首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
检测了珠江三角洲河流及南海近海表层沉积物中25种多环芳烃的含量.其含量范围为138-6793ng·g-1.主成分分析/多元回归分析结果表明,珠江三角洲水体沉积物中多环芳烃来源主要有石油排放,煤、木柴等低温燃烧排放,机动车尾气排放及生物成因.其相对贡献分别为石油排放占36%、煤、木柴燃烧占27%、机动车尾气占25%,自然来源占12%.珠江、东江河流沉积物中多环芳烃主要来源于区域内工业和生活废物的直接排入和机动车尾气的近距离沉降.西江沉积物中多环芳烃大气沉降是主要输入途径.南海沉积物中多环芳烃河流输入是主要途径.在多环芳烃由河流向海洋的输送过程中,茈可以作为一个有效指标示踪河流输送的多环芳烃.风险评价表明,东江及珠江部分河段沉积物可能存在着对生物的潜在危害,其它区域多环芳烃的生态风险处于较低水平.  相似文献   

2.
典型污水处理厂中多环麝香的污染特征   总被引:3,自引:0,他引:3  
多环麝香在日常生活中被广泛使用,在生产和使用过程中会经过污水处理系统而进入环境中.研究了日用化妆品生产工厂排放的多环麝香在污水处理系统中污水和污泥的污染特征.在大型日用化妆品生产工厂污水处理厂的污水和污泥中均检测出较高浓度的多环麝香,HHCB和AHTN是两种主要污染物.其中多环麝香在污水处理系统进水中质量浓度范围为4.7(AHMI)~550 μg·L-1(HHCB),出水中质量浓度范围为:低于检测限(AHMI)~32.1μg·L-1(HHCB),污泥(干物质量)中多环麝香的含量范围为1.78(AHMI)~566 mg·kg-1(HHCB).污水处理系统污水中多环麝香的去除效率非常高,达到了90%以上,然而,污泥中却富集了大量的多环麝香,表明污水中的多环麝香很大一部分转移到了污泥中,从而可能成为环境中一种潜在的多环麝香污染源.  相似文献   

3.
雨水径流对景观水体中多环芳烃污染特征的影响   总被引:1,自引:0,他引:1  
王建龙  刘强  冯伟 《环境化学》2012,31(9):1393-1398
以北京市长河湾流域某排污口附近景观水体为研究对象,通过对水体中PAHs的连续检测,研究了雨水径流对景观水体中PAHs污染特征的影响,以期为景观水体中PAHs的控制和管理提供科学依据.结果表明,长河湾景观水体中∑16PAHs在降雨时的浓度变化与降雨强度及降雨量有关,长河湾水体中溶解态PAHs组分以3环和4环为主,2环组分所占的比例最少.水体底部沉积物中PAHs含量明显高于岸边,沉积物中∑16PAHs含量约为229.2μg.kg-1,岸边土壤中∑16PAHs含量约为185.6μg.kg-1,低于国内外一些水域沉积物中PAHs污染浓度.  相似文献   

4.
本研究在汾河流域上、中、下游及其部分支流布设29个采样点,对其水体和表层沉积物多环芳烃(PAHs)的空间分布规律及生态风险进行了分析和讨论。结果表明,汾河流域水相中丰水期PAHs总量浓度范围是0.530~16.002μg·L~(-1),平均浓度为(2.738±3.078)μg·L~(-1),枯水期PAHs总量浓度范围是0.588~12.916μg·L~(-1),均值为(2.762±3.132)μg·L~(-1)。就空间分布而言,汾河流域整体呈现上游污染较轻,中下游污染严重的特点。PAHs的组成规律显示,丰水期和枯水期PAHs含量均以低环(2~3环)为主,不同采样期低环PAHs所占比例分别为96.5%和90.4%。与其他15个研究地区水体PAHs含量比较,汾河流域水体中PAHs污染程度的国内外对比处于中等到较高程度的污染。丰水期和枯水期水体中PAHs来源于石油源和植物、木材、煤的燃烧,主要受到流域煤化工、燃煤电厂排放污染物的影响。地表水健康风险评价结果显示,汾河流域丰水期和枯水期分别有13.8%和20.7%的点位存在一定的健康风险。汾河流域沉积相中16种PAHs平均浓度为(3.774±1.987)μg·g-1,其污染主要集中在流域中下游地区。PAHs的组成规律显示,PAHs含量集中在低环(2~3环),约占总量的75%左右。与本研究提到的河流、湖泊及港口沉积物中PAHs含量比较,汾河流域沉积物中PAHs污染程度仍处于中等偏高的污染水平。丰水期沉积相中PAHs以燃烧源和石油源为主,部分来自典型石油类产品的输入。表层沉积物生态风险评价结果显示,对于提出的12种PAHs的生态风险的效应区间低值(ERL值)或效应区间中值(ERM值)以及苯并(b)荧蒽(Bb F)和苯并(k)荧蒽(Bk F)这2类没有最低安全值的PAHs化合物来说,汾河上、中、下游流域均有采样点的PAHs可能存在着对生物的潜在生态风险。通过本研究可全面地了解该流域多环芳烃的空间分布规律及其可能的来源,并且为汾河流域多环芳烃污染的控制和生态风险评价提供科学依据。  相似文献   

