首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
● Six largely produced agricultural biomass wastes were pyrolyzed into biochars. ● Feedstock type significantly determined physiochemical properties of biochars. ● The biochars showed powerful adsorption capabilities to Plasticizer DEP. ● Giant reed biochar with higher DEP adsorption was a prominent sorbent. Plastic pollution as a global environmental issue has become a research hotspot, among which the removal of inherent plasticizer (e.g., phthalic acid esters, PAEs) received increasing attention. However, the effects of biochars derived from different feedstocks on the adsorption of PAEs are poorly understood. Thus, the characteristics of biochars derived from six largely produced biomass wastes in China at 400 °C, as well as their performance in adsorption of diethyl phthalate (DEP), one of frequently detected PAEs in aqueous environment, were investigated. The results indicated that the variation in feedstock type showed significant changes in the properties (e.g., porosity, specific surface area, surface functional groups) of biochars, which affected DEP adsorption and desorption. Pseudo-second order and Freundlich models fitted the adsorption data well, and adsorption mechanisms mainly included hydrophobic effect, followed by micropore filling, hydrogen bonding, and π-π EDA interactions. Adsorption thermodynamics revealed that the adsorption was a spontaneous and exothermic the adsorption capacities of DEP on these biochars slightly decreased with the increasing pH but increased with the increasing ionic strength. Among these biochars, the giant reed biochar with relatively higher DEP adsorption and low desorption exhibited the great efficiency for DEP removal as an environment-friendly sorbent. These results highlighted the significant roles of micropore filling and hydrogen bond in determining adsorption capacity of designed biochars prepared from selecting suitable agricultural straws and wetland plant waste to typical plasticizer. The findings are useful for producing designed biochars from different biomass wastes for plasticizer pollution control.  相似文献   

2.
不同作物原料热裂解生物质炭对溶液中Cd2+和Pb2+的吸附特性   总被引:17,自引:0,他引:17  
选择由小麦秸秆、玉米秸秆和花生壳经350~500℃热裂解制成的生物质炭,研究生物黑炭对水溶液中Cd2+和Pb2+的吸附特性,分析了pH值、吸附时间、溶液初始质量浓度、生物质炭粒径和投加量对吸附效果的影响。结果表明:生物质炭对Cd2+和Pb2+的吸附约10 min即达平衡;3种生物质炭对Cd2+和Pb2+的等温吸附均可用Langmuir方程和Freundlich方程拟合,玉米秸秆炭对Cd2+和Pb2+的最大吸附量远大于小麦秸秆炭和花生壳炭;在生物黑炭投加量为150 mg(6 g.L-1)时,3种生物黑炭对溶液Cd2+的去除率均在90%以上,玉米秸秆炭对溶液Pb2+的去除率达90.30%,而小麦秸秆炭和花生壳炭的去除率仅为52%和47%,玉米秸秆炭有望成为处理重金属污染废水的新型吸附材料。  相似文献   

3.
本研究以H_2O_2作为氧化剂模拟生物炭在土壤中的化学老化过程,并通过其被氧化前后表面性质和对双酚A吸附能力的差异,来评估生物炭在土壤中的稳定性及其老化后与双酚A的相互作用。结果表明,经过为期7 d的氧化,H_2O_2的氧化使200℃下制备的生物炭结构片段流失,其吸附性能降低以及生物炭总量减少;而500℃下制备的生物炭虽然碳损失率较低,但由于其极性增强和芳香性减弱导致其吸附性能减弱。2种生物炭在土壤中长期暴露后都可能导致其吸附双酚A能力下降,相对于200℃下制备的生物炭,500℃下制备的生物炭老化后吸附双酚A的能力下降程度更大。  相似文献   

4.
Biochar has emerged as a universal sorbent for the removal of contaminants from water and soil. However, its efficiency is lower than that of commercially available sorbents. Engineering biochar by chemical modification may improve its sorption efficiency. In this study, conocarpus green waste was chemically modified with magnesium and iron oxides and then subjected to thermal pyrolysis to produce biochar. These chemically modified biochars were tested for NO3 removal efficiency from aqueous solutions in batch sorption isothermal and kinetic experiments. The results revealed that MgO-biochar outperformed other biochars with a maximum NO3 sorption capacity of 45.36 mmol kg?1 predicted by the Langmuir sorption model. The kinetics data were well described by the Type 1 pseudo-second-order model, indicating chemisorption as the dominating mechanism of NO3 sorption onto biochars. Greater efficiency of MgO-biochar was related to its high specific surface area (391.8 m2 g?1) and formation of strong ionic complexes with NO3. At an initial pH of 2, more than 89 % NO3 removal efficiency was observed for all of the biochars. We conclude that chemical modification can alter the surface chemistry of biochar, thereby leading to enhanced sorption capacity compared with simple biochar.  相似文献   

