首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five hundred and ninety-nine primary producers and consumers in the Papahānaumokuākea Marine National Monument (PMNM) (22°N–30°N, 160°W–180°W) were sampled for carbon and nitrogen stable isotope composition to elucidate trophic relationships in a relatively unimpacted, apex predator–dominated coral reef ecosystem. A one-isotope (δ13C), two-source (phytoplankton and benthic primary production) mixing model provided evidence for an average minimum benthic primary production contribution of 65 % to consumer production. Primary producer δ15N values ranged from ?1.6 to 8.0 ‰ with an average (2.1 ‰) consistent with a prevalence of N2 fixation. Consumer group δ15N means ranged from 6.6 ‰ (herbivore) to 12.1 ‰ (Galeocerdo cuvier), and differences between consumer group δ15N values suggest an average trophic enrichment factor of 1.8 ‰ Δ15N. Based on relative δ15N values, the larger G. cuvier may feed at a trophic position above other apex predators. The results provide baseline data for investigating the trophic ecology of healthy coral reef ecosystems.  相似文献   

2.
We tested the effect of near-future CO2 levels (≈490, 570, 700, and 960 μatm CO2) on the olfactory responses and activity levels of juvenile coral trout, Plectropomus leopardus, a piscivorous reef fish that is also one of the most important fisheries species on the Great Barrier Reef, Australia. Juvenile coral trout reared for 4 weeks at 570 μatm CO2 exhibited similar sensory responses and behaviors to juveniles reared at 490 μatm CO2 (control). In contrast, juveniles reared at 700 and 960 μatm CO2 exhibited dramatically altered sensory function and behaviors. At these higher CO2 concentrations, juveniles became attracted to the odor of potential predators, as has been observed in other reef fishes. They were more active, spent less time in shelter, ventured further from shelter, and were bolder than fish reared at 490 or 570 μatm CO2. These results demonstrate that behavioral impairment of coral trout is unlikely if pCO2 remains below 600 μatm; however, at higher levels, there are significant impacts on juvenile performance that are likely to affect survival and energy budgets, with consequences for predator–prey interactions and commercial fisheries.  相似文献   

3.
This study used morphological, gut content analysis and carbon- and nitrogen-stable isotope analysis to investigate the trophic structure of upper sublittoral (15–30 m deep) and upper bathyal (200–300 m deep) hydrothermal vents and the adjacent non-vent upper bathyal environment off Kueishan Island. The sublittoral vents host no chemosynthetic fauna, but green and red algae, epibiotic biofilm on crustacean surfaces, and zooplankton form the base of the trophic system. Suspension-feeding sea anemones and the generalist omnivorous vent crab Xenograpsus testudinatus occupy higher trophic levels. The upper bathyal hydrothermal vent is a chemoautotrophic-based system. The vent mussel Bathymodiolus taiwanensis forms a chemosynthetic component of this trophic system. Bacterial biofilm, surface plankton, and algae form the other dietary fractions of the upper bathyal fauna. The vent hermit crab Paragiopagurus ventilatus and the vent crab X. testudinatus are generalist omnivores. The vent-endemic tonguefish Symphurus multimaculatus occupies the top level of the trophic system. The adjacent non-vent upper bathyal region contains decapod crustaceans, which function as either predators or scavengers. The assemblages of X. testudinatus from sublittoral and upper bathyal vents exhibited distinct stable isotope values, suggesting that they feed on different food sources. The upper bathyal Xenograpsus assemblages displayed large variations in their stable isotope values and exhibited an ontogenetic shift in their δ13C and δ15N stable isotope signatures. Some individuals of Xenograpsus exhibited δ15N values close to those of non-vent species, suggesting that the highly mobile Xenograpsus may transfer energy between the upper bathyal hydrothermal vents and the adjacent non-vent upper bathyal environment.  相似文献   