5.
南京市不同功能区林业土壤多环芳烃含量与来源分析   总被引:1,自引:0,他引:1  
城市林业土壤是城市绿色景观的重要载体,随着人们生态意识的增强,对城市林业土壤生态环境的关注也越来越多。为了解城市林业土壤中多环芳烃的污染情况和来源特征,以南京市城市林业土壤为研究对象,根据其分布特点对8类典型功能区进行采样,采用高效液相色谱法和分子标记物比值法,测定了土样中16种优先控制多环芳烃的含量,分析了城市林业土壤中多环芳烃污染水平、富集情况、分布情况及来源特征。结果表明:南京市城市林业不同功能区72个土壤样品的多环芳烃平均含量为(487.7±264.3)μg·kg~(-1),变化范围为156.7~1523.3μg·kg~(-1),各土样均受到污染,其中83.3%的样品呈轻度污染水平,不同功能区土壤PAHs污染程度存在差异;不同功能区城市林业表层土壤多环芳烃含量水平表现为:城市立交桥(949.3μg·kg~(-1))道路绿化带(550.1μg·kg~(-1))学校(525.4μg·kg~(-1))居民区(513.0μg·kg~(-1))发电厂(501.4μg·kg~(-1))垃圾填埋厂(328.7μg·kg~(-1))近郊森林(293.8μg·kg~(-1))远郊森林(271.7μg·kg~(-1)),中层和下层土壤PAHs含量表现出类似规律;土样中PAHs含量与SOC和BC含量均表现显著相关性,相同的显著性检验水平下BC含量与PAHs含量具有较强相关关系。垃圾填埋场、发电厂、城市立交桥、居民区等功能区表层土壤表现出富集现象,其他功能区土壤表现出一定的逆向富集趋势。南京市城市林业土壤中PAHs来源以生物质和煤炭燃烧源及机动车排放源为主,少数土样存在石油源。  相似文献   

6.
珠江八大入海口表层沉积物中DDTs和HCHs残留调查   总被引:2,自引:0,他引:2  
于2010年8月-2011年5月4次采集珠江八大人海口表层沉积物,采用气相色谱-电子捕获(GC—ECD)法分析沉积物中DDTs(p,P’-DDE、P,P’-DDD、0,P’-DDT、P,P-DDT)和HCHs(α-HCH、β-HCH、γ-HCH、δ-HCH)的污染现状。结果显示,珠江8大人海口表层沉积物中DDTs总含量介于1.02—3.08μg·kg-1之间(以干质量计,下同),平均值为1.91μg·kg-1;HCHs总含量介于0.21—0.41μg·kg-1之间,平均值为0.31μg·kg-1。DDTs平均含量大于HCHs,其中P,P。DDT对污染的贡献最大,含量范围为ND~7.66μg·kg-1,平均值为2.12μg·kg-1。大部分样点伽(α-HCH)/w(γ-HCH)比值小于3,说明研究区α-HCH大都被降解,或者林丹正取代工业HCHs成为珠江口水环境中HCHs输入的主要来源;甜(DDT)/w(DDD+DDE)比值大于2,表明沉积物中除早期农药残留外,仍然有新的DDTs类农药输入。  相似文献   

7.
太湖作为重要的工农业用水水源以及周边居民饮用水源,其水质安全受到高度关注。在太湖西部入湖口采集7个沉积物样品,研究了合成麝香、多环芳烃(PAHs)、有机磷酸酯阻燃剂/增塑剂(OPs)和有机氯农药(OCPs)含量水平和分布规律。研究结果表明,沉积物中多种污染物分布广泛,含量水平差异较大。其中,Σ15PAHs含量371 ng·g~(-1)~2.53$103ng·g~(-1),主要来源于生物质燃烧和化石燃料高温裂解;沉积物中检出4种多环麝香,主要组分为佳乐麝香(HHCB)(0.0792 ng·g~(-1)~1.17 ng·g~(-1))和吐纳麝香(AHTN)(0.123 ng·g~(-1)~1.29 ng·g~(-1)),它们指示了太湖水体已遭受一定程度生活污水输入影响;沉积物中Σ6OPs含量范围为1.63 ng·g~(-1)~21.9 ng·g~(-1),主要污染组分为磷酸三(2-氯丙基)酯(TCPP)和磷酸三(2-氯乙基)酯(TCEP),并呈现明显的点源排放特征;沉积物中六六六系列(HCHs)(0.310 ng·g~(-1)~1.11 ng·g~(-1))和滴滴涕系列(DDTs)(0.551 ng·g~(-1)~6.40 ng·g~(-1))主要来源于历史残留。位于太滆流域的几个入湖口沉积物中多种污染物含量多高于浙江省辖区3个入湖口沉积物。  相似文献   

