首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crude oil samples were collected from six different fields in the central Niger Delta in order to determine their natural radioactivity and trace element contents, with the aim of assessing the radiological health implications and environmental health hazard of the metals, and also to provide natural radioactivity baseline data that could be used for more comprehensive future study in this respect. The activity concentrations of the radionuclides were measured using a well, accurately calibrated and shielded vertical cryostat, Canberra coaxial high-purity germanium (HPGe) detector system, and the derived doses were evaluated. The metal concentrations were determined by the graphite furnace atomic absorption spectroscopic (GFAAS) method. The radionuclides identified with reliable regularity belong to the decay series of naturally occurring radionuclides headed by 238U and 232Th along with the non-decay series radionuclide, 40K. The averaged activity concentrations obtained were 10.52 ± 0.03 Bq kg−1, 0.80 ± 0.37 Bq kg−1 and 0.17 ± 0.09 Bq kg−1 for 40K, 238U and 232Th, respectively. The equivalent doses were very low, ranging from 0.0028 to 0.012 mSv year−1 with a mean value of 0.0070 mSv year−1. The results obtained were low, and hence, the radioactivity content from the crude oils in the Niger delta oil province of Nigeria do not constitute any health hazard to occupationally exposed workers, the public and the end user. The concentrations of the elements (As, Cd, Co, Fe, Mn, Ni, Se and V) determined ranged from 0.73 to 202.90 ppb with an average of 74.35 ppb for the oil samples analysed. The pattern of occurrence of each element agreed with the earlier studies from other parts of the Niger Delta. It was obvious from this study and previous ones that the Niger Delta oils have low metal contents. However, despite the low concentrations, they could still pose an intrinsic health hazard considering their cumulative effects in the environment. Also, various studies on the impact of oil spillage and activities of oil exploration and production on organisms in the immediate environment suggest this.  相似文献   

2.
Building materials are potential sources of radiation, which represents a risk factor for human disease including cancer. In this work, the natural radioactivity due to the presence of 238U, 226Ra, 232Th and 40K in different painting oxides has been measured using gamma spectrometry with a Hyper Pure germanium detector. The concentrations of the heavy metals (Cd, Co, Mn, Pb, Ni, Sr, Rb, Cr, Cu and Zn) were determined by atomic absorption spectrometry in order to investigate their possible correlation with radioactive elements. The activity concentrations of 238U, 226Ra, 232Th and 40K ranged from 15 ± 0.75 to 126 ± 14, 2.35 ± 0.09 to 72.96 ± 1.96, 1.76 ± 0.31 to 12.88 ± 0.7 and 2.26 ± 0.09 to 200 ± 3.34 Bq kg−1, respectively. The calculated radium-equivalents were lower than values recommended for construction materials (370 Bq kg−1). The absorbed dose rates due to the natural radioactivity of the investigated samples ranged from 8.11 ± 0.24 to 68.46 ± 4.20 nGy/h. Also, the results revealed that some heavy metals (Cd, Co, Mn and Rb) were correlated with 238U, 226Ra, 232Th or 40K.  相似文献   

3.
Cadmium contents of cultivated soils exposed to contamination in Poland   总被引:2,自引:0,他引:2  
Cadmium was measured in soils limed with industrial solid wastes, in cultivated lands located near waste yards and in soils of allotment gardens exposed to contamination. The median level and range of cadmium in soils of varying exposure to contamination was respectively: 0.3 mg kg–1 and 0.01–107 mg kg–1, 0.2 mg kg–1 and 0.02–2,198 mg kg–1, 0.4 mg kg–1 and 0.05–161 mg kg 1. Cadmium levels exceeded the value of 3 mg kg–1 considered permissible for arable soils in the samples of soils limed with wastes from the chemical industry (2.4%), the mining industry and metallurgy sites (2.1 %), in 12.4% samples of soils located in the neighbourhood of industrial waste storage yards and in 17.2% samples of soils from allotment gardens located on lands formerly used for waste storage.  相似文献   