5.
选择由小麦秸秆、玉米秸秆和花生壳经350-500℃热裂解制成的生物质炭,研究生物黑炭对水溶液中Cd2+和Pb2+的吸附特性,分析了pH值、吸附时间、溶液初始质量浓度、生物质炭粒径和投加量对吸附效果的影响。结果表明:生物质炭对Cd2+和Pb2+的吸附约10 min即达平衡;3种生物质炭对Cd2+和Pb2+的等温吸附均可用Langmuir方程和Freundlich方程拟合,玉米秸秆炭对Cd2+和Pb2+的最大吸附量远大于小麦秸秆炭和花生壳炭;在生物黑炭投加量为150 mg(6 g.L-1)时,3种生物黑炭对溶液Cd2+的去除率均在90%以上,玉米秸秆炭对溶液Pb2+的去除率达90.30%,而小麦秸秆炭和花生壳炭的去除率仅为52%和47%,玉米秸秆炭有望成为处理重金属污染废水的新型吸附材料。  相似文献   

6.
Extraction of crude oil from oil sand produces solid (sand) and liquid (water with suspended fine particles) tailings materials, called oil sands process-affected materials (OSPM). These waste materials are stored on the mine site due to a “zero discharge” policy and must be reclaimed when operations end. The liquid tailings materials are known to contain naphthenic acids and polycyclic aromatic hydrocarbons and have high pH and salinity. One method of reclamation is the “wet landscape” approach, which involves using oil sands tailings materials to form wetlands that would mimic natural wetland ecological function. This study investigated the effects of wetlands formed with oil sands tailings materials on the survival and growth of wood frog (Rana sylvatica) larvae. In spring 2007, in-situ caging studies were completed in 14 wetlands that were of four different classes; young or old, reference or reclaimed. Tadpole survival was different between types of wetlands, with young tailings-affected wetlands (≤7 years old) having 41.5%, 62.6%, and 54.7% higher tadpole mortality than old tailings-affected (>7 years old), young reference, and old reference wetlands, respectively. Since old wetlands created from OSPM showed effects on tadpoles similar to those of reference wetlands, which had markedly lower toxicity than young tailings-affected wetlands, we provide evidence that wetlands, at least 7 years old, can sustain amphibian life.  相似文献   

7.
Biochar (BC) is a potential material for removal of polycyclic aromatic hydrocarbons from soil and water, and base modification is a promising method for improving its sorption ability. In this study, we synthesized a series of base-modified biochars, and evaluated their sorption of phenanthrene. Original biochars were produced by pyrolysis of three feedstocks (rice straw, wood and bamboo) at five temperatures (300°C, 350°C, 400°C, 500°C and 700°C). Base-modified biochars were further obtained by washing of biochars with base solution. The base soluble carbon (SC) was extracted from the supernatant, which were only obtained from biochars pyrolyzed at low temperatures (<500°C) and the content was decreased with the increase of pyrolysis temperature. The SC content between different feedstocks followed the trend of rice straw>wood>bamboo when same pyrolysis conditions were applied. It was found that base modification improved the sorption of phenanthrene on biochars that SC could be extracted from (extractable-BCs). However, base treatment but had limited effects for biochars that no SC could be extracted from. It suggested that base modification improved the sorption of phenanthrene to extractable-BCs by removing the SC and thus increasing the surface area and hydrophobicity. Therefore, base modification was suggested to be used in modifying extractable-BCs.
  相似文献   

