首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stadler B  Müller T  Orwig D 《Ecology》2006,87(7):1792-1804
The hemlock woolly adelgid (HWA, Adelges tsugae Annand) is currently causing a severe decline in vitality and survival of eastern hemlock in North American forests. We analyzed the effects of light HWA infestation on vertical energy and nutrient fluxes from the canopy to the forest floor. Canopy throughfall, litter lysimeters, and laboratory litter microcosms were used to examine the effects of HWA-affected and unaffected throughfall on litter type, leachate, and litter chemistry. Early in the season adelgid infestation caused higher dissolved organic carbon (DOC; +24.6%), dissolved organic nitrogen (DON; +28.5%), and K (+39.3%) fluxes and lower inorganic nitrogen fluxes (-39.8%) in throughfall and in adjacent litter solutions collected beneath infested compared to uninfested trees. Needle litter collected beneath uninfested hemlock had significantly lower N concentrations compared to needles collected beneath infested trees, while no difference in N concentrations was found in birch litter. Bacteria were significantly more abundant on hemlock and birch litter beneath infested trees, while yeasts and filamentous fungi showed no consistent response to HWA throughfall. Litter microcosms showed that less DOC was leaching from birch than from hemlock needles when exposed to HWA throughfall. Overall, NH4-N and DON leachate concentrations were higher from birch than from hemlock litter. Thus, HWA-affected throughfall leads to qualitative and quantitative differences in nitrogen export from the litter layer. The N concentration of hemlock litter did not change with time, but the N concentration in birch litter increased significantly during the course of the experiment, especially when HWA-affected throughfall was applied. We suggest a nonlinear conceptual model for the temporal and vertical transition of energy and nutrient fluxes relative to progressing HWA infestation from a pure hemlock to a birch/maple-dominated forest. Progressive needle loss and changes in needle chemistry are likely to produce a humped-shaped DOC curve, while N fluxes initially decrease as infestation continues but rise eventually with hemlock decline and immigration of hardwood species. These findings suggest that it is necessary to understand the biology and specific physiological/trophic effects of exotic pests on their hosts and associated ecosystem processes in order to decipher the temporal dynamics, direction of change, and functional consequences.  相似文献   

2.
森林水文过程中的总有机碳转运对土壤有机碳平衡起着重要的作用,但我们对于水文过程对碳平衡的贡献机理所知甚少.本研究针对鼎湖山季风常绿阔叶林演替序列不同森林生态系统(马尾松林、针阔混交林和季风常绿阔叶林(简称季风林))的大气降水、穿透水、树干流、凋落物淋洗水以及地表径流中的总有机碳(TOC)进行了三年(2002年4月-2005年5月)观测,以此来分析水文学过程中TOC的变化规律和水文学过程对不同成熟度森林生态系统土壤有机碳积累的贡献.每场雨后进行水样的采集,采集的水样装入棕色玻璃瓶中,加硫酸至pH值小于2,放置于实验室冰箱冷藏待测.TOC用日本岛津公司生产的5000A型TOC-V分析仪测定.研究结果及推论如下:鼎湖山森林水文学过程中TOC浓度和总量变化呈现规律性的变化.大气降水中的TOC浓度和总量分别为(3.65±0.59)mg·L~(-1)和51.8104 kg·hm~(-2)·a~(-1),大气降水是鼎湖山森林生态系统水文循环过程中TOC的主要来源.穿透水(DTF)中TOC浓度和总量均为:松林>混交林>季风林,其中季风林TOC浓度显著低于其他两种林型.松林树干流的TOC浓度显著高于混交林和季风林.凋落物淋洗水TOC浓度和总量大小依次均为:松林>混交林>季风林,且三林型间存在显著差异(p<0.05).径流中TOC浓度和总量均较小,且无明显差异.在湿季5月份,穿透水、树干流、凋落物淋洗水的TOC浓度呈现下降趋势.干季(10月)开始以后,穿透水、树干流、凋落物淋洗水中的TOC浓度又逐步回升.地表径流中TOC浓度干湿季变化趋势不明显.干季中各水文学分量TOC浓度大于湿季,但TOC总量呈现相反趋势.在森林水文学过程中,凋落物淋洗水所携带的有机碳量是土壤有机碳输入的最大项,季风林、混交林、松林中TOC总量分别为246.983 kg·hm~(-2)·a~(-1),255.187kg·hm~(-2)·a~(-1)和261.876kg·hm~(-2)·a~(-1);其次是直接到达土壤表面的穿透水,季风林、混交林、松林中TOC总量分别为28.152kg·hm~(-2)·a~(-1),37.410kg·hm~(-2)·a~(-1)和43.176kg·hm~(-2)·a~(-1);树干流中有机碳浓度虽高,但总量很微小,季风林、混交林、松林中TOC总量分别为4.663kg·hm~(-2)·a~(-1),5.910kg·hm~(-2)·a~(-1)和4.566kg·hm~(-2)·a~(-1),所以对土壤有机碳收入贡献不大.径流所携带的TOC总量很小,季风林、混交林、松林中分别为8.707kg·hm~(-2)·a~(-1),9.318kg·hm~(-2)·a~(-1),7.220kg·hm~(-2)·a~(-1).由此可知,水文过程输入土壤的TOC总量远大于径流所带走的TOC总量,导致了水文过程中的TOC存留在土壤中,对土壤有机碳(SOC)的积累起着重要作用.季风林、混交林和马尾松林土壤每年通过水文学过程净输入的有机碳量分别为(27.1+1.65)g·m~(-2),(28.9±2.79)g·m~(-2)和(30.2±2.65)g·m~(-2).水文学过程中的这部分有机碳由于占总有机碳比例较小往往被忽视,但是正是由于水分在土壤中的下渗使得有机碳的分布趋于均匀,这将更加利于SOC的积累和保存.  相似文献   