4.
利用高纯锗γ能谱分析仪测量中国华东某铀矿区附近河流沉积物的放射性核素比活度,计算γ辐射吸收剂量率(D)、有效镭浓度(Ra_(eq))、外照射指数(H_(ex))、内照射指数(H_(in))、年有效剂量当量(AEDE(室内和室外))和年性腺剂量当量(AGDE)等放射性参数,并开展沉积物的放射性危害评估,最后通过Pearson线性系数确定放射性核素比活度之间的相关性。结果表明,河流沉积物中放射性核素~(238)U、~(226)Ra、~(232)Th和40K的平均比活度分别为51.55、37.32、57.63和756.86 Bq·kg~(-1),除~(226)Ra外,其他放射性核素的比活度均高于中国平均值;距离污染区较远或存在河流稀释作用的区域,沉积物的天然放射性核素处于正常水平,作为建筑材料使用时比活度不存在超标;放射性核素~(238)U、~(226)Ra和~(232)Th之间存在显著相关性。  相似文献   

5.
In the last decade the habit of smoking the hubbly-bubbly has increased sharply in many regions, including Europe, North America and Australia. Jordan is considered as having one of the highest consumptions of hubbly-bubbly in the world with respect to the general population. Our investigation was initiated due to the increasing trend of cancer cases in the last 10 years. The aim of this study was to determine the radioactive content in tobacco products available in the Jordanian market together with the related supplies. This study showed that all 13 samples investigated contained one or more radionuclides, from 210Pb, 40K, 137Cs, 238U, and 226Ra. Most of the samples contained natural potassium 40K and uranium 238U, lead 210Pb was found in three samples, while radium 226Ra was present only in one sample. Five samples contained the anthropogenic 137Cs. The estimated daily intake of U was found in the range between 4.4 and 115.8?µg per day (0.05–1.43 Becquerel (Bq) per day 238U), with geometric mean of 17.3?µg per day (0.2?Bq per day 238U). The geometric mean of U daily intake found represents 25% of the reference dose (RfD) value, where the highest determined U content represents 165% of the RfD value. This study demonstrated that a water vessel of hubbly-bubbly trapped less than 1.5% of the total U in Ma’assel samples. It is misleading to the public to indicate that a water vessel serves as an active filter for toxic and radiotoxic elements.  相似文献   

6.
The peri-urban soils of Huelva, one of the first industrial cities in Spain, are subject to severe pollution problems primarily due to past poor management of industrial wastes and effluents. In this study, soil cores were collected in seven sites potentially contaminated with toxic chemicals arising from multiple anthropogenic sources, in order to identify trace elements of concern and to assess human health risks associated with them. In most soil core samples, total concentrations of As (up to 4,390 mg kg−1), Cd (up to 12.9 mg kg−1), Cu (up to 3,162 mg kg−1), Pb (up to 6,385 mg kg−1), Sb (up to 589 mg kg−1) and Zn (up to 4,874 mg kg−1) were by more than one order of magnitude greater than the site-specific reference levels calculated on the basis of regional soil geochemical baselines. These chemicals are transferred from the hazardous wastes, mainly crude pyrite and roasted pyrite cinders, to the surrounding soils by acid drainage and atmospheric deposition of wind-blown dust. Locally, elevated concentrations of U (up to 96.3 mg kg−1) were detected in soils affected by releases of radionuclides from phosphogypsum wastes. The results of the human health risk-based assessment for the hypothetical exposure of an industrial worker to the surface soils indicate that, in four of the seven sites monitored, cancer risk due to As (up to 4.4 × 10−5) is slightly above the target health risk limit adopted by the Spanish legislation (1 × 10−5). The cumulative non-carcinogenic hazard index ranged from 2.0 to 12.2 indicating that there is also a concern for chronic toxic effects from dermal contact with soil.  相似文献   

7.

Converting raw biomass into valuable products protects the environment, improves economics, and helps tackle climate change by cutting resource demand and waste production. Thermochemical treatment is a common method for producing biochars, hydrochars and torreficates from biomass and organic wastes, which can also generate dioxins and furans and consequently limit the use of thermochemically converted chars. Here we review the presence of dioxins and furans in chars produced by hydrothermal carbonization, torrefaction, and pyrolysis processes under the influence of temperature, residence time, heating rate, pressure, and feedstock type. Dioxins and furans were mostly below 20 ng total toxic equivalence per kilogram (TEQ kg−1), with the highest level of 113 ng TEQ kg−1 found in over 100 samples of different char types. The most toxic products were hydrochars produced from sewage sludge. Processing temperature and feedstock type were key factors resulting in high dioxin levels in chars, and care should be taken when producing chars at temperatures up to 300 °C or using feedstocks previously contaminated with dioxins or preservatives.