4.
Movement of fishes defines the distribution and abundance of populations and occurs on a range of spatial and temporal scales. To successfully parameterise assessments and design management strategies for exploited fish populations, knowledge and consideration of their movement patterns are essential. Since the efficacy of management approaches vary depending on the sedentary or mobile nature of the target species, presence, space use and depth utilisation were examined to understand the movement patterns of redthroat emperor Lethrinus miniatus. Sixty individuals were monitored for up to 12 months in an acoustic array comprising three coral reefs, and variation in space use and movement patterns was observed among 26 individuals. Half of the individuals were recorded only in proximity of one receiver along the reef edge, while the other half were detected at multiple receivers and used horizontal areas of approximately 4 km2. Periods of non-detection and lower detection frequency at night (χ 1 2  = 342.157, P < 0.001) indicated individuals may move away from the monitored reef edge to the adjacent sandy habitat, but most movements outside the array remain unknown. Long-distance movement was recorded for one individual, recaptured ~160 km from the release location. Generally, no trends in depth use were apparent, L. miniatus inhabited a variety of depths, which were not related to individual size or time of day, yet some effect of month was evident. Variation in movement among adult L. miniatus indicates that while some individuals undergo broader-scale movement, spatial closures that cover individual reefs (>4 km2) could provide protection from fishing for the proportion of the population that displayed high site fidelity and moderate-sized activity spaces (over a period of up to 12 months).  相似文献   

5.
Closure of areas to fishing is expected to result in an increase in the abundance of targeted species; however, changes to populations of species not targeted by fishermen will depend upon their role in the ecosystem and their relationship with targeted species. The effects of protection on targeted and non-targeted reef fish species at the Houtman Abrolhos Islands, Western Australia were studied using baited remote underwater stereo–video cameras. Video images were collected from shallow (8–12 m) and deep (22–26 m) reef sites inside a Marine Protected Area (MPA) at each of three island groups and from three replicate fished locations at each of these groups that span a temperate-tropical transition area. The MPAs were established in 1994 and vary in size from 13.72 km2 at the Pelsaert group in the south to 22.29 km2 at the Easter group to 27.44 km2 at the Wallabi group in the north. The relative abundances of 137 fish species from 42 families were recorded. Large differences in fish assemblage structure existed between MPA and fished locations, and also between shallow and deep regions. Targeted fish species Plectropomus leopardus, Lethrinus miniatus, Lethrinus nebulosus, Pagrus auratus and Glaucosoma hebraicum were more abundant inside MPAs than in areas open to fishing. Their abundance inside MPAs was between 1.13 and 8 times greater than their abundance at fished locations. For non-targeted fish species many were more abundant in areas open to fishing, e.g. Coris auricularis, Thalassoma lutescens, Thalassoma lunare, Dascyllus trimaculatus, however others were conversely more abundant inside MPAs, e.g. Gymnothorax spp, Kyphosus sydneyanus, Scarus microhinos, Chromis westaustralis, Chaetodon spp. This study demonstrates that the removal of abundant targeted species from an ecosystem by fishing can indirectly impact non-fished species and alter the trophic structure of fish assemblages. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Here the population genetic structure of an ecologically and economically important coral reef fish, the coral trout Plectropomus leopardus, is investigated in the context of contemporary and historical events. Coral trout were sampled from four regions (six locations) and partial mtDNA D-loop sequences identified six populations (Fst = 0.89209, P < 0.0001): Scott Reef and the Abrolhos Islands in west Australia; the Great Barrier Reef (GBR), represented by northern and southern GBR samples; New Caledonia and Taiwan, with Taiwan containing two genetic lineages. Furthermore, this study identified source and sink populations within and among regions. Specifically, the northern population in west Australia (Scott Reef) was identified, as the source for replenishment of the Abrolhos population, whilst New Caledonia was a source for recruitment to the GBR. Based on these insights from a single mtDNA marker, this study will facilitate the development of rational management plans for the conservation of P. leopardus populations and therefore mitigate the risk of population declines from anthropogenic influences.  相似文献   

7.
Application of stable isotope analysis (SIA) in jellyfish allows definition of trophic patterns not detectable using gut content analysis alone, but analytical protocols require standardization to avoid bias in interpreting isotopic data. We determined δ13C and δ15N in Aurelia sp. from the northern Gulf of Mexico (30°00′N, 89°00′W–30°24′N, 88°00′W) to define differences in stable isotope composition between body parts and whole body, the effect of lipid extraction on δ13C in tissues, and fractionation values from medusa to prey. The isotopic composition of bell and whole Aurelia sp. was not different. The increase in δ13C values after lipid removal suggested a correction is needed. To aid future analyses, we derived a correction equation from empirical data for jellyfish samples. Laboratory feeding experiments indicated medusae increased +4 ‰ in δ13C and +0.1 ‰ in δ15N compared to their diet. These results suggest protocols commonly applied for other species may be inaccurate to define Aurelia sp. trophic ecology. Because Aurelia spp. are commonly found in marine ecosystems, accurately defining their trophic role by use of SIA has implications for understanding marine food webs worldwide.  相似文献   