8.
Sulfide-containing mill wastes of the Komsomolsk ore processing plant situated in the Kemerovo region (Russia) were examined in 2013–2015. Multipurpose studies of the mine tailings determined the composition of waste, pore water, mine drainages, and affected groundwater. Electrical resistivity tomography was used to trace the geoelectric zoning of the waste samples. Layers with low resistivity indicated areas with pore spaces filled with highly mineralized solutions with Fe, Cu, Zn, Cd, As, and Sb at total concentrations of up to 50 g/L. Anomalous zones can be specified as ‘geochemical barriers’ – specific layers where the mobility of the elements is reduced due to pH conditions, redox potential, and Fe(III) hydroxide precipitation. The zones of increased conductivity in oxidized mine tailings indicated local areas with high acid production potential and coexisting acidic pore solution. In non-oxidized tailings, high conductivity of the mineral skeleton was observed. There was a migration of drainage outside the tailings, its direction monitored by geophysical data. Chemical analysis confirmed that the concentrations of As in groundwater samples were higher than the maximum permissible concentration.  相似文献   

9.
The adsorptive characteristics of biochar produced from garden green waste (S-char) and a mixture of food waste and garden green waste (FS-char) were investigated. Adsorption of Cu2+, Zn2+, and Mn2+ onto the two biochars reached equilibrium within 48 hours. The metal adsorption was effectively described by the pseudo-second-order kinetic and Freundlich isotherm models which suggest heterogeneous chemisorption. The initial solution pH influenced adsorption of Zn2+ and Mn2+ but not of Cu2+. Simulation via a surface complexation model showed that the fraction of XOCu+ adsorbed onto biochar was increased with increasing pH until it reached the adsorption maximum at pH 8.5, while the endpoint for the maximum of XOMn+ was higher than pH 12.  相似文献   

10.
生物质炭的性质及其对土壤环境功能影响的研究进展   总被引:37,自引:0,他引:37  
袁金华  徐仁扣 《生态环境》2011,20(4):779-785
在厌氧或者绝氧的条件下对生物质进行热解,可产生含碳丰富的固体物质,称为生物质炭。由于生物质炭在农业和环境中的巨大应用前景和对土壤碳的增汇减排作用,近期成为土壤学和环境科学的研究热点。综述了生物质炭的一些基本性质及其对土壤环境功能的影响,分析了该领域未来的发展趋势。国内外的研究表明:生物质炭含有大量植物所需的营养元素,可以促进土壤养分的循环和植物的生长;生物质炭一般呈碱性,施用生物质炭可以降低土壤的酸度和有毒元素如铝和重金属对植物的毒性;生物质炭表面含有丰富的-COOH、-COH和-OH等含氧官能团,它们产生的表面负电荷使生物质炭具有较高的阳离子交换量(CEC),施用后可以提高土壤的CEC;生物质炭对农药等有机污染物和重金属等有很强的吸附能力,可用于污染土壤的修复;生物质炭具有高度的孔隙结构,可以增加土壤的空隙度和保水能力,降低土壤容重,有利植物根系生长;生物质炭是一种含碳的聚合物,主要由单环和多环的芳香族化合物组成,这种结构特点决定了生物质炭具有较高的化学和生物学稳定性,较强的抵抗微生物分解的能力,增强了土壤的固碳作用,减少碳向大气的再释放。该文可为从事农业废弃物的资源化利用、固碳减排、污染土壤修复和土壤改良与管理等领域的科研人员提供参考。  相似文献   

11.
● Adsorption of environmental deoxyribonucleic acid on biochar was studied. ● π−π interaction and electrostatic repulsion worked in the adsorption. ● Thermodynamics indicated the adsorption was spontaneous and endothermic. Environmental deoxyribonucleic acid (eDNA), which includes antibiotic resistance genes, is ubiquitous in the environment. The interactions between eDNA and biochar, a promising material widely used in soil amendment and water treatment, greatly affect the environmental behavior of eDNA. Hitherto few experimental evidences are available yet, especially on the information of thermodynamics and energy distribution to explains the interactions between biochar and eDNA. This study investigated the adsorption of herring sperm DNA (hsDNA) on pine sawdust biochar, with a specific emphasis on the adsorption thermodynamics and site energy distribution. The adsorption of hsDNA on biochar was enhanced by an increase in the pyrolysis and adsorption temperatures. The higher surface area, stronger π−π interaction, and weaker electrostatic repulsion between hsDNA and biochars prepared at high pyrolysis temperatures facilitated the adsorption of hsDNA. The thermodynamics indicated that the adsorption of hsDNA on biochar was spontaneous and endothermic. Therefore, higher temperature was beneficial for the adsorption of hsDNA on biochar; this was well explained by the increase in E* and F(E*) with the adsorption temperature. These results are useful for evaluating the migration and transformation of eDNA in the presence of biochar.  相似文献   

