首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Many aspects of morphology of benthic algae (length, surface area-to-volume ratio, and blade undulation) are plastic traits that vary in response to physical factors (such as light or water flow environment). This study examines whether frond buoyancy is a plastic trait, and whether differences in morphology including buoyancy affect the potential persistence of macroalgae in habitats characterized by different water flow regimes. Fronds of the tropical alga Turbinaria ornata in protected backreef environments in Moorea, French Polynesia possess pneumatocysts (gas-filled floats) and experience positive buoyant forces, whereas fronds in wave-exposed forereef sites either lack pneumatocysts entirely or have very small, rudimentary pneumatocysts and experience negative buoyant forces. Forereef fronds transplanted to the backreef developed pneumatocysts and experienced increased buoyant force indicating that buoyancy is a phenotypically plastic trait in T. ornata. In comparing the potential for dislodgement by drag, drag was greater on forereef fronds at low flow speeds as these fronds were stiffer and did not bend over at low flow speeds and therefore were less streamlined in the flow than backreef algae, which bent easily. The environmental stress factor (ESF) (a measure of the likelihood of detachment for a frond in its habitat) was higher for forereef than backreef fronds at all flow speeds. When examined with respect to the flow velocities likely in their respective habitats however, the chance of detachment for backreef and forereef was similar. Neither backreef nor forereef fronds were predicted to break under normal, non-storm conditions, but both were predicted to break in storms. Strong forereef morphologies are well suited to habitats characterized by rapid flow, whereas the weaker, buoyant, tall backreef fronds are well suited to habitats where crowding and shading is common but hydrodynamic forces are low.  相似文献   

2.
Dispersal in coral reef fishes occurs predominantly during the larval planktonic stage of their life cycle. With relatively brief larval stages, damselfishes (Pomacentridae) are likely to exhibit limited dispersal. This study evaluates gene flow at three spatial scales in one species of coral reef damselfish, Dascyllus trimaculatus. Samples were collected at seven locations at Moorea, Society Islands, French Polynesia. Phylogenetic relationships and gene flow based on mitochondrial control region DNA sequences between these locations were evaluated (first spatial scale). Although spatial structure was not found, molecular markers showed clear temporal structure, which may be because pulses of settling larvae have distinct genetic composition. Moorea samples were then compared with individuals from a distant island (750 km), Rangiroa, Tuamotu Archipelago, French Polynesia (second spatial scale). Post-recruitment events (selection) and gene flow were probably responsible for the lack of structure observed between populations from Moorea and Rangiroa. Finally, samples from six Indo-West Pacific locations, Zanzibar, Indonesia, Japan, Christmas Island, Hawaii, and French Polynesia were compared (third spatial scale). Strong population structure was observed between Indo-West Pacific populations. Received: 26 May 2000 / Accepted: 10 October 2000  相似文献   

3.
The effect of amphipod grazing on algal community structure was studied within a 75 l refuge tank connected to a 6500 l closed-system, coral reef microcosm. When amphipods (Ampithoe ramondi) were absent or present in low numbers, a high biomass of mostly filamentous algal species resulted, including Bryopsis hypnoides, Centroceras clavulatum, Ceramium flaccidum, Derbesia vaucheriaeformis, Enteromorpha prolifera, Giffordia rallsiae, and Polysiphonia havanensis. These microalgae disappeared when amphipod density increase beyond approximately 1 individual cm-2 of tank surface. The macroalga Hypnea spinella germinated in the system in association with amphipod tube sites. H. spinella plants remained rare until filamentous species were eliminated by amphipod grazing. Feeding trials confirmed that H. spinella was protected from grazing by its size rather than a chemical defense strategy. The H. spinella community we observed is similar to the flora described on algal ridges where physical conditions exclude fish grazing. We suggest that amphipods and similar micrograzers are responsible for the algal community structure of these ridges. Caging experiments may be subject to similar effects from increased amphipod grazing on the algae. Introduction of fish that are amphipod predators into the refuge tank caused an increase in algal species diversity but total H. spinella growth rates fell from 25 g dry wt month-1 to less than 8 g dry wt month-1. We describe amphipod behavior in relation to changes in population density and food supply, and we stress the potential for increasing the productivity of commercial seaweeds through maintenance of appropriate amphipod species in mariculture facilities.  相似文献   