3.
《Ecological modelling》2005,187(4):426-448
We present a new decomposition model of C and N cycling in forest ecosystems that simulates N mineralisation from decomposing tree litter. It incorporates a mechanistic representation of the role of soil organisms in the N mineralisation-immobilisation turnover process during decomposition. We first calibrate the model using data from decomposition of 14C-labelled cellulose and lignin and 14C-labelled legume material and then calibrate and test it using mass loss and N loss data from decomposing Eucalyptus globulus residues. The model has been linked to the plant production submodel of the G’DAY ecosystem model, which previously used the CENTURY decomposition submodel for simulating C and N cycling. The key differences between this new decomposition model and the previous one, based on the CENTURY model, are: (1) growth of microbial biomass is the process that drives N mineralisation-immobilisation, and microbial succession is simulated; (2) decomposition of litter can be N-limited, depending on soil inorganic N availability relative to N requirements for microbial growth; (3) ‘quality’ of leaf and fine root litter is expressed in terms of biochemically measurable fractions; (4) the N:C ratio of microbial biomass active in decomposing litter is a function of litter quality and N availability; and (5) the N:C ratios of soil organic matter (SOM) pools are not prescribed but are instead simulated output variables defined by litter characteristics and soil inorganic N availability. With these modifications the model is able to provide reasonable estimates of both mass loss and N loss by decomposing E. globulus leaf and branch harvest residues in litterbag experiments. A sensitivity analysis of the decomposition model to selected parameters indicates that parameters regulating the stabilisation of organic C and N, as well as those describing incorporation of soil inorganic N in Young-SOM (biochemical immobilisation of N) are particularly critical for long-term applications of the model. A parameter identifiability analysis demonstrates that simulated short-term C and N loss from decomposing litter is highly sensitive to three model parameters that are identifiable from the E. globulus litterbag data.  相似文献   

4.
We studied the effects of tree species on leaf litter decomposition and forest floor dynamics in a common garden experiment of 14 tree species (Abies alba, Acer platanoides, Acer pseudoplatanus, Betula pendula, Carpinus betulus, Fagus sylvatica, Larix decidua, Picea abies, Pinus nigra, Pinus sylvestris, Pseudotsuga menziesii, Quercus robur, Quercus rubra, and Tilia cordata) in southwestern Poland. We used three simultaneous litter bag experiments to tease apart species effects on decomposition via leaf litter chemistry vs. effects on the decomposition environment. Decomposition rates of litter in its plot of origin were negatively correlated with litter lignin and positively correlated with mean annual soil temperature (MAT(soil)) across species. Likewise, decomposition of a common litter type across all plots was positively associated with MAT(soil), and decomposition of litter from all plots in a common plot was negatively related to litter lignin but positively related to litter Ca. Taken together, these results indicate that tree species influenced microbial decomposition primarily via differences in litter lignin (and secondarily, via differences in litter Ca), with high-lignin (and low-Ca) species decomposing most slowly, and by affecting MAT(soil), with warmer plots exhibiting more rapid decomposition. In addition to litter bag experiments, we examined forest floor dynamics in each plot by mass balance, since earthworms were a known component of these forest stands and their access to litter in litter bags was limited. Forest floor removal rates estimated from mass balance were positively related to leaf litter Ca (and unrelated to decay rates obtained using litter bags). Litter Ca, in turn, was positively related to the abundance of earthworms, particularly Lumbricus terrestris. Thus, while species influence microbially mediated decomposition primarily through differences in litter lignin, differences among species in litter Ca are most important in determining species effects on forest floor leaf litter dynamics among these 14 tree species, apparently because of the influence of litter Ca on earthworm activity. The overall influence of these tree species on leaf litter decomposition via effects on both microbial and faunal processing will only become clear when we can quantify the decay dynamics of litter that is translocated belowground by earthworms.  相似文献   

5.
Abstract: Forest fragmentation leads to a dramatic increase in forest edge, and these edges may function as traps and concentrators for wind-borne nutrients and pollutants. We assessed the influence of forest edges on atmospheric deposition and subsequent inputs to the forest floor in deciduous-forest fragments in the eastern United States. To quantify these inputs, we collected throughfall—water that has passed through the forest canopy—from edge and interior zones of forests adjacent to open fields. During the 1995 growing season, atmospheric input (wet and dry deposition) of sulfur to forest edge zones was elevated compared with input to forest interiors. Throughfall fluxes of dissolved inorganic nitrogen and calcium were also greater at edges than interiors. The mean edge increases ranged from 17% to 56% for the nutrients and pollutants we measured. When we manipulated the structure of forest edges by removing all vegetation below half the canopy height, throughfall flux in the edge zone declined sharply and was less than that of the respective interior zone. Changing the vegetation structure of the edge also shifted the zone of highest throughfall flux farther into the interior of the forest. Our data suggest that forest edges can function both as significant traps for airborne nutrients and pollutants from adjoining agricultural or urban landscapes and effective concentrators of below-canopy chemical fluxes. These enhanced fluxes may have cascading effects on soil-nutrient cycling, microbial activity, seedling dominance, and other ecological processes near forest edges.  相似文献   

6.
Pregitzer KS  Zak DR  Talhelm AF  Burton AJ  Eikenberry JR 《Ecology》2010,91(12):3456-62; discussion 3503-14
In order to better understand the nitrogen (N) cycle, a pulse of 15NO3- was applied in 1998 to a sugar maple (Acer saccharum) dominated northern hardwood forest receiving long-term (1994-2008) simulated atmospheric N deposition. Sugar maple leaf litter and live fine-root 15N were quantified for four years prior to labeling and for 11 subsequent years. Continuous sampