post-metanauplius VIII (Group 3), corresponding to 4-, 7- and 11-d-old animals, respectively. The ingestion rate, clearance rate and carbon balance were estimated for these stages at different concentrations of 14C-labeled I. galbana ranging from 0.05 to 30 mg C l−1. The handling time of algae was determined for all three groups. The ingestion rate (I, ng C ind−1 h−1) increased as a function of animal size and food concentration. In all three groups, the ingestion rate increased to a maximum level (I max) and remained constant at food concentrations ≥10 mg C l−1 (saturated food concentrations). The clearance rate (CR, μl ind−1 h−1) increased with increasing food concentration up to a maximum rate (CR max), after which it decreased for even higher food concentrations. The functional response of A. franciscana was most consistent with Holling's Type 3 functional response curve (sigmoidal model), which for the two oldest groups (Group 2 and 3) differed significantly from a Type 2 response (p < 0.05). The gut passage time for the three groups of A. franciscana, feeding on saturated food concentration (20 mg C l−1), varied between 24 and 29 min. As the nauplii developed to pre-adult stage the handling time of the algae increased as a function of animal size. The assimilation rate (ng C ind−1 h−1) in the youngest stages (Group 1 and 2) increased with increasing food concentrations, reaching a maximum level close to 10 mg C l−1. At higher food concentrations the assimilation rate decreased, and the proportions of defecated carbon increased, reaching 60 to 68% in the post-metanauplius stages (Group 3). The assimilation efficiency (%) was high at the lowest food concentrations in all three groups (89 to 64%). At higher concentrations, the assimilation efficiency decreased, reaching 56 to 38% at the highest concentrations. Received: 2 February 2000 / Accepted: 25 March 2000  相似文献   

4.
Bacterial abundance, production, and extracellular enzyme activity were determined in the shallow water column, in the epiphytic community of Thalassia testudinum, and at the sediment surface along with total carbon, nitrogen, and phosphorus in Florida Bay, a subtropical seagrass estuary. Data were statistically reduced by principle components analysis (PCA) and multidimensional scaling and related to T. testudinum leaf total phosphorus content and phytoplankton biomass. Each zone (i.e., pelagic, epiphytic, and surface sediment community) was significantly dissimilar to each other (Global R = 0.65). Pelagic aminopeptidase and sum of carbon hydrolytic enzyme (esterase, peptidase, and α- and β-glucosidase) activities ranged from 8 to 284 mg N m−2 day−1 and 113–1,671 mg C m−2 day−1, respectively, and were 1–3 orders of magnitude higher than epiphytic and sediment surface activities. Due to the phosphorus-limited nature of Florida Bay, alkaline phosphatase activity was similar between pelagic (51–710 mg P m−2 day−1) and sediment (77–224 mg P m−2 day−1) zones but lower in the epiphytes (1.1–5.2 mg P m−2 day−1). Total (and/or organic) C (111–311 g C m−2), N (9.4–27.2 g N m−2), and P (212–1,623 mg P m−2) content were the highest in the sediment surface and typically the lowest in the seagrass epiphytes, ranging from 0.6 to 8.7 g C m−2, 0.02–0.99 g N m−2, and 0.5–43.5 mg P m−2. Unlike nutrient content and enzyme activities, bacterial production was highest in the epiphytes (8.0–235.1 mg C m−2 day−1) and sediment surface (11.5–233.2 mg C m−2 day−1) and low in the water column (1.6–85.6 mg C m−2 day−1). At an assumed 50% bacterial growth efficiency, for example, extracellular enzyme hydrolysis could supply 1.8 and 69% of epiphytic and sediment bacteria carbon demand, respectively, while pelagic bacteria could fulfill their carbon demand completely by enzyme-hydrolyzable organic matter. Similarly, previously measured T. testudinum extracellular photosynthetic carbon exudation rates could not satisfy epiphytic and sediment surface bacterial carbon demand, suggesting that epiphytic algae and microphytobenthos might provide usable substrates to support high benthic bacterial production rates. PCA revealed that T. testudinum nutrient content was related positively to epiphytic nutrient content and carbon hydrolase activity in the sediment, but unrelated to pelagic variables. Phytoplankton biomass correlated positively with all pelagic components and sediment aminopeptidase activity but negatively with epiphytic alkaline phosphatase activity. In conclusion, seagrass production and nutrient content was unrelated to pelagic bacteria activity, but did influence extracellular enzyme hydrolysis at the sediment surface and in the epiphytes. This study suggests that seagrass-derived organic matter is of secondary importance in Florida Bay and that bacteria rely primarily on algal/cyanobacteria production. Pelagic bacteria seem coupled to phytoplankton, while the benthic community appears supported by epiphytic and/or microphytobenthos production.  相似文献   

5.
Carbon consumption and nitrogen requirements were estimated for populations of the sandy beach bivalve Donax serra on nine beaches of the west coast of South Africa. Subtidal populations composed mainly of adult clams were responsible for the bulk of standing stock (3538 g C m−1), annual carbon consumption (13 444 g C m−1 yr−1), faeces production (6478 g C m−1 yr−1 ) and nitrogen regeneration (2525 g N m−1 yr−1). Kelp detritus, bacteria and kelp consumers' faeces available in the water column surpass several times the carbon and nitrogen requirements of intertidal and subtidal clam populations. Individual Donax serra pop ulations, in turn, may regenerate up to 3.2% of the total nitrogen requirements of all primary producers from kelp beds and 14% of the requirements of phytoplankton. These high standing stocks of clams are presumably supported mainly by organic matter originating from kelp which, in contrast to phytoplankton, is in constant supply and comprises the largest proportion of the annual production of particulate organic matter on this coast. Wide and shallow continental shelves with gentle slopes probably limit the penetration of upwelled waters to the nearshore waters, decreasing the influence of external inputs and increasing the importance of internal flows of nutrients and carbon within the nearshore zone. In this context, sandy beaches, rocky shores and kelp beds may be more closely interlinked compartments of a larger ecosystem encompassing the whole nearshore than traditionally thought. Received: 28 August 1996 / Accepted: 7 October 1996  相似文献   

6.
In order to estimate the in situ grazing rates of Salpa thompsoni and their implications for the development of phytoplankton blooms and for the sequestration of biogenic carbon in the high Antarctic, a repeat-grid survey and drogue study were carried out in the Lazarev Sea during austral summer of 1994/1995 (December/January). Exceptionally high grazing rates were measured for S. thompsoni at the onset of a phytoplankton bloom (0.2 to 0.8 μg chlorophyll a l−1) in December 1994, with up to ≃160 μg of plant pigments consumed by an individual salp of 7 to 10 cm length per day. Dense salp swarms extended throughout the marginal ice zone, consuming up to 108% of daily phytoplankton production and 21% of the total chlorophyll a stock. Due to the much faster sinking rates and higher carbon content of salp faecal pellets, the efficiency of downward carbon flux through salps is much higher than through the other major grazers, krill and copepods. S. thompsoni can thus export large amounts of biogenic carbon from the euphotic zone to the deep ocean. With the observed ingestion rates during December 1994, this flux could have attained levels of up to 88 mg C m−2 d−1, accounting for the bulk of the vertical transport of carbon in the Lazarev Sea. However, in January 1995, when phytoplankton concentrations exceeded a threshold level of 1.0 to 1.5 μg chlorophyll a l−1, salps experienced a drastic reduction in their feeding efficiency, possibly as a result of clogging of their filtering apparatus. This triggered a dramatic reversal in the relationship, during which a dense phytoplankton bloom developed in conjunction with the collapse of the salp population. Increases in the biomass and geographic range of the tunicate S. thompsoni have occurred in several areas of the southern ocean, often in parallel with a rise in sea-surface temperature during sub-decadal periods of warming anomalies. Received: 10 August 1997 / Accepted: 21 October 1997  相似文献   

7.
The seasonal productivity cycle and factors controlling annual variation in the timing and magnitude of the winter–spring bloom were examined for several locations (range: 42°20.35′–42°26.63′N; 70°44.19′–70°56.52′W) in Boston Harbor and Massachusetts Bay, USA, from 1995 to 1999, and compared with earlier published data (1992–1994). Primary productivity (mg C m−2 day−1) in Massachusetts Bay from 1995 to 1999 was generally characterized by a well-developed winter–spring bloom of several weeks duration, high but variable production during the summer, and a prominent fall bloom. The bulk of production (mg C m−3 day−1) typically occurred in the upper 15 m of the water column. At a nearby Boston Harbor station a gradual pattern of increasing areal production from winter through summer was more typical, with the bulk of production restricted to the upper 5 m. Annual productivity in Massachusetts Bay and Boston Harbor ranged from a low of 160 g C m−2 year−1 to a high of 787 g C m−2 year−1 from 1992 to 1999. Mean annual productivity was higher (mean=525 g C m−2 year−1) and more variable near the harbor entrance than in western Massachusetts Bay. At the harbor station productivity varied more than 3.5-fold (CV=40%) over an 8 year sampling period. Average annual productivity (305–419 g C m−2 year−1) and variability around the means (CV=25–27%) were lower at both the outer nearfield and central nearfield regions of Massachusetts Bay. Annual productivity in 1998 was unusually low at all three sites (<220 g C m−2 year−1) due to the absence of a winter–spring phytoplankton bloom. Potential factors influencing the occurrence of a spring bloom were investigated. Incident irradiance during the winter–spring period was not significantly different (P > 0.05) among years (1995–1999). The mean photic depth during the bloom period was significantly deeper (P < 0.05) in 1998, signifying greater light availability with depth. Nutrients were also in abundance during the winter–spring of 1998 with stratified conditions not observed until May. In general, the magnitude of the winter–spring bloom in Massachusetts Bay from 1995 to 1999 was significantly correlated with winter water temperature (r 2=0.78) and zooplankton abundance (r 2=0.74) over the bloom period (typically February–April). The absence of the 1998 bloom was associated with higher than average water temperature and elevated levels of zooplankton abundance just prior to, and during, the peak winter–spring bloom period. Received: 3 July 2000 / Accepted: 6 December 2000  相似文献   

8.
From May 2002 to October 2003, a fortnightly sampling programme was conducted in a restricted macrotidal ecosystem in the English Channel, the Baie des Veys (France). Three sets of data were obtained: (1) physico-chemical parameters, (2) phytoplankton community structure illustrated by species composition, biovolume and diversity, and (3) primary production and photosynthetic parameters via P versus E curves. The aim of this study was to investigate the temporal variations of primary production and photosynthetic parameters in this bay and to highlight the potential links with phytoplankton community structure. The highest level of daily depth-integrated primary production Pz (0.02–1.43 g C m−2 d−1) and the highest maximum photosynthetic rate P B max (0.39–8.48 mg C mg chl a −1 h−1) and maximum light utilization coefficient αB [0.002–0.119 mg C mg chl a −1 h−1 (μmol photons m−2 s−1)] were measured from July to September. Species succession was determined based on biomass data obtained from cell density and biovolume measurements. The bay was dominated by 11 diatoms throughout the year. However, a Phaeocystis globosa bloom (up to 25 mg chl a m−3, 2.5 × 106 cells l−1) was observed each year during the spring diatom bloom, but timing and intensity varied interannually. Annual variation of primary production was due to nutrient limitation, light climate and water temperature. The seasonal pattern of microalgal succession, with regular changes in composition, biovolume and diversity, influenced the physico-chemical and biological characteristics of the environment (especially nutrient stocks in the bay) and thus primary production. Consequently, investigation of phytoplankton community structure is important for developing the understanding of ecosystem functioning, as it plays a major role in the dynamics of primary production.  相似文献   

9.
Benthic mucilage, whether native or artificially fragmented to microscopic dimensions by ultrasonic treatment, was mixed with cytochrome c, which was used as a 12 000 Da polycationic model compound. Cytochrome c binding profiles proved to depend on the aggregation state of the mucilage. The native mucus matrix binds cytochrome c quasi hyperbolically with an apparent affinity constant K = 1 × 106M −1. As shown by chemical modification of both the mucilage and cytochrome c, the binding expression is dependent on the availability of both the positive charges on the cytochrome c surface and the negative charges within the mucus matrix. The extent of binding is sensitive to the ionic strength of the medium. The ultrasonic-stabilized mucus fragments display a peculiar binding profile, with an apparent low affinity, abruptly entering into a high affinity binding region. The results suggest that, depending on the mucus to polycation ratio, a polymeric reticulus builds up. This reticulus can accommodate molecules of at least 12 000 Da molecular weight. The results are also discussed with respect to biological implications. Received: 23 April 1997 / Accepted: 24 November 1997  相似文献   

10.
D. Liang  S. Uye 《Marine Biology》1997,128(3):415-421
Population dynamics and production of the egg-carrying calanoid copepod Pseudodiaptomus marinus were studied for a year in Fukuyama Harbor, a eutrophic inlet of the Inland Sea of Japan. This species was perennial, with a large numerical peak in June and small peaks in September/October and November/December. During the study period, at least 11 generations could be detected. For each generation, the stage-specific survival from egg to Copepodite Stage (C) V was determined; it was very high during early life stages (egg to NIII), and gradually decreased beyond. On average, 94% of eggs recruited into NIII, which is strongly contrasted with very high (>ca. 90%) mortality during the corresponding stages for free-spawning copepods, i.e. Acartia omorii, Centropages abdominalis and Paracalans sp. This demonstrates that the egg-carrying strategy has a great advantage to reduce mortality in egg stage. The biomass of this species showed marked seasonal variations largely in parallel with numerical abundance. The instantaneous somatic growth rate increased linearly with temperature. The population production rate was estimated as the sum of somatic growth of larval stages and egg production of adult females; the annual integration was 51.0 mg C m−3 yr−1 or 0.38 g C m−2 yr−1. Received: 11 November 1996 / Accepted: 7 December 1996  相似文献   

11.
Seasonally recurrent and persistent hypoxic events in semi-enclosed coastal waters are characterized by bottom-water dissolved oxygen (d.o.) concentrations of < 2.0 ml l−1. Shifts in the distribution patterns of zooplankters in association with these events have been documented, but the mechanisms responsible for these shifts have not been investigated. This study assessed interspecific differences in responses to hypoxia by several species of calanoid copepods common off Turkey Point, Florida, USA: Labidocera aestiva (Wheeler) (a summer/fall species), Acartia tonsa (Dana) (a ubiquitous year-round species), and Centropages hamatus (Lilljeborg) (a winter/spring species). Under conditions of moderate to severe hypoxia 24-h survival experiments were conducted for adults and nauplii of these species from August 1994 to October 1995. Experiments on adults used a flow-through system to maintain constant d.o. concentrations. Adults of A. tonsa showed no decline in survival with d.o. as low as 1.0 ml l−1, sharp declines in survival at d.o. = 0.9 to 0.6 ml l−1, and 100% mortality with d.o. = 0.5 ml l−1. Adults of L. aestiva and C. hamatus were more sensitive to oxygen depletion: both species experienced significant decreases in survival for d.o. = 1.0 ml l−1. Nauplii of L. aestiva and A. tonsa showed no significant mortality with d.o. = 1.1 to 1.5 ml␣l−1 and d.o. = 0.24 to 0.5 ml l−1, respectively. In addition, experiments investigating behavioral avoidance of moderate to severe hypoxia were carried out for adults of all three species. None of the three species effectively avoided either severely hypoxic (d.o. < 0.5 ml l−1) or moderately hypoxic (d.o. ≈ 1.0 ml l−1) bottom layers in stratified columns. These results suggest that in␣nearshore areas where development of zones of d.o. < 1.0 ml l−1 may be sudden, widespread, or unpredictable, patterns of reduced copepod abundance in bottom waters may be due primarily to mortality rather than avoidance. Received: 31 August 1996 / Accepted: 24 September 1996  相似文献   

12.
We document the distribution and abundance of seagrasses, as well as the intra-annual temporal patterns in the abundance of seagrasses and the productivity of the nearshore dominant seagrass (Thalassia testudinum) in the south Florida region. At least one species of seagrass was present at 80.8% of 874 randomly chosen mapping sites, delimiting 12,800 km2 of seagrass beds in the 17,000-km2 survey area. Halophila decipiens had the greatest range in the study area; it was found to occur over 7,500 km2. The range of T. testudinum was almost as extensive (6,400 km2), followed by Syringodium filiforme (4,400 km2), Halodule wrightii (3,000 km2) and Halophila engelmanni (50 km2 ). The seasonal maxima of standing crop was about 32% higher than the yearly mean. The productivity of T. testudinum was both temporally and spatially variable. Yearly mean areal productivity averaged 0.70 g m−2day−1, with a range of 0.05–3.29 g m−2 day−1. Specific productivity ranged between 3.2 and 34.2 mg g−1 day−1, with a mean of 18.3 mg g−1 day−1. Annual peaks in specific productivity occurred in August, and minima in February. Integrating the standing crop for the study area gives an estimate of 1.4 × 1011 g T. testudinum and 3.6 × 1010 g S. filiforme, which translate to a yearly production of 9.4 × 1011 g T. testudinum leaves and 2.4 × 1011 g S. filiforme leaves. We assessed the efficacy of rapid visual surveys for estimating abundance of seagrasses in south Florida by comparing these results to measures of leaf biomass for T. testudinum and S. filiforme. Our rapid visual surveys proved useful for quantifying seagrass abundance, and the data presented in this paper serve as a benchmark against which future change in the system can be quantified. Received: 30 January 2000 / Accepted: 24 July 2000  相似文献   

13.
Eggs and embryos of the sea urchin Paracentrotus lividus were used as a model to study the effect at the cellular level of potential anti-mitotic compounds extracted from the diatom Thalassiosira rotula. Eggs and embryos incubated in a water-soluble diatom extract, corresponding to 5 × 106 and 107 cells ml−1, were totally blocked (i.e. cell division was blocked) at the one-cell stage. At lower concentrations (2.5 and 1.25 × 106 cells ml−1), the first mitotic division was inhibited in 32 ± 26% and 25 ± 3.5% of the zygotes, respectively, demonstrating the dose-dependent effect of diatom extracts on sea urchin development. Immunofluorescence dyes, specific for DNA and α-tubulin subunits, were used to stain nuclei and microtubules in sea urchin embryos during various phases of development. Images with the confocal laser scanning microscope showed that tubulin was not organised in filaments at the sperm aster and cortex levels, and that the pronuclei were not fused in embryos incubated soon after fertilisation with water-soluble diatom extracts corresponding to 107 cells ml−1. At lower diatom-extract concentrations (4 × 106 cells ml −1), fusion of the pronuclei occurred but the mitotic spindle was not formed. Microtubules were clearly de-polymerised and the chromatin appeared globular and compacted at the centre of the cell. A similar structure was observed for sea urchin embryos incubated with 0.1 mM colchicine, a potent anti-mitotic compound. When sea urchin embryos were incubated in water-soluble diatom extracts at different times prior to the first mitotic division, microtubules appeared de-polymerised at each step, from pronuclear fusion to telophase, and cell division was blocked. At the histological level, embryos incubated with 4 × 106 cells ml−1 diatom extract showed nuclear fragmentation without cytokinesis. The possible use of sea urchin embryos as a bioassay to test for other unknown compounds with cytotoxic activity in phytoplankton species is discussed. Received: 7 May 1998 / Accepted: 9 December 1998  相似文献   

14.
Standing crops and the vertical distribution of four groups of ciliates, autotrophic naked ciliates (ANC), heterotrophic naked ciliates (HNC ), mixotrophic naked ciliates (MNC) and loricated ciliates (LC ), were analysed in relation to phytoplankton chlorophyll a in the western Pacific. Data were gathered from the upper 60 to 200 m of water in the subarctic North Pacific in spring, in the subtropical North Pacific in spring, in Toyama Bay in summer, off eastern Australia in spring and off Sanriku in spring and fall. Of the four groups, the standing crop of HNC (cells l−1) showed the highest correlation to phytoplankton chloro- phyll a [CHL, μg l−1; r=0.66, n=365 (HNC=490 ×CHL 0.653)]. Depths of the maximum layers of HNC and MNC were usually shallower than that of chlorophyll a, while those of ANC and LC occurred frequently beneath the chlorophyll maximum layer. This indicates that these four ciliate groups are substantially different from each other, and that each group holds a different ecological position in the marine microbial food web. Received: 27 October 1997 / Accepted: 27 June 1998  相似文献   

15.
The toxicity of fenitrothion was determined in larvae (nauplii, Zoeae 1 to 3, Mysis 1 to 3), postlarvae (PL stages) and juvenile shrimp (Penaeus japonicus Bate), in two media, seawater (SW) and diluted seawater (DSW) (1100 and 550 mosM kg−1, ≃ 37 and 19‰ S). The effects of fenitrothion on the osmoregulatory capacities (OC) of juveniles were recorded. A gill and epipodite histopathological study was also conducted. For larvae in seawater, 24 and 48 h LC50s ranged from 32.9 μg l−1 (Zoeae 2) to 10.7 μg l−1 (Mysis 3), and from 3.9 μg l−1 (Zoeae 3) to 2.0 μg l−1 (Mysis 3), respectively; 48 and 96 h  LC50s in postlarvae (PL) at the same salinity ranged from 1.8 μg l−1 (PL1) to 0.6 μg l−1 (PL5), and from 0.3 μg l−1 (PL7) to 0.4 μg l−1 (PL15). In juveniles, 96 h LC50s were 0.8 μg l−1 in seawater and 1.5 μg l−1 in diluted seawater. From hatching to juvenile stages, the overall trend was a rapid decrease (from nauplii to PL5–PL7) followed by a slight increase (from PL7 to PL15 and juveniles) in the shrimp's ability to tolerate the insecticide. In juveniles kept in seawater and in diluted seawater, fenitrothion decreased the osmoregulatory capacity (OC = difference between the hemolymph osmotic pressure and the osmotic pressure of the medium) at both lethal and sublethal concentrations. This effect was time- and dose-dependent. In SW, the decrease in hypo-OC was ˜ 25% at sublethal concentrations and ˜ 35% at the 96 h LC50. In DSW, the decrease in hyper-OC was ˜ 10 to 15% at sublethal concentrations. In SW, shrimp were able to recover their OC in less than 48 h when transferred to water free of pesticide. In DSW, recovery at 48 h was only possible after exposure to the lowest tested sublethal concentration. Haemocytic congestions (thrombosis) of the gills, lamellae necrosis and other alterations of gills and epipodites (breakage of the cuticle, reduction of the hemolymph lacunae) were noted in juveniles exposed to lethal and sublethal concentrations of fenitrothion. Received: 7 October 1996 / Accepted: 13 November 1996  相似文献   

16.
Growth rates and development times were determined for nauplii of the genera: Acartia, Centropages, Corycaeus, Oithona, Paracalanus, Parvocalanus and Temora in nearshore waters of Jamaica from in situ microcosm incubations. At these high local temperatures (∼28 °C), total naupliar development time was short: 3 to 4 d inshore and 4 to 5 d offshore. Mean instantaneous growth rates (g) ranged from as high as 0.90 d−1 for Parvocalanuscrassirostris to as low as 0.41 d−1 for Corycaeus spp. In general, nauplii of cyclopoid copepods appeared to grow more slowly than those of calanoids of the same size. Naupliar growth rates were significantly related to body size (r 2 = 0.43 to 0.50), but were unrelated to chlorophyll concentration in any measured size-fraction. This suggests that nauplii are generally not limited by resources, but are growing at their maximum temperature and size-dependent rates. Received: 30 May 1997 / Accepted: 13 May 1998  相似文献   

17.
The relative contribution of dissolved nitrogen (ammonium and dissolved free amino acids DFAAs) to the nitrogen budget of the reef-building coral Pocillopora damicornis was assessed for colonies growing on control and ammonium-enriched reefs at One Tree Island (southern Great Barrier Reef) during the ENCORE (Enrichment of Nutrient on Coral Reef; 1993 to 1996) project. P. damicornis acquired ammonium at rates of between 5.1 and 91.8 nmol N cm−2 h−1 which were not affected by nutrient treatment except in the case of one morph. In this case, uptake rates decreased from 80.5 to 42.8 nmol cm−2 h−1 (P < 0.05) on exposure to elevated ammonium over 12 mo. The presence or absence of light during measurement did not influence the uptake of ammonium ions. Nitrogen budgets revealed that the uptake of ammonium from concentrations of 0.11 to 0.13 μM could completely satisfy the demand of growing P. damicornis for new nitrogen. P. damicornis also took up DFAAs at rates ranging from 4.9 to 9.8 nmol N cm−2 h−1. These rates were higher in the dark than in the light (9.0 vs 5.1 nmol m−2 h−1, P < 0.001). Uptake rates were highest for the amino acids serine, arginine and alanine, and lowest for tyrosine. DFAA concentrations within the ENCORE microatolls that received ammonium were undetectable, whereas they ranged up to 100 nM within the control microatolls. The contribution of DFAAs to the nitrogen budget of P. damicornis constituted only a small fraction of the nitrogen potentially contributed by ammonium under field conditions. Even at the highest field concentrations measured during this study, DFAAs could contribute only ≃11.3% of the nitrogen demand of P.␣damicornis. This contribution, however, may be an important source of nitrogen when other sources such as ammonium are scarce or during periods when high concentrations of DFAAs become sporadically available (e.g. cell breakage during fish-grazing). Received: 22 April 1998 / Accepted: 3 November 1998  相似文献   

18.
The growth rates of two fish species, the winter flounder Pseudopleuronectes americanus (Walbaum) (19.3 to 42.6 mm total length, TL) and the tautog Tautogaonitis (Linnaeus) (23.9 to 55.9 mm TL), were used to evaluate habitat quality under and around municipal piers in the Hudson River estuary, USA. Growth rates were measured in a series of 10 d field caging-experiments conducted at two large piers in the summers of 1996 and 1997. Cages (0.64 m2) were deployed along␣transects that stretched from underneath the piers to beyond them, encompassing the pier edge (the transitional zone between the pier interior and the outside). Growth in weight (G w ) was determined at five locations along the transect, 40 m beneath the pier, 20 m beneath the pier, at the pier edge, 20 m beyond the pier edge, and 40 m beyond. Under piers, mean growth rates of winter flounder and tautogs were negative (xˉG W  = −0.02 d−1), and rates were comparable to laboratory-starved control fishes (xˉG W  = −0.02 d−1). In contrast, mean growth rates at pier edges and in open waters beyond piers were generally positive (xˉG W ranged from −0.001 to +0.05 d−1), with growth at pier edges often being more variable and less rapid than at open-water sites. Analyses of stomach contents upon retrieval of caged fishes revealed that dry weights of food were generally higher among fishes caged at open-water stations ( range = 0.02 to 0.72 mg dry wt) than at pier-edge ( range = 0.01 to 0.54 mg) or under-pier ( range = 0.03 to 0.11 mg) stations, although it was apparent that benthic prey were available at all stations on the transect. Our results indicate poor feeding conditions among fishes caged under piers, and suboptimal foraging among fishes caged at pier edges. Inadequate growth rates can lead to higher rates of mortality, and, based on these and other earlier experiments, we conclude that under-pier environments are poor-quality habitats for some species of juvenile fishes. Received: 12 March 1998 / Accepted: 9 November 1998  相似文献   

19.
Profiles of diarrhetic shellfish poisoning (DSP) toxins produced throughout the growth cycle and the cell cycle of the toxigenic marine dinoflagellate Prorocentrum lima were studied in triplicate unialgal batch cultures. Cells were pre-conditioned at 18 ± 1 °C, under a photon flux density (PFD) of 90 ± 5 μmol m−2 s−1 on a 14 h light:10 h dark photoperiod. In exponential growth phase, cultures were synchronized in darkness for 17 d. After dark synchronization, cultures were transferred back to the original photoperiod regime. Cells were harvested for DSP toxin analysis by LC-MS (liquid chromatography with mass spectrometry), and double-stranded (nuclear) DNA was quantified by flow cytometry. The cell populations became asynchronous within approximately 3 d after transition from darkness to the 14 h light:10 h dark photoperiod. This may be due to the prolonged division cycle (5 to 7 d) that is not tightly phased by the photoperiod. Unlike other planktonic Prorocentrum spp., cytokinesis in P. lima occurred early in the dark and ceased by “midnight”. Cellular levels of the four principal DSP toxins, okadaic acid (OA), OA C8-diol-ester (OA-D8), dinophysistoxin-1 (DTX1) and dinophysistoxin-4 (DTX4), ranged from 0.37 to 6.6, 0.02 to 1.5, 0.04 to 2.6, and 1.8 to 7.8 fmol cell−1, respectively. No toxin production was evident during the extended period of dark synchronization nor during the initial period when NH4 was consumed as the major nitrogen source. Soon after the cells were returned to the 14 h light:10 h dark cycle and they began to take up NO3, cellular levels of all four toxins gradually increased. This increase in DSP toxins usually occurred in the light, marked by a rise in DTX4 levels that preceded an increase in the cellular concentration of OA and DTX1 (delayed by 3 to 6 h). Thus, DTX4 synthesis is initiated in the G1 phase of the cell cycle and persists into S phase (“morning” of the photoperiod), whereas OA and DTX1 production occurs later during S and G2 phases (“afternoon”). No toxin production was measured during cytokinesis, which happened early in the dark. The evidence indicates that toxin synthesis is restricted to the light period and is coupled to cell cycle events. Received: 3 September 1998 / Accepted: 30 March 1999  相似文献   

20.
D. Dietrich  H. Arndt 《Marine Biology》2000,136(2):309-322
 The structure of a benthic microbial food web and its seasonal changes were studied in the shallow brackish waters of the island of Hiddensee, northeastern Germany, at two sites in close proximity by monthly or bimonthly sampling from July 1995 to June 1996. Abundance and biomass of phototrophic and non-phototrophic bacteria, heterotrophic flagellates (HF) and ciliates as well as the biomass of microphytobenthos were determined in the upper 0.3 cm sediment layer. Abundance of organisms showed strong positive correlation with water temperature, with the exception of the bacteria. Non-phototrophic bacterial numbers ranged from 7 × 108 to 6.7 × 109 cells cm−3 and phototrophic bacterial abundance from 4 × 107 to 2.7 × 108. Heterotrophic protist abundance ranged from 8 × 103 to 104 × 103 ind cm−3 for HF and from 39 to 747 ind cm−3 for ciliates. The biomass partitioning demonstrated the primary importance of non-phototrophic bacteria (min. 0.83, max. 84.87 μg C cm−3), followed by the microphytobenthos (min. 1.32, max. 50.93 μg C cm−3). The heterotrophic protists contributed roughly the same fraction to the total microbial biomass, with the biomass of the HF being slightly higher (HF 0.23 to 1.76 μg C cm−3, ciliates 0.04 to 1.17 μg C cm−3). Taxonomic classification of the benthic HF revealed the euglenids to be the most important group in terms of abundance and biomass, followed by thaumatomastigids and kinetoplastids. Other important groups were apusomonads, cercomonads, pedinellids and cryptomonads. The structure of the HF assemblage showed strong seasonal changes with euglenids being the most abundant taxa in summer, while apusomonads and thaumatomastigids were predominant in winter. Similar to the pelagic microbial food web, benthic picophototrophic bacteria were occasionally abundant, and the feeding modes of heterotrophic protists exhibited a great variety (predominantly omnivores, bacterivores, herbivores or predators). Filter-feeding HF were of little importance. Contrary to the pelagic environment, a top-down control on total benthic bacterial numbers by HF seemed unlikely at the studied stations which were characterised by muddy sand. Received: 6 January 1999 / Accepted: 21 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号