8.
本文采用索氏提取萃取土壤中人工合成麝香并结合气相色谱-质谱联用仪(GC-MS)检测,对北戴河湿地23个表层沉积物中4种人工合成麝香(佳乐麝香(HHCB)、吐纳麝香(AHTN)、酮麝香(MK)、二甲苯麝香(MX))污染水平及分布特征进行了研究,并进行相关环境风险评价.在沉积物样品中检测出19.50—34.93 ng·g~(-1)(平均含量:28.46 ng·g~(-1),dw)佳乐麝香(HHCB)以及16.37—29.29 ng·g~(-1)(23.30 ng·g~(-1),dw)吐纳麝香(AHTN);只有5个样品检出酮麝香(MK),浓度范围从低于检测限(LOD)—37.89 ng·g~(-1);在所有样品中均未检测出二甲苯麝香(MX).结果显示,沉积物中人工合成麝香污染的主要成分为HHCB和AHTN,其含量占人工合成麝香总量50.65%—100.00%.对23个沉积物样品中的3种人工合成麝香进行Kolmogorov-Smirnov(K-S)检验,结果发现,HHCB与AHTN的含量存在显著的相关性(0.01),说明该地区检出的HHCB与AHTN可能具有相似来源和归趋.北戴河湿地沉积物中AHTN和HHCB蓄积量估算为:510.270 g和623.274 g.环境风险评估显示,实际检出浓度低于沉积物中HHCB与AHTN的预测无效应浓度,理论上不具有急性风险.  相似文献   

9.
为调查骆马湖邻苯二甲酸酯(PAEs)分布特征,2016年4月,在骆马湖设置水质采样点22个,沉积物采样点6个,鱼样6个。利用气相色谱-质谱联用仪测定了骆马湖水体、沉积物、鱼体内11种邻苯二甲酸酯(PAEs)含量。结果显示,水体、沉积物、鱼体中检出2种邻苯二甲酸酯,为邻苯二甲酸二异丁酯(Di BP)和邻苯二甲酸二(2-乙基己基)酯(DEHP)。湖水ρ(PAEs)为0.05~186.8μg·L~(-1)(平均值为52.94μg·L~(-1));沉积物w(PAEs)为786.5~1 138μg·kg~(-1)(平均值为952.4μg·kg~(-1)),是水体浓度的18.0倍;鱼体中w(PAEs)为1 078~1 996μg·kg~(-1)(平均值为1 533μg·kg~(-1)),是水体浓度的29.0倍,即PAEs的生物富集系数(BCF)均值为29.0。这表明邻苯二甲酸酯类污染物在沉积物和鱼体内富集性较强。与国内其他水源地相比,骆马湖PAEs污染水平较低。健康风险评价结果表明,骆马湖周边居民PAEs暴露量不会构成急性毒性。但是因PAEs具有蓄积性,长期的慢性毒性值得关注,儿童的暴露风险较高,应引起重视。  相似文献   

10.
江锦花  朱利中  张明 《环境化学》2006,25(5):546-549
研究了椒江口海水、沉积物和生物体中苯胺、硝基苯、多氯联苯、多环芳烃的浓度水平及来源,评价了各种有机污染物在沉积物和生物体内的富集情况.结果表明,椒江口海水中苯胺、硝基苯、多氯联苯(PCBs)、多环芳烃(PAHs)的浓度范围分别为9.3-105.1μg·l-1,46.2-268.5μg·l-1,57.5-519.3ng·l-1和356.9-1021.4 ng·l-1;沉积物中苯胺、多氯联苯、多环芳烃的浓度(干重)范围分别为0.76-1.12μg·g-1,5.78-10.42 ng·g-1,77.5-165.4 ng·g-1;生物体中PCBs、PAHs的浓度(湿重)范围分别为19.51-20.62 ng·g-1,0.11-1.03 ng·g-1.生物体内PCBs的富集倍数高于PAHs,而沉积物中PAHs的富集倍数高于PCBs.海水、沉积物中的苯胺和硝基苯主要来自源于椒江口化工废水的排放,PAHs主要来源于台州火力发电厂的燃烧污染,PCBs主要来源于废旧电器拆解业污染物的排放迁移.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号