8.
Understanding trophic interactions is critical for elucidating ecological roles of marine predators. We used behavioural observations and stable isotope mixing models to investigate the feeding ecology of Indo-Pacific bottlenose dolphins (Tursiops aduncus) in the lagoon of Mayotte (East Africa). We identified prey during 77 % of 54 observed feeding events, observed in both rainy (61 % of events) and dry (39 %) seasons. Caranx melampygus and Gnathanodon speciosus were involved in 67 % of these events, with Tylosurus crocodilus (20 %) and Mugil cephalus (13 %) also consumed. Mixing models, based on δ13C and δ15N values of skin and blubber (n = 30 samples for both tissues), suggest that behavioural observations are representative of general feeding patterns. Indeed, C. melampygus and T. crocodilus (G. speciosus could not be included in models) were estimated to contribute most to dolphin diets, with mean estimated contributions of 44.6 % (±18.9) and 48.1 % (±19.1) for skin and 73.7 % (±14.9) and 16.9 % (±12.4) for blubber, respectively. Our results highlight the value of two independent methods (stable isotopes and behavioural observations) to assess prey preferences of free-ranging dolphins.  相似文献   

9.
Using non-lethal tissue sampling for stable isotope analysis has become standard in many fields, but not for fishes, despite being desirable when species are rare or protected, when repeated sampling of individuals is required or where removal may bias other analyses. Here, we examine the utility of fish dorsal fin membrane as an alternative to muscle for analyzing δ13C and δ15N ratios in two reef fish species (blue cod Parapercis colias and spotty Notolabrus celidotus) that have differing feeding modes. Both species exhibited evidence of size-based feeding from fin δ15N values, but not from muscle. Blue cod fin δ15N increased steadily throughout the sampled size range (213–412 mm fork length), whereas spotty exhibited a distinct ontogenetic diet shift at approximately 120–140 mm fork length after which size-based feeding did not occur. Fin membrane was higher than muscle in δ13C in both species and in δ15N for blue cod, but fin δ15N was lower than muscle in spotty. The δ13C and δ15N fin–muscle offsets were constant in spotty regardless of size, while in blue cod, δ13C was constant with fish size, but δ15N offsets increased with increasing fish size. Non-lethal sampling utilizing fin tissue can be employed to estimate stable isotope values of muscle in fishes, but it is necessary to assess relationships among tissues and the effects of fish size on isotope values a priori for each species studied. Our data indicated that fin membrane may be a more sensitive tissue than muscle for detecting size-based feeding in some fish species using stable isotopes. A critical literature review revealed inconsistencies in tissue types tested, little understanding of tissue-specific trophic shift or turnover rates, and pseudo-replicated analyses leading to erroneous postulating of 1:1 relationships between tissues.  相似文献   

10.
The present study addresses the ecology of two dominant copepod species in the Bay of Morbihan, Kerguelen Archipelago. The biomass of the herbivore Drepanopus pectinatus (from 2 mg m?3 in winter up to 500 mg m?3 in summer) is tightly coupled to seasonal changes in chlorophyll a concentration in the region, whereas the biomass of the predatory euchaetiid Paraeuchaeta antarctica increases during two distinct periods over the year: 250 mg m?3 in early summer, with the recruitment of the annual generation, and 100 mg m?3 in autumn, with the deposition of lipids as energy reserves in C5 stages and adults. The juvenile growth rates predicted by temperature-dependent models (0.09 day?1) closely approximate those observed in D. pectinatusin summer, but are much greater than those observed in P. antarctica (from 0.001 to 0.04 day?1 depending on developmental stages). This difference can be explained by the reproductive strategies and trophic positions of the two species and may also result from the dependence of larval growth on energy reserves in P. antarctica. The production rates are five- and tenfold greater in juvenile stages than in adults, respectively, for D. pectinatus and P. antarctica. The secondary production by D. pectinatusis insufficient to support P. antarcticaduring winter, when the predatory species probably shifts to alternate prey. In summer the predation by P. antarctica accounts for only a minor part of the mortality estimated for D. pectinatus (from 20% to 60% depending on the examined station). At two of the three stations examined in the Bay of Morbihan, the production of P. antarctica could potentially support the dietary requirements of planktivorous seabirds in the region (~2,000 kg prey day?1 for common diving petrels, Pelecanoides urinatrix, and ~90 kg prey day?1 for rockhopper penguins, Eudyptes chysocome filholi).  相似文献   