4.
We studied the interacting roles of nutrient availability and herbivory in determining the macroalgal community in a rocky littoral environment. We conducted a factorial field experiment where we manipulated nutrient levels and herbivory at two sublittoral depths and measured macroalgal colonization and the following young assemblage during the growing season. At the community level, grazing reduced algal colonization, though the effect varied with depth and its interaction with nutrient availability varied in time. In shallow water, the total density of macroalgae increased in response to nutrient enrichment, but the ability of grazers to reduce macroalgal density also increased with the nutrient enrichment, and thus, the community could not escape from the top-down control. In deep water, the algal density was lower, except in July when nutrient enrichment caused a very dense algal growth. Grazing at the greater depth, though effective, was generally of smaller magnitude, and in July it could not limit algal recruitment and growth. Species richness peaked at the intermediate nutrient level in deep but not in shallow water during most of the growing season. Grazing had no effect on diversity of the algal community at either depth and only a minor effect on species richness at the greater depth. Opportunistic and ephemeral algae benefited from the nutrient enrichment but were also grazed to very low densities. Slowly growing and/or perennial species colonized poorly in the nutrient enriched treatments, and depending on the species, either suffered or indirectly benefited from herbivory. For all species, effects of nutrients on colonization depended on depth; usually both nutrient and herbivory effects were more pronounced at the shallow depth. We conclude that grazers are able to reduce macroalgae over a large range of nutrient availabilities, up to 12-fold nutrient enrichment in the current experiment, and that the sublittoral depth gradient generates variation in the algal community control exerted by both herbivory and nutrient availability. Thus temporal and spatial variability in both top-down and bottom-up control and in their interaction, especially along the depth gradient, may be crucially important for producer diversity and for the successional dynamic in a rocky sublittoral environment.  相似文献   

5.
The calcium carbonate budget of coral reefs is the result of the interaction of the processes of calcification and biological degradation, and is reflected in the chemical properties of the seawater overlying the reefs. A series of experiments at Moorea Island (French Polynesia) in 1988 monitored the diurnal and nocturnal variations in the chemical properties of seawater under field and laboratory conditions. Our results revealed that in the study area (Tiahura barrier reef flat), the calcium carbonate budget varied over space and time as a function of location in the water current. Two in-situ sites were investigated; one was situated 100 m from the algal crest of the barrier reef, the other 300 m further downstream. As a result of cumulative upstream events, the daily net calcification was ten times higher at the downstream (5.22 gm-2 d-1) than at the upstream (0.45 gm-2 d-1) site. The carbonate uptake by in situ Porites lobata in enclosures (8 kgm-2 yr-1) was ten times higher than the uptake by the whole community in the surrounding water (0.8 kgm-2 yr-1) and five times higher than that recorded for P. lobata in laboratory experiments (1.4 kgm-2 yr-1), where illumination levels were 10% of in situ levels. In laboratory experiments, the planktonic fraction of the seawater had no perceptible influence on the calcium carbonate budget. In the absence of bioeroders, living coral totally depleted the carbonate content of the seawater (3.7 gm-2d-1). Bioerosive organisms played an important role in restoring this calcium carbonate; e.g. sea urchins grazing on algal turf covering dead coral ingested CaCO3 and released this as a carbonate powder (1.26 gm-2d-1); a form of carbonate which is extremely accessible to chemical dissolution.  相似文献   