  相似文献   

8.
Uranium Accumulation of Crop Plants Enhanced by Citric Acid   总被引:6,自引:0,他引:6  
Citric acid was applied to soil to enhance U accumulation in four crop plants. While the highest enhanced U accumulation of aboveground tissues (a.c. 2000 mg kg−1 dry weight) occurred in the leaves of Indian mustard (Brassica juncea), the highest enhanced U accumulation of roots (a.c. 3500 mg kg−1 dry weight) occurred in canola (Brassica napus var. napus). Uranium translocation among tissues of test plants is in the relation of roots>shoots ≅ leaves. The flowers of sunflower (Helianthus annuus) contained similar or higher U concentrations than those found in shoots, but concentrations in seeds are close to zero. In conclusion, Indian mustard is recommended as a potential species for phytoextraction for U-contaminated soil due to its high U accumulation of aboveground biomass (a.c. 2200 μg per plant). There is no evidence that two types of soils cause a significant difference of the enhanced U accumulation (p<0.05). Results, however, indicate that additional citric acid may result in downward U migration that may contaminate groundwater. Speciation of U that is taken up by plants is also discussed in the end.  相似文献   

9.

Water pollution and the unsustainable use of fossil fuel derivatives require advanced catalytic methods to clean waters and to produce fine chemicals from modern biomass. Classical homogeneous catalysts such as sulfuric, phosphoric, and hydrochloric acid are highly corrosive and non-recyclable, whereas heterogeneous catalysts appear promising for lignocellulosic waste depolymerization, pollutant degradation, and membrane antifouling. Here, we review the use of sulfonated graphene and sulfonated graphene oxide nanomaterials for improving membranes, pollutant adsorption and degradation, depolymerization of lignocellulosic waste, liquefaction of biomass, and production of fine chemicals. We also discuss the economy of oil production from biomass. Sulfonated graphene and sulfonated graphene oxide display an unusual large theoretical specific surface area of 2630 m2/g, allowing the reactants to easily enter the internal surface of graphene nanosheets and to reach active acid sites. Sulfonated graphene oxide is hydrophobic and has hydrophilic groups, such as hydroxyl, carboxyl, and epoxy, thus creating cavities on the graphene nanosheet’s surface. The adsorption capacity approached 2.3–2.4 mmol per gram for naphthalene and 1-naphthol. Concerning membranes, we observe an improvement of hydrophilicity, salt rejection, water flux, antifouling properties, and pollutant removal. The nanomaterials can be reused several times without losing catalytic activity due to the high stability originating from the stable carbon–sulfur bond between graphene and the sulfonic group.

  相似文献   

10.

The adverse effects of climate change calls for the rapid transformation of manufacturing processes to decrease the emissions of carbon dioxide. In particular, a lower carbon footprint can be achieved by capturing carbon dioxide at the site of emission. Here we review the use of industrial effluents, waste and residues to capture carbon dioxide. Waste include steelmaking slag, municipal solid waste incinerator ashes, combustion fly ash, black liquor, paper mill waste, mining waste, cement waste, construction and demolition waste, waste from the organic industry, and flue gas desulfurization gypsum waste. Capture capacities range from 2 to 800 kg of carbon dioxide per ton of waste, depending on processes, waste type and conditions. Cement waste and flue gas desulfurization gypsum waste show the highest capture capacity per ton of waste.

  相似文献   

11.
The bioavailability of arsenic (As) in the soil environment is largely governed by its adsorption–desorption reactions with soil constituents. We have investigated the sorption–desorption behaviour of As in four typical Bangladeshi soils subjected to irrigation with As-contaminated groundwater. The total As content of soils (160 samples) from the Laksham district ranged from <0.03 to approximately 43 mg kg−1. Despite the low total soil As content, the concentration of As in the pore water of soils freshly irrigated with As-contaminated groundwater ranged from 0.01 to 0.1 mg l−1. However, when these soils were allowed to dry, the concentration of As released in the pore water decreased to undetectable levels. Remoistening of soils to field moisture over a 10-day period resulted in a significant (up to 0.06 mg l−1) release of As in the pore water of soils containing >10 mg As kg−1 soil, indicating the potential availability of As. In soils containing <5 mg As kg−1, As was not detected in the pore water. A comparison of Bangladeshi soils with strongly weathered long-term As-contaminated soils from Queensland, Australia showed a much greater release of As in water extracts from the Australian soils. However, this was attributed to the much higher loading of As in these Australian soils. The correlation of pore water As with other inorganic ions (P, S) showed a strongly significant (P < 0.001) relationship with P, although there was no significant relationship between As and other inorganic cations, such as Fe and Mn. Batch sorption studies showed an appreciable capacity for both AsV and AsIII sorption, with AsV being retained in much greater concentrations than AsIII.  相似文献   

12.
Liming materials have been used to immobilize heavy metals in contaminated soils. However, no studies have evaluated the use of eggshell waste as a source of calcium carbonate (CaCO3) to immobilize both cadmium (Cd) and lead (Pb) in soils. This study was conducted to evaluate the effectiveness of eggshell waste on the immobilization of Cd and Pb and to determine the metal availability following various single extraction techniques. Incubation experiments were conducted by mixing 0–5% powdered eggshell waste and curing the soil (1,246 mg Pb kg?1 soil and 17 mg Cd kg?1 soil) for 30 days. Five extractants, 0.01 M calcium chloride (CaCl2), 1 M CaCl2, 0.1 M hydrochloric acid (HCl), 0.43 M acetic acid (CH3COOH), and 0.05 M ethylendiaminetetraacetic acid (EDTA), were used to determine the extractability of Cd and Pb following treatments with CaCO3 and eggshell waste. Generally, the extractability of Cd and Pb in the soils decreased in response to treatments with CaCO3 and eggshell waste, regardless of extractant. Using CaCl2 extraction, the lowest Cd concentration was achieved upon both CaCO3 and eggshell waste treatments, while the lowest Pb concentration was observed using HCl extraction. The highest amount of immobilized Cd and Pb was extracted by CH3COOH or EDTA in soils treated with CaCO3 and eggshell waste, indicating that remobilization of Cd and Pb may occur under acidic conditions. Based on the findings obtained, eggshell waste can be used as an alternative to CaCO3 for the immobilization of heavy metals in soils.  相似文献   

13.
A multicommutated flow system was designed and evaluated for the determination of total arsenic and selenium by Hydride Generation Atomic Absorption Spectrometry (HG-AAS). It was applied to the determination of arsenic and selenium in samples of natural and drinking water. Detection limits were 0.46 and 0.08 μg l−1 for arsenic and selenium, respectively; sampling frequency was 120 samples h−1 for arsenic and 160 samples h−1 for selenium. Linear ranges found were 1.54–10 μg l−1 (R = 0.999) for arsenic and 0.27–27 μg l−1 (R = 0.999) for selenium. Accuracy was evaluated by spiking various water samples and using a reference material. Recoveries were in the range 95–116%. Analytical precision (s r (%), n = 10) was 6% for both elements. Compared with the Standard Methods, APHA, 3114B manual method, the system consumes at least 10 times less sample per determination, and the quantities of acid and reducing agent used are significantly lower with a reduction in the generation of pollutants and waste. As an additional advantage, the system is very fast, efficient and environmentally friendly for monitoring total arsenic and selenium levels in waters.  相似文献   

14.
The objectives of the study are to present a critical review of the 238U, 234U, 235U, 226Ra and 210Pb levels in water samples from the EPA studies (U.S. EPA in Abandoned uranium mines and the Navajo Nation: Red Valley chapter screening assessment report. Region 9 Superfund Program, San Francisco, 2004, Abandoned uranium mines and the Navajo Nation: Northern aum region screening assessment report. Region 9 Superfund Program, San Francisco, 2006, Health and environmental impacts of uranium contamination, 5-year plan. Region 9 Superfund Program, San Franciso, 2008) and the dose assessment for the population due to ingestion of water containing 238U and 234U. The water quality data were taken from Sect. “Data analysis” of the published report, titled Abandoned Uranium Mines Project Arizona, New Mexico, Utah–Navajo Lands 1994–2000, Project Atlas. Total uranium concentration was above the maximum concentration level for drinking water (7.410–1 Bq/L) in 19 % of the water samples, while 238U and 234U concentrations were above in 14 and 17 % of the water samples, respectively. 226Ra and 210Pb concentrations in water samples were in the range of 3.7 × 10?1 to 5.55 × 102 Bq/L and 1.11 to 4.33 × 102 Bq/L, respectively. For only two samples, the 226Ra concentrations exceeded the MCL for total Ra for drinking water (0.185 Bq/L). However, the 210Pb/226Ra ratios varied from 0.11 to 47.00, and ratios above 1.00 were observed in 71 % of the samples. Secular equilibrium of the natural uranium series was not observed in the data record for most of the water samples. Moreover, the 235U/totalU mass ratios ranged from 0.06 to 5.9 %, and the natural mass ratio of 235U to totalU (0.72 %) was observed in only 16 % of the water samples, ratios above or below the natural ratio could not be explained based on data reported by U.S. EPA. In addition, statistical evaluations showed no correlations among the distribution of the radionuclide concentrations in the majority of the water samples, indicating more than one source of contamination could contribute to the sampled sources. The effective doses due to ingestion of the minimum uranium concentrations in water samples exceed the average dose considering inhalation and ingestion of regular diet for other populations around the world (1 μSv/year). The maximum doses due to ingestion of 238U or 234U were above the international limit for effective dose for members of the public (1 mSv/year), except for inhabitants of two chapters. The highest effective dose was estimated for inhabitants of Cove, and it was almost 20 times the international limit for members of the public. These results indicate that ingestion of water from some of the sampled sources poses health risks.  相似文献   

15.
Phthalates are animal carcinogens and may cause death or tissue deformities. Samples of feedstuffs collected in 2005 and 2006 from industrial feed manufacturers in the Czech Republic were analysed for contamination with phthalic acid esters (PAEs), specifically di-2-ethylhexyl phthalate (DEHP) and di-n-butyl phthalate (DBP). Samples of feed additives, premixes and raw materials were collected (year 2005, n = 26). For soybean oil, the total volume of phthalates measured (DBP + DEHP) reached a level of 131.42 mg kg−1; for rapeseed oil, fish meal and animal fats, the levels measured were 15.00, 7.96 and 58.87 mg kg−1, respectively. The lowest level of DBP + DEHP was found in corn (2.03 mg kg−1). Since phthalates were detected, samples of feed additives (n = 28) and raw materials (n = 28) were collected again in 2006. The highest levels of DBP + DEHP were found in raw materials containing fat. Phthalate levels in rapeseed oil samples ranged from 1.38 to 32.40 mg kg−1 DBP + DEHP. For feed additives, contamination levels in vitamins and amino acids ranged from 0.06 to 3.15 and 1.76 to 4.52 mg kg−1 DBP + DEHP, respectively. Here, we show that the levels of PAEs found in cereals such as wheat, barley and corn may be regarded as being alarmingly high, because cereals make up the largest proportion of compound feed of farm animals.  相似文献   

16.
Stawell Gold Mine in NW Victoria, Australia, mines ores that contain large concentrations of As and significant quantities of the metals Pb and Cr. The aim of this research was to understand the dispersion, enrichment and probable exposure of these potentially hazardous elements around the mine site. Fifty-five surface soil samples were collected near the mine (<15 km) and analysed by ICP-MS/OES following bioavailable and four-acid extractions. Soils near the mine show greater concentrations of As, Cr and Pb than those near a regionally determined background. This is attributed to the combination of a natural geochemical halo around mineralization and anthropogenic dispersion due to mining and urbanization. Total As concentrations were between 16 and 946 mg kg−1 near the mine in a regional background of 1–16 mg kg−1. Total Cr concentrations were between 18 and 740 mg kg−1 near the mine in a regional background of 26–143 mg kg−1. Total Pb concentrations were between 12 and 430 mg kg−1 near the mine in a regional background of 9–23 mg kg−1. Dispersion of contaminant elements from the present ore processing is <500 m. The most enriched soils occur close to the town and are unrelated to present mining practices. The bioavailable As, Cr and Pb, soil ingestion rates and Risk Reference Doses were used to estimate health risks. An average toddler (12 kg) would need to consume at least 1.5 g, and most likely 12 g, of soil per day to show some symptoms of As toxicity. The maximum measured bioavailable As would pose a risk at average ingestion rates of 200 mg per day. Individuals with soil-eating disorders would exceed the safe daily consumption limits for As, and potentially Cr and Pb. Small children are not typically exposed to soil everyday, very few have soil eating disorders, and, therefore, the health risk from the soils around the mine is minimal.  相似文献   

17.
Lead (Pb) contents and partition in soils collected from eleven vegetable-growing lands in Fujian Province, China, were investigated using a modification of the BCR (Community Bureau of Reference) sequential extraction procedure coupled with the Pb isotope ratio technique. Pb contents in Chinese white cabbage (B. Chinensis L.) grown on the lands for this study were also measured. Results showed that Pb concentrations in fifty samples of topsoil ranged from 456 to 21.5 mg kg−1, with each mean concentration of six sampling lands exceeding the national standard (50 mg kg−1); while Pb concentrations in edible portions of thirty-two vegetable samples ranged from 0.009 to 2.20 mg kg−1, with four sampling sites exceeding the national sanitary standard (0.2 mg kg−1). A significant correlation (r = 0.971, P < 0.01) of Pb contents in the acid-extractable fractions by BCR approach and the vegetables was observed, which indicates that the acid-extractable Pb is useful for evaluating the metal bioavailability for plants and potential risk for human health in soils. The determination of lead isotope ratios in different chemical forms of soils by BCR sequential extraction procedures provides useful information on the Pb isotopic composition associated with different soil fractions (especially in the acid-extractable fractions), and the result is helpful for the further study on controlling and reducing Pb contamination in vegetable-growing soils.  相似文献   