11.
Blood and feathers are the most targeted tissues for isotopic investigations in avian ecology, primarily because they can be easily and non-destructively sampled on live individuals. Comparing blood and feather isotopic ratios can provide valuable information on dietary shifts, trophic specialization and migration patterns, but it requires a good knowledge of the isotopic differences between the two tissues. Here, δ13C and δ15N values of whole blood (in blood cells of a few species) and simultaneously grown body feathers were measured in seabird chicks to quantify the tissue-related isotopic differences. Seabirds include 27 populations of 22 wild species that were sampled in 2000–2008, and a review of the literature added 8 groups (including adult birds) to the analysis. The use of a large data set that overall encompasses wide δ13C and δ15N ranges allowed us to depict for the first time accurate relationships between blood and feather isotopic ratios across avian taxa. Blood was impoverished in 13C and generally in 15N compared with feathers. Both mean δ13C and δ15N values of feathers and blood were highly positively and linearly related [feather δ13C = 0.972 (±0.020) blood δ13C + 0.962 (±0.414), and feather δ15N = 1.014 (±0.056) blood + 0.447 (±0.665), respectively; both P < 0.0001]. The regressions should be applied to mathematically correct feather or whole blood δ13C and δ15N values when comparing isotopic ratios within and between ecological studies on birds.  相似文献   

12.
We used variance decomposition to explore the importance of body size, sex, location, and sampling period as predictors of intrapopulation variation in δ15N and δ13C values in spiny dogfish Squalus suckleyi from the Puget Sound–Strait of Georgia basin. Isotopes in two tissues with long (dorsal white muscle) and short (liver) isotopic turnover rates (~1 year and ~3–4 months, respectively) were sampled to evaluate whether the relative importance of each variable differed depending on the time span over which diet information was integrated. Significant spatial variation was observed in both muscle and liver isotopic composition, whereby location uniquely explained 25 and 17 % of the total variance, respectively. The remaining variables explained considerably less variation in both tissue types. Furthermore, evidence of seasonal isotopic shifts in δ15N and δ13C values was apparent, but differed widely in direction and magnitude among groups. These findings suggest that members of spiny dogfish schools may share a common feeding history, possibly by spending extended time periods (weeks to months) foraging in a spatially fixed region. Another explanation is that individuals may move and feed in aggregations that exist for extended periods. These complex group-level patterns suggest that even for large-bodied, motile predators such as sharks, population-level diet estimates derived from averaging isotope ratios of individuals collected from only a few locations may poorly reflect the true population mean.  相似文献   

13.
Late larvae of the serranid coral trout Plectropomus leopardus (Lacepède), captured in light traps, were released during the day both in open water and adjacent to two reefs, and their behaviour was observed by divers at Lizard Island, northern Great Barrier Reef. Coral trout larvae (n = 110) were present in light-trap catches from 18 November to 3 December 1997, including new moon (30 November). The swimming speed of larvae in open water or when swimming away from reefs was significantly greater (mean 17.9 cm s−1) than the speed of larvae swimming towards or over reefs (mean 7.2 cm s−1). Near reefs, larvae swam at average depths of 2.7 to 4.2 m, avoiding 0 to 2 m. In open water, swimming depth varied with location: larvae >1 km east of Lizard Island swam steeply downward to >20 m in 2 to 4 min; larvae >1 km west oscillated between 2.6 and 13 m; larvae 100 to 200 m east of Lizard Island oscillated between 0.8 and 15 m. Nearly all larvae swam directionally in open water and near reefs. In open water, the average swimming direction of all larvae was towards the island, and 80% (4 of 5) swam directionally (p < 0.05, Rayleigh's test). Larvae swam directionally over the reef while looking for settlement sites. The frequency of behaviours by larvae differed between two reefs of different exposure and morphology. Depending on site, 26 to 32% of larvae released adjacent to reefs swam to open water: of these, some initially swam towards or over the reef before swimming offshore. In some cases, offshore-swimming seemed to be due to the presence of predators, but usually no obvious cause was observed. Depending on the reef, 49 to 64% of the larvae settled. Non-predatory reef residents aggressively approached 19% of settlers. Between 5 and 17% of the larvae were eaten while approaching the reef or attempting to settle, primarily by lizardfishes but also by wrasses, groupers and snappers. A higher percentage of larvae settled in the second week of our study than in the first. Average time to settlement was short (138 s ± 33 SE), but some larvae took up to 15 min to settle. Average settlement depth was 7.5 to 9.9 m, and differed between locations. No settlement took place on reef flats or at depths <4.2 m. Larvae did not appear to be selective about settlement substrate, but settled most frequently on live and dead hard coral. Late-stage larvae of coral trout are capable swimmers with considerable control over speed, depth and direction. Habitat selection, avoidance of predators and settlement seem to rely on vision. Received: 7 July 1998 / Accepted: 26 January 1999  相似文献   

14.
Measures of fish abundance, assemblage composition and length were compared when sampled by baited remote underwater stereo-video (stereo BRUV) and diver-operated stereo-video transects (stereo DOV) at the Houtman Abrolhos Islands and Ningaloo Reef. Species richness counts were 40% higher on stereo BRUV than stereo DOV. Stereo BRUVs also recorded a greater number of large-bodied targeted species in higher abundance than stereo DOV (e.g. Lethrinus nebulosus, Plectropomus leopardus) at the Houtman Abrolhos and at Ningaloo Reef. Many non-targeted species were also recorded in greater abundances on stereo BRUV than stereo DOV (e.g. Coris auricularis, Gymnothorax spp). Stereo DOV transects recorded a greater abundance of some small-bodied Pomacentridae, Labridae and Scaridae species than did stereo BRUV, particularly at Ningaloo Reef. This study demonstrates that choice of sampling technique for surveys of reef fish can lead to very different biological interpretations of fish assemblage structure.  相似文献   

15.
Stable carbon (δ13C) and oxygen (δ18O) isotopes in cuttlebones of three species of Mediterranean cuttlefish (Sepia elegans, S. officinalis, and S. orbignyana) with different life histories were contrasted. Cuttlebone δ13C and δ18O were quantified at both the core and edge (representing early life and recent deposition, respectively) for all three species sampled from the southern Adriatic Sea in 2010 (n = 28). For S. officinalis, cuttlebone δ13C and δ18O values were both lower relative to S. elegans and S. orbignyana at the core by approximately 1.0–2.0 and 3.0 ‰, respectively. Differences between core and edge in cuttlebone δ13C and δ18O were also observed for S. officinalis with observed values at the cuttlebone edge (recent) exceeding core (early life) values by 2.5 ‰ for δ13C and 1.4 ‰ for δ18O. Differences in isotopic composition across S. officinalis cuttlebones are possibly reflective of ontogenetic migrations from nearshore nurseries (lower seawater δ13C and δ18O values) to offshore overwintering habitats (higher seawater δ13C and δ18O values). Overall, results from this study suggest that cuttlebone δ13C and δ18O hold promise as natural tags for determining the degree of spatial connectivity between nearshore and offshore environments used by cuttlefish.  相似文献   

16.
Ecosystems are balanced by nature and each component in the system has a role in the sustenance of other components. A change in one component would invariably have an effect on others. Stomatopods (mantis shrimps) are common and ecologically important predatory crustaceans in tropical marine waters. The ecological role of mantis shrimps and potential impacts of trawling in a marine ecosystem were estimated using Ecopath with Ecosim (EwE) Version 5.0 software, by constructing a mass balanced Ecopath model of Parangipettai (Porto Novo) ecosystem. Based on fisheries information from the region, 17 ecological groups were defined including stomatopods. Both primary and secondary data on biomass, P/B, Q/B and diet composition were used as basic inputs. The mass balanced model gave a total system throughput of 14,756 t km−2 year−1. The gross efficiency of 0.000942 indicated higher contribution of lower food chain groups in the fishery though the mean trophic level was 3.08. The immature and developing stage of the ecosystem was indicated by the ratio of total primary production and total respiration (1.832) and the net system production (2643.30 t km−2 year−1). Key indices (flow to detritus, net efficiency and omnivory index), split mortality rates and mixed trophic impact of different ecological groups were obtained from the model. A flow diagram was constructed to illustrate the trophic interactions, which explained the biomass flows in the ecosystem with reference to stomatopods. Two temporal simulations were made, with 10 year durations in the mass balanced Ecopath model by using ecosim routine incorporated in EwE software. The effect of decrease in biomass of stomatopods in the ecosystem was well defined, in the first run with increase in stomatopod fishing mortality, and the group showed a high positive impact on benthopelagic fish biomass increase (129%). The simulation with increase in trawling efforts resulted in the biomass decline of different ecological groups as elasmobranchs to 1%, stomatopods to 2%, crabs and lobsters to 36%, cephalopods to 63%, mackerel to 78%, and shrimps to 89%. Present study warns stomatopod discards and further increase in trawling efforts in the region and it explained the need for ecosystem based fisheries management practices for the sustainability of marine fisheries.  相似文献   

17.
18.
Diet quality is a key determinant of population dynamics. If a higher trophic level, more fish-based diet is of higher quality for marine predators, then individuals with a higher trophic level diet should have a greater body mass than those feeding at a lower trophic level. We examined this hypothesis using stable isotope analysis to infer dietary trophic level and foraging habitat over three years in eastern rockhopper penguins Eudyptes chrysocome filholi on sub-Antarctic Campbell Island, New Zealand. Rockhopper penguins are ‘Vulnerable’ to extinction because of widespread and dramatic population declines, perhaps related to nutritional stress caused by a climate-induced shift to a lower trophic level, lower quality diet. We related the stable nitrogen (δ15N) and carbon (δ13C) isotope values of blood from 70 chicks, 55 adult females, and 55 adult males to their body masses in the 2010, 2011, and 2012 breeding seasons and examined year, stage, age, and sex differences. Opposite to predictions, heavier males consumed a lower trophic level diet during incubation in 2011, and average chick mass was heavier in 2011 when chicks were fed a more zooplankton-based, pelagic/offshore diet than in 2012. Contrary to the suggested importance of a fish-based diet, our results support the alternative hypothesis that rockhopper penguin populations are likely to be most successful when abundant zooplankton prey are available. We caution that historic shifts to lower trophic level prey should not be assumed to reflect nutritional stress and a cause of population declines.  相似文献   

19.
The study investigated the spatial variation in the main sources of organic matter (OM) and trophic pathways for zooplanktivorous Hilsa kelee and phytodetritivorous Valamugil buchanani in fresh-water-influenced zone versus sea-water-dominated zone of Pangani estuary. The findings indicated significant inter-specific variations in δ13C and δ15N values (ANOVA, F?≥?84.3, p?F?≥?9.4, p?=?0.001) in both estuarine zones. Results also showed significant zonal-intraspecific variations in stable isotopes (δ13C and δ15N), FA profile and marginal differences in diet for the V. buchanani while no considerable differences were observed for H. kelee from two estuarine zones. The isotope mixing models and FA biomarkers revealed that the most important carbon sources to the nutrition of H. kelee were derived from microphytobenthos, macro-algae and sea grasses transferred through phytoplankton and detrital trophic pathways. In contrast, C3 terrestrial plants and microphytobenthos were the main carbon source to the diet of V. buchanani; and were transferred via the benthic and detrital trophic pathways. Therefore, both terrestrial and in-situ OM sources were the main trophic resources base fuelling the planktonic and benthic food webs in Pangani estuary.  相似文献   

20.
Consumption rates of marine predators are vital to assessing their trophic impacts and potential consequences of fisheries removal and habitat alteration, yet are rarely estimated. Standard metabolic rates were estimated for juvenile brown stingrays, Dasyatis lata, and used as input parameters for a bioenergetics model to predict consumption rates. Temperature and mass had significant effects on metabolic rates. The energy budget of juvenile brown stingrays was heavily weighted toward metabolism, accounting for 66 % of consumed energy. Growth accounted for 7 % of the energy budget indicating very slow growth potentially due to limited food resources. Population consumption rates suggest potential for strong top-down effects on prey populations due to stingray predation. This study suggests the use of Kāne‘ohe Bay as a nursery habitat for juvenile brown stingrays is a trade-off between increased juvenile survival through predator avoidance and a late age at first maturity due to slow growth rates resulting from low prey availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号