6.
Previous studies have shown that the three-spot damselfish species complex [ Dascyllus albisella Gill, D. auripinnis Randall and Randall, D. strasburgi Klausewitz, D. trimaculatus (Ruppell)] is an assemblage of five geographically distinct clades. The one exception was a single D. trimaculatus from French Polynesia, which grouped with "Pacific Rim" individuals. In the present study, an additional 252 individuals from French Polynesia collected between June 1996 and January 2002 were analyzed using PCR amplifications, restriction fragment length polymorphisms, and DNA sequencing of the mitochondrial control region. The French Polynesian D. trimaculatus belong to two distinct clades. One clade comprising 96% of the individuals includes haplotypes found only in French Polynesia. The other clade (4% of the individuals) is comprised of haplotypes that cluster with "Pacific Rim" individuals, a clade with widespread distribution from Japan to the Line Islands and from Wallis to Palau. Present data suggest that a small number of larvae from northwestern reefs (possibly Line Islands) may have occasionally reached and colonized French Polynesian reefs.  相似文献   

7.
Grazing pressure on macroalgae in littoral communities may vary with algal species, the age of an algal individual and grazer identity. Previous studies on alga–grazer interactions have shown that grazer preference for an algal species may release another one from interspecific competition. We measured the impacts of four common grazer taxa and the natural grazer guild on macroalgal communities at both their colonization and adult stages, and compared the impacts to grazer exclosures. The grazer effects were stronger on colonizing than on adult macroalgae; grazers did not reduce the total density of adult algae. Grazers both feed on propagules and indirectly facilitate other algae, depending on the grazer or algal species. Hydrobia species increased the settlement of spores of the red alga Ceramium tenuicorne. Similarly, the gastropod Theodoxus fluviatilis tended to facilitate one crustose algal species, but decreased the propagule density of annual filamentous algae, suggesting a preference for one species to the advantage of another. Effects of crustacean mesograzers on the studied macroalgae were weak. These results indicate that northern Baltic macroalgae are limited to grazing mainly during their colonization stage.  相似文献   

8.
This study explores the extent to which ontogenetic habitat shifts modify spatial patterns of fish established at settlement in the Moorea Island lagoon (French Polynesia). The lagoon of Moorea Island was divided into 12 habitat zones (i.e. coral seascapes), which were distinct in terms of depth, wave exposure, and substratum composition. Eighty-two species of recently settled juveniles were recorded from March to June 2001. Visual censuses documented changes in the distribution of juveniles of each species over time among the 12 habitats. Two patterns of juvenile habitat use were found among species. Firstly, some species settled and remained in the same habitat until the adoption of the adult habitats (i.e. recruitment; e.g. Chaetodon citrinellus, Halichoeres hortulanus, Rhinecanthus aculeatus). Secondly, others settled to several habitats and then disappeared from some habitats through differential mortality and/or post-settlement movement (e.g. 65–70 mm size class for Ctenochaetus striatus, 40–45 mm size class for Epinephelus merra, 50–55 mm size class for Scarus sordidus). A comparison of the spatial distribution of juveniles to that of adults (61 species recorded at both stages) illustrated four patterns of subsequent recruitment in habitat use: (1) an increase in the number of habitats used during the adult stage (e.g. H. hortulanus, Mulloidichthys flavolineatus); (2) a decrease in the number of habitats adults used compared to recently settled juveniles (e.g. Chrysiptera leucopoma, Stethojulis bandanensis); (3) the use of different habitat types (e.g. Acanthurus triostegus, Caranx melampygus); and (4) no change in habitat use (e.g. Naso litturatus, Stegastes nigricans). Of the 20 most abundant species recorded in Moorea lagoon, 12 species modified the spatial patterns established at settlement by an ontogenetic habitat shift.Communicated by T. Ikeda, Hakodate  相似文献   

9.
Amphipods along the western Antarctic Peninsula appear to gain refuge from predators by associating with chemically defended macroalgae rather than palatable macroalgae. However, nothing is known about amphipod activity at night. If foraging on non-chemically defended macroalgae regularly occurs, then nocturnal foraging seems beneficial since visual predators are disadvantaged. To test this hypothesis, we collected three common macroalgal species and affiliated mesograzers, approximately 3 h before and after sunset. All associated mesofauna were counted and densities recorded. Amphipod densities were significantly decreased during the night on the chemically defended Desmarestia menziesii, while significantly increased on the palatable Iridaea cordata. Additionally, the amphipod Gondogeneia antarctica was found in significantly higher densities at night on Palmaria decipiens, a species shown to be readily eaten by G. antarctica and omnivorous fish. We believe that chemically defended macroalgae act as a refuge for mesograzers during the day, while more widespread foraging occurs at night.  相似文献   

10.
Levenbach S 《Ecology》2008,89(10):2819-2828
Little attention has been given to associational refuges in ecology, despite their potential for maintaining species diversity and supporting higher trophic levels. Here I show how the colonial anemone, Corynactis californica, creates a refuge for benthic macroalgae and invertebrate fish prey on intensively grazed shallow rocky reefs in the Santa Barbara Channel off southern California, U.S.A. On reefs heavily grazed by sea urchins, benthic macroalgae and invertebrate fish prey were relatively more abundant among Corynactis colonies than adjacent areas lacking the anemone. Results from field experiments showed that Corynactis facilitated the recruitment of macroalgae and tubicolous amphipods in "urchin-barren" areas subjected to intensive grazing. In areas forested by giant kelp (Macrocystis pyrifera), where grazing intensity from urchins was low, Corynactis suppressed algal recruitment but facilitated tubicolous amphipods. A manipulation of fish and sea urchins suggested that grazing by urchins, as opposed to predation from fish (primarily surfperch Embiotocidae), suppressed tubicolous amphipods, and this activity was hindered by the presence of Corynactis. In systems where human activity has intensified herbivory, associational refuges may maintain species diversity and support higher trophic levels.  相似文献   

11.
The production of defence metabolites is assumed to be costly in metabolic terms. If this holds true, low-light stress should reduce the ability of seaweeds to defend themselves chemically against herbivory and fouling. We investigated the effect of energy limitation on the defensive status of seaweeds by assessing their attractiveness to mesograzers and their activity against a bivalve macrofouler in comparison with non-stressed conspecifics. The macroalgae Codium decorticatum (Woodw.) M. Howe, Osmundaria obtusiloba (C. Agardh) R. E. Norris, Pterocladiella capillacea (S. G. Gmel.) Santel. and Hommer., Sargassum vulgare C. Agardh and Stypopodium zonale (Lamour.) Papenf. collected at the southeastern Brazilian coast were exposed to six levels of irradiation (between 1 and 180 μmol photons m−2 s−1) for 10–14 days. After this period, algae from all treatment levels were: (a) processed as artificial food and offered to an amphipod community dominated by Elasmopus brasiliensis Dana and (b) extracted to test for differences in settlement rates of the fouling mussel Perna perna L. on filter paper loaded with the crude extracts. Generally, photosynthesis rates and growth were reduced under low light conditions. Attractiveness to herbivores and macrofoulers, however, was insensitive to energy limitation. We discuss possible explanations for the observed absence of a relationship between light availability and algal defence including the change in nutritional value of the algal tissue, the allocation of resources towards defence instead of growth and the absence of costs for defence.  相似文献   

12.
This study evaluated whether larvae of the Indo-Pacific vermetid gastropod Dendropoma maximum are obligate planktotrophs, or whether they exhibit an intermediate feeding strategy. Experiments were conducted in Moorea, French Polynesia (149°50′W, 17°30′S), Sep–Oct 2009, to examine D. maximum larval growth and metamorphic responses to different diets and amounts of food. Dendropoma maximum larvae required particulate food to undergo metamorphosis, but were able to survive and grow in the absence of food for up to 20 days. Larvae in Low and Unfed food treatments exhibited phenotypic plasticity by growing a larger velum (the larval feeding structure) compared with those in high food. Unfed D. maximum larvae had a slower initial growth rate; however, by 11-day post-hatch fed and unfed larvae had converged on the same mean shell height (553 μm), which was only 10% larger than the initial size at hatching. Therefore, although the nutritional strategy of D. maximum larvae is best described as obligate planktotrophy, it appears to approach an intermediate feeding strategy.  相似文献   