18.
Soil ingestion is an important human exposure pathway of heavy metals in urban environments with heavy metal contaminated soils. This study aims to assess potential health risks of heavy metals in soils sampled from an urban environment where high frequency of human exposure may be present. A bioaccessibility test is used, which is an in vitro gastrointestinal (IVG) test of soluble metals under simulated physiological conditions of the human digestion system. Soil samples for assessing the oral bioaccessibility of arsenic (As) and lead (Pb) were collected from a diverse range of different land uses, including urban parks, roadsides, industrial sites and residential areas in Guangzhou City, China. The soil samples contained a wide range of total As (10.2 to 61.0 mg kg−1) and Pb (38.4 to 348 mg kg−1) concentrations. The bioaccessibility of As and Pb in the soil samples were 11.3 and 39.1% in the stomach phase, and 1.9 and 6.9% in the intestinal phase, respectively. The As and Pb bioaccessibility in the small intestinal phase was significantly lower than those in the gastric phase. Arsenic bioaccessibility was closely influenced by soil pH and organic matter content (r 2 = 0.451, p < 0.01) in the stomach phase, and by organic matter, silt and total As contents (r 2 = 0.604, p < 0.001) in the intestinal phase. The general risk of As and Pb intake for children from incidental ingestion of soils is low, compared to their maximum doses, without causing negative human health effects. The exposure risk of Pb in the soils ranked in the order of: industrial area/urban parks > residential area/road side. Although the risk of heavy metal exposure from direct ingestion of urban soils is relatively low, the risk of inhalation of fine soil particulates in the air remains to be evaluated.  相似文献   

19.
This research focuses on the heavy metal contamination of the paddy soils and rice from Kočani Field (eastern Macedonia) resulting from irrigation by riverine water impacted by past and present base-metal mining activities and acid mine drainage. Very high concentrations of As, Cd, Cu, Pb and Zn were found in the paddy soils (47.6, 6.4, 99, 983 and 1,245 μg g−1) and the rice (0.53, 0.31, 5.8, 0.5 and 67 μg g−1) in the western part of Kočani Field, close to the Zletovska River, which drains the mining facilities of the Pb–Zn mine in Zletovo. In terms of health risk, the observed highest concentrations of these elements in the rice could have an effect on human health and should be the subject of further investigations.  相似文献   

20.
Voluminous stockpiles of phosphogypsum (PG) generated during the wet process production of phosphoric acid are stored at many sites around the world and pose problems for their safe storage, disposal, or utilization. A major concern is the elevated concentration of long-lived 226Ra (half-life = 1,600 years) inherited from the processed phosphate rock. Knowledge of the abundance and mode-of-occurrence of radium (Ra) in PG is critical for accurate prediction of Ra leachability and radon (Rn) emanation, and for prediction of radiation-exposure pathways to workers and to the public. The mean (±SD) of 226Ra concentrations in ten samples of Jordan PG is 601 ± 98 Bq/kg, which falls near the midrange of values reported for PG samples collected worldwide. Jordan PG generally shows no analytically significant enrichment (<10%) of 226Ra in the finer (<53 μm) grain size fraction. Phosphogypsum samples collected from two industrial sites with different sources of phosphate rock feedstock show consistent differences in concentration of 226Ra and rare earth elements, and also consistent trends of enrichment in these elements with increasing age of PG. Water-insoluble residues from Jordan PG constitute <10% of PG mass but contain 30–65% of the 226Ra. 226Ra correlates closely with Ba in the water-insoluble residues. Uniformly tiny (<10 μm) grains of barite (barium sulfate) observed with scanning electron microscopy have crystal morphologies that indicate their formation during the wet process. Barite is a well-documented and efficient scavenger of Ra from solution and is also very insoluble in water and mineral acids. Radium-bearing barite in PG influences the environmental mobility of radium and the radiation-exposure pathways near PG stockpiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号