12.
The Mamut Copper Mine (MCM) located in Sabah (Malaysia) on Borneo Island was the only Cu–Au mine that operated in the country. During its operation (1975–1999), the mine produced 2.47 Mt of concentrate containing approximately 600,000 t of Cu, 45 t of Au and 294 t of Ag, and generated about 250 Mt of overburden and waste rocks and over 150 Mt of tailings, which were deposited at the 397 ha Lohan tailings storage facility, 15.8 km from the mine and 980 m lower in altitude. The MCM site presents challenges for environmental rehabilitation due to the presence of large volumes of sulphidic minerals wastes, the very high rainfall and the large volume of polluted mine pit water. This indicates that rehabilitation and treatment is costly, as for example, exceedingly large quantities of lime are needed for neutralisation of the acidic mine pit discharge. The MCM site has several unusual geochemical features on account of the concomitant occurrence of acid-forming sulphide porphyry rocks and alkaline serpentinite minerals, and unique biological features because of the very high plant diversity in its immediate surroundings. The site hence provides a valuable opportunity for researching natural acid neutralisation processes and mine rehabilitation in tropical areas. Today, the MCM site is surrounded by protected nature reserves (Kinabalu Park, a World Heritage Site, and Bukit Hampuan, a Class I Forest Reserve), and the environmental legacy prevents de-gazetting and inclusion in these protected area in the foreseeable future. This article presents a preliminary geochemical investigation of waste rocks, sediments, secondary precipitates, surface water chemistry and foliar elemental uptake in ferns, and discusses these results in light of their environmental significance for rehabilitation.  相似文献   

13.
The objective of this study was to investigate heavy metal contamination and geochemical characteristics of mine wastes, including tailings, from 38 abandoned mines classified as five mineralization types. Mine waste materials including tailings and soils were sampled from the mines and the physical and chemical characteristics of the samples were analyzed. The particle size of tailings was in the range of 10–100 μm. The pH of the waste covered a wide range, from 1.73 to 8.11, and was influenced by associated minerals and elevated levels of Cd, Cu, Pb, and Zn, extracted by a Korean Standard Method (digestion with 0.1 mol L−1 HCl), which were found in the wastes. Half of the samples contained heavy metals at levels above those stipulated by the Soil Environmental Conservation Act (SECA) in Korea. In addition, extremely high concentrations of the metals were also found in mine wastes extracted by aqua regia, especially those from mines associated with sulfide minerals. Thus, it can be expected that trace elements in mine wastes may be dispersed both downstream and downslope through water and wind. Eventually they may pose a potential health risk to residents in the vicinity of the mine. It is necessary to control mine wastes by using a proper method for their reclamation, such as neutralization of the mine wastes using a fine-grained limestone.  相似文献   

14.
王超  毕君  尤海舟 《生态环境》2014,(6):1070-1075
矿山废弃地是受采矿影响极度退化的生态系统,生态退化程度评价是对矿山废弃地生态质量现状、环境影响和治理难度的评估过程,可用于指导矿山废弃地生态环境影响评价和生态恢复规划编制等。本文分别尾矿库、露采迹地、排岩场和压占区4种矿山废弃地类型,采用兼顾自然因子和人为干扰强度因子的评价方法,通过对主要生态、环境问题的分析,选择导致生态系统退化的主要因子或易于反映生态系统质量的自然因子和人为干扰强度因子作为生态退化评价指标,评价指标来自于工程设计条件、土壤、植被和地质安全性4个方面;首先采用层次分析法确定各评价指标权重,其中占用面积和地表破坏程度是最最要的指标;在生态退化等级划分基础上确定了各评价指标的域值,并将各指标量化和标准化,计算各生态退化等级的综合得分值变化范围,建立了矿山废弃地生态退化程度综合评价方法体系,将生态退化程度划分为可自然恢复、可治理、难于治理和不能治理4个等级。最后,针对遵化市典型民营铁矿进行了案例适用性分析,并对不同退化等级的废弃地进行了生态防护措施分析。  相似文献   

15.

Traditional fertilizers are highly inefficient, with a major loss of nutrients and associated pollution. Alternatively, biochar loaded with phosphorous is a sustainable fertilizer that improves soil structure, stores carbon in soils, and provides plant nutrients in the long run, yet most biochars are not optimal because mechanisms ruling biochar properties are poorly known. This issue can be solved by recent developments in machine learning and computational chemistry. Here we review phosphorus-loaded biochar with emphasis on computational chemistry, machine learning, organic acids, drawbacks of classical fertilizers, biochar production, phosphorus loading, and mechanisms of phosphorous release. Modeling techniques allow for deciphering the influence of individual variables on biochar, employing various supervised learning models tailored to different biochar types. Computational chemistry provides knowledge on factors that control phosphorus binding, e.g., the type of phosphorus compound, soil constituents, mineral surfaces, binding motifs, water, solution pH, and redox potential. Phosphorus release from biochar is controlled by coexisting anions, pH, adsorbent dosage, initial phosphorus concentration, and temperature. Pyrolysis temperatures below 600 °C enhance functional group retention, while temperatures below 450 °C increase plant-available phosphorus. Lower pH values promote phosphorus release, while higher pH values hinder it. Physical modifications, such as increasing surface area and pore volume, can maximize the adsorption capacity of phosphorus-loaded biochar. Furthermore, the type of organic acid affects phosphorus release, with low molecular weight organic acids being advantageous for soil utilization. Lastly, biochar-based fertilizers release nutrients 2–4 times slower than conventional fertilizers.

  相似文献   

16.
• TPhP showed faster and higher sorption on biochars than TPPO. • Pyrochars had higher sorption capacity for TPPO than hydrochar. • Hydrophobic interactions dominated TPhP sorption by biochars. • The π-π EDA and electrostatic interactions are involved in sorption. Aromatic organophosphate flame retardant (OPFR) pollutants and biochars are commonly present and continually released into soils due to their increasingly wide applications. In this study, for the first time, the sorption of OPFRs on biochars was investigated. Although triphenyl phosphate (TPhP) and triphenylphosphine oxide (TPPO) have similar molecular structures and sizes, TPhP exhibited much faster and higher sorption than TPPO due to its stronger hydrophobicity, suggesting the dominant role of hydrophobic interactions in TPhP sorption. The π-π electron donor–acceptor (EDA) interactions also contributed to the sorption process, as suggested by the negative correlation between the sorption capacity of the aromatic OPFRs and the aromatic index (H/C atomic ratios) of biochar. Density functional theory calculations further showed that one benzene ring of aromatic OPFRs has no electrons, which may interact with biochar via π-π EDA interactions. The electrostatic attraction between the protonated P = O in OPFRs and the negatively charged biochar was found to occur at pH below 7. This work provides insights into the sorption behaviors and mechanisms of aromatic OPFRs by biochars.  相似文献   

17.
The removal of heavy metals and neutralisation of acidity in mine waste waters by algae and bacteria are reviewed. Algal growths in artificial meander systems have been shown to remove significant quantities of heavy metals and fine particulates from mine waste waters. Bacterial systems for the oxidation of ferrous iron and the reduction of sulphate leading to neutralisation of acidity are described. The use of bacterial extracellular polymers in the removal of heavy metals from solution is discussed with reference to its application to acid mine waters. It is concluded that a combination of bacterial and algal systems with process optimisation, including nutrient amendment, may provide suitable treatment for mine waste waters. Metal-resistant bacteria may also be important in reclamation, where it is possible that they can confer some degree of tolerance on the plants used to revegetate metal-contaminated tailings dumps.  相似文献   

18.
不同部位梧桐生物质炭对水溶液中镉吸附的机理   总被引:1,自引:0,他引:1  
为了探究梧桐不同部位废弃物所制备的生物质炭(皮、枝、叶)对Cd2+的吸附效率和稳定修复的机理,以此为园林废弃物炭化利用在重金属污染修复方面的应用提供科学依据.利用实验室模拟法,通过高温煅烧法制备梧桐不同部位生物质炭,采用元素分析仪、比表面积及孔隙分析(BET)、X射线衍射仪(XRD)、扫描电镜/能谱(SEM/EDS)及衰减全反射红外光谱(ATR-IR)等技术研究不同反应时间、重金属浓度和溶液初始pH条件下生物质炭对Cd2+吸附效果的影响,并运用四步萃取法和脱附实验分析生物质炭上Cd2+的吸附形态和稳定性.3种生物质炭都在8 h左右达到吸附平衡,最终吸附量依次为树皮炭>枝条炭>叶片炭;溶液初始浓度为0.5—2 g·L-1时Cd2+的吸附量呈增长趋势,在2.5—3g·L-1时逐渐平缓;生物质炭Cd2+吸附量均随着pH的升高而升高,但在pH值为5—8时,吸附的趋势逐渐平稳;树皮炭的酸溶态和非生物利用态的稳定Cd形态要高于枝条炭和叶片炭;比表面积不是影响梧桐生物质炭吸附Cd2+的主要影响因素,吸附动力学,ATR,XRD和重金属形态萃取均证实Cd碳酸盐类矿物生成是主导吸附机理;3种生物质炭的脱附量在4 h后逐渐趋于平衡,其中脱附量最大为叶片炭,最小为树皮炭.梧桐不同部位的初始性质对生物质炭吸附Cd2+具有明显的影响,其中梧桐皮具备更高的吸附量和重金属稳定形态,并且相比其他种类生物质炭有明显优势.因此,从吸附效果和生产成本的角度,本研究建议以梧桐皮为主,枝条和叶片为辅的生物质炭对重金属Cd进行修复治理.  相似文献   

19.
The Finnish wood heat treatment technology ThermoWood, was recently introduced to Turkey. Data about the mechanical and physical properties of Turkish wood species are important for industry and academia. In this study two industrially important Turkish wood species, pine (Pinus nigraArnold.) and fir (Abies bornmülleriana Matf.) were heat-treated using the ThermoWood process. Pine and fir samples were thermally modified for 2 hr at 212 and 190 degrees C, respectively. The modulus of rupture (MOR), modulus of elasticity in bending (MOE), impact bending strength (IBS), and compression strength (CS), in addition to swelling (Sw) and shrinkage (Sh) of thermally-modified wood were examined. The results indicate that the heat treatment method clearly decreased the MOR, MOE and lBS of pine and fir. However, a small increase was observed for CS values of heat treated wood species. The most affected mechanical properties were MOR and lBS for both pine and fir. The reduction in MOE was smaller than that in MOR and lBS. Volumetric shrinkage and swelling of these species were also improved by approximately half. In Addition, the changes in the mechanical and physical properties studied in pine were larger than that of fir.  相似文献   

20.
• Nanocomposites were prepared by adding dolomite to vinasse at different ratio. • Textural and morphological features of adsorbents were studied in detail. • CCD based RSM was used for investigation of P ion removal by nanocomposite. • The qm based on Langmuir model for modified vinasse biochar was 178.57 mg/g. • P loaded nanocomposite improved plant growth and could be utilized as P-fertilizer. The effectiveness of phosphate (P) removal from aqueous solutions was investigated by novel low-cost biochars synthesized from vinasse and functionalized with calcined dolomite. The vinasse-derived biochar, synthesized via pyrolysis at different temperatures, showed easy preparation and a large surface area. The novel vinasse biochar nanocomposites were prepared by adding dolomite to the vinasse biochars with different weight percentages (10, 20 and 30%). The characteristics of the prepared materials were identified for further understanding of the inherent adsorption mechanism between P ions and vinasse biochars. Vinasse-dolomite nanocomposite was very effective in the adsorption of P species from aqueous media. The effect of the operational factors on Vinasse-dolomite nanocomposite was explored by applying response surface methodology (RSM). According to RSM results, the optimum condition was achieved to be contact time 90 (min), 250 (mg/L) of P concentration and pH 7. Thermodynamic isotherm and kinetic studies were applied on experimental data to understand the adsorption behavior. The Vinasse-dolomite nanocomposite revealed preferential P species adsorption in the presence of co-existing anions. The P species could be recovered by 1.0 M HCl where the efficiency was not affected up to the fifth cycle. The P-loaded Vinasse-dolomite nanocomposite was successfully tested on a plant; it significantly improved its growth and proved its potency as a P-based fertilizer substitute.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号