13.
Species interactions can induce morphological changes in organisms that affect their subsequent growth and survival. In Moorea, French Polynesia, epibiotic gammaridean amphipods induce the formation of long, branch-like coral “fingers” on otherwise flat, encrusting, or plating Montipora coral colonies. The fingers form as corals encrust tubes built by the amphipods and lead to significant changes in colony morphology. This study examines the costs and benefits of this association to the amphipods and corals and demonstrates that the interaction is a mutualism. Amphipods gain protection from predators by living within corals, and corals benefit by enhanced growth and survival. Benefits to the coral arise through direct effects due to the amphipods’ presence as well as through benefits derived from the altered colony morphology. This study demonstrates that induced morphological plasticity can be a mechanism for facilitation, adding to our knowledge of the roles mutualism, and phenotypic plasticity play in ecology.  相似文献   

14.
Caribbean coral reefs are increasingly dominated by macroalgae instead of corals due to several factors, including the decline of herbivores. Yet, virtually unknown is the role of crustacean macrograzers on coral reef macroalgae. We examined the effect of grazing by the Caribbean king crab (Mithrax spinosissimus) on coral patch reef algal communities in the Florida Keys, Florida (USA), by: (1) measuring crab selectivity and consumption of macroalgae, (2) estimating crab density, and (3) comparing the effect of crab herbivory to that of fishes. Mithrax prefers fleshy macroalgae, but it also consumes relatively unpalatable calcareous algae. Per capita grazing rates by Mithrax exceed those of most herbivorous fish, but Mithrax often occurs at low densities on reefs and its foraging activities are reduced in predator-rich environments. Therefore, the effects of grazing by Mithrax tend to be localized and when at low density contribute primarily to spatial heterogeneity in coral reef macroalgal communities.  相似文献   

15.
The present study investigated the sexual pattern of the yellow-tailed dascyllus, Dascyllus flavicaudus (Randall and Allen), through histological examination of the process of gonadal differentiation and maturation and through male-removal experiments in the laboratory. The study was conducted in Moorea, French Polynesia (17°32S; 149°50W), from 31 December 1994 to 11 March 1995. For gonadal histology, two populations were sampled, one consisting of large aggregations (n=54) and the other consisting of small- to medium-sized groups around isolated corals (n=55). An additional small sample (n=21) was also collected from a population that consisted of small groups around isolated corals. After an initially undifferentiated state, gonads of D. flavicaudus developed an ovarian lumen, followed by oocytes in the primary growth stage. From this ovarian state or from more developed ovaries with cortical-alveolus stage oocytes, some gonads developed into testes through degeneration of oocytes and development of spermatogenic tissue. In all three populations, spermatogenic tissue developed only in gonads that contained pre-vitellogenic oocytes (termed as mixed stage 1–2 gonads). The two main populations did not differ in their expression of sex change despite differences in their social organization. In both populations, size of individuals with mixed stage 1–2 gonads overlapped mainly with the size range of immature females, which suggests that functional female-to-male sex change was rare. The hypothesis that D. flavicaudus is primarily gonochoristic is further supported by removal experiments in laboratory groups, in which removal of a dominant male(s) failed to induce sex change in any of the high-ranking females. Yet, in all three field populations, some fish with mixed stage 1–2 gonads were found within the size ranges of mature females, which indicates possible occurrences of functional sex change. These conflicting results indicate that it may be premature to draw any definitive conclusions about the sexual pattern of D. flavicaudus.Communicated by T. Ikeda, Hakodate  相似文献   

16.
One strategy for predator avoidance involves the creation of a structural refuge. Onuphid polychaetes characteristically ornament above-sediment portions of their tubes (=tube-caps) with shell and algal debris. These species feed on the sediment surface through an opening in the tube-cap, and thus the ability to detect a surface predator while feeding would be advantageous. An investigation of the function of the ornamentation in Diopatra spp. suggests that ornamentation facilitates predator detection and avoidance. Three intensities of mechanical disturbance were applied directly to D. ornata tube-caps. When ornamented tube-caps were stimulated, the response of worms to the three intensities were significantly different, and increased in duration with greater intensities. In contrast, when no ornamentation was present, the responses were not significantly different, and were similar to the low-intensity response when ornamentation was present. This suggests that ornamentation should allow a worm to distinguish between harmful (high intensity due to mobile epifaunal predators) and profitable (low intensity due to drift algae) disturbances, and furthermore, worms with ornamented tube-caps should be more successful in escaping surface predators. Densities of intertidal populations of D. cuprea at Tom's Cove, Virginia, USA, correlated with the amount of tube ornamentation, consistent with this predator detection and avoidance hypothesis. Final tube-cap lengths of laboratory D. ornata and field D. cuprea were inversely related to the size of attached debris. When large debris was attached, cap formation ceased earlier and caps were shorter than when small debris or no debris was attached. Cryptic and food-catching functions would predict that highly ornamented tubes would be most advantageous, while only a few large debris would be required for disturbance transmission. Laboratory specimens showed no selectivity between 0.5 or 1.5 cm2 shell; or 1.0 cm2 or 3 to 8 cm2 algae, and utilized shell and algae when available and according to relative abundance. Tube-caps of field specimens also showed positive correlations between shell attached and shell abundance in the local sediment. While such lack of selectivity may enhance cryptic properties of the tube-cap, it is argued that conditions seldom exist which would permit selectivity of debris size or of specific material. These data are consistent with the hypothesis that ornamentation functions as a created refuge for predator detection and avoidance and further suggest that the availability of ornamental debris in the environment indirectly can affect these species' distributions and abundances.  相似文献   

17.
 Dark coloration of coral skeleton forming black bands is commonly observed in fractured, massive-coral colonies (Porites lutea and P. lobata) collected from May- otte Island in the Mozambique Channel and Moorea Island in French Polynesia. Black-banding was similar in corals from the two areas and was associated with an assemblage of microbial endoliths: Ostreobium queketti, a common siphonal chlorophyte, and a type of Aspergillus-like fungus. Fungi of coral skeletons are capable of euendolithic growth entirely within the skeleton, and of cryptoendolithic growth whereby they spread from the skeleton into the skeletal pores. The morphology and size of fungal hyphae differs significantly between euendolithic, cryptoendolithic and reproductive phases. Reproductive phases involve formation of conidiophores. Insoluble residues in black bands involve a dark pigment and a dark membranous veil. When attacked by fungi, the algae are usually destroyed. They darken and are threaded by dense, dark-brown, fibrous excrescences. The fungi excrete a dark pigment that stains the surrounding skeletal carbonate black. The pigment is organic, and its presence correlates with higher concentrations of polysaccharides. Black bands match high-density bands of the coral skeleton. Both black bands and high-density bands form at the end of the rainy season in Mayotte. Thus, black-banding in the corals studied is caused by a series of events, beginning with an increase in the abundance of endolithic algae followed by an increase in skeletal density. The algae are then attacked by fungi, which produce more cryptoendolithic hyphae and conidia that are associated with production of the dark pigment. Received: 29 January 1999 / Accepted: 29 September 1999  相似文献   

18.
Fong P  Smith TB  Wartian MJ 《Ecology》2006,87(5):1162-1168
Macroalgal dominance of some tropical reef communities in the Eastern Pacific after coral mortality during the 1997-1998 El Ni?o Southern Oscillation (ENSO) was facilitated by protection from herbivory by epiphytic cyanobacteria. Our results do not support that reduction in number of herbivores was a necessary precursor to coral reef decline and shifts to algal reefs in this system. Rather, macroalgae dominated the community for several years after this pulse disturbance with no concurrent change in herbivore populations. While results of microcosm experiments identified the importance of nutrients, especially phosphorus, in stimulating macroalgal growth, nutrient supply alone could not sustain macroalgal dominance as nutrient-stimulated growth rates in our in situ experiments never exceeded consumption rates of unprotected thalli. In addition, thalli with nutrient-enriched tissue were preferentially consumed, possibly negating the positive effects of nutrients on growth. These tropical reefs may be ideal systems to conduct experimental tests distinguishing phase shifts from alternative stable states. Shifts were initiated by a large-scale disturbance with no evidence of a changing environment except, perhaps, dilution in herbivory pressure due to increased algal cover. Community establishment was most likely stochastic, and the community was likely maintained by strongly positive interaction between macroalgal hosts and cyanobacterial epiphytes that uncoupled consumer control of community structure.  相似文献   

19.
Settlement of mussels is commonly associated with macroalgae. The effects of 19 macroalgal species on the settlement and metamorphosis of pediveliger larvae of the mussel Mytilus galloprovincialis were investigated in the laboratory. Settlement and metamorphosis inducing activities of macroalgae Chlorodesmis fastigiata and Ceramium tenerrimum collected each month during the period between January 2005 and April 2006 were also investigated. Furthermore, C. fastigiata and C. tenerrimum were subjected to various treatments to investigate the roles of bacteria and diatoms on the algal surface in the induction of larval settlement and metamorphosis of M. galloprovincialis and the characteristics of the cues in these two macroalgae. Pediveliger larvae of M. galloprovincialis settled and metamorphosed in high percentages on Cladophora sp., Chlorodesmis fastigiata, Centroceras clavulatum, and Ceramium tenerrimum, all of which were filamentous in morphology. Macroalgae that were cylindrical, phylloid, flabellate, palmate and pinnate all showed low (<8%) percentages of post-larvae but four other filamentous macroalgae also had low mussel larval settlement, suggesting that chemical factors may also be involved. Seasonal variation had no effect on inductive activities of C. fastigiata and C. tenerrimum. Treatment of C. fastigiata and C. tenerrimum with formalin, ethanol and heat resulted in the significant decrease or loss of their inductive activities. Survival of algal cells within treated macroalgae also decreased significantly. Treatment of the two macroalgae with antibiotics and GeO2 reduced the numbers of bacteria and diatoms on their surface but did not affect their inductive activities, indicating that the cue was produced by macroalgae and not by coexisting bacteria and diatoms. However, conditioned water and crude extracts of these two macroalgae did not induce larval settlement and metamorphosis. Thus, larvae of M. galloprovincialis settled and metamorphosed on specific filamentous macroalgae. The chemical cues produced by C. fastigiata and C. tenerrimum were susceptible to ethanol and heat treatments and were not recovered in the conditioned water nor in the extracts. The finding that inactive C. tenerrimum can be produced from culturing its apical segments provides a new tool to elucidate the chemical cue(s) from macroalgae through manipulation of their culture conditions.  相似文献   

20.
The shallow kelp forest at Santa Catalina Island, California (33.45 N, −118.49 W) is distinguished by several canopy guilds ranging from a floating canopy (Macrocystis pyrifera), to a stipitate, erect understory canopy (Eisenia arborea), to a short prostrate canopy just above the substratum (Dictyopteris, Gelidium, Laminaria, Plocamium spp.), followed by algal turfs and encrusting coralline algae. The prostrate macroalgae found beneath E. arborea canopies are primarily branching red algae, while those in open habitats are foliose brown algae. Densities of Corynactis californica, are significantly greater under E. arborea canopies than outside (approximately 1,200 versus 300 polyps m−2 respectively). Morphological differences in macroalgae between these habitats may affect the rate of C. californica particle capture and serve as a mechanism for determining polyp distribution and abundance. Laboratory experiments in a unidirectional flume under low (9.5 cm s−1) and high (21 cm s−1) flow speeds examined the effect of two morphologically distinct macroalgae on the capture rate of Artemia sp. cysts by C. californica polyps. These experiments (January–March 2006) tested the hypothesis that a foliose macroalga, D. undulata, would inhibit particle capture more than a branching alga, G. robustum. G. robustum, found predominantly under the E. arborea canopy did not affect particle capture. However, D. undulata, found predominantly outside of the canopy, inhibited particle capture rates by 40% by redirecting particles around C. californica polyps and causing contraction of the feeding tentacles. These results suggest that the morphology of flexible marine organisms may affect the distribution and abundance of adjacent passive suspension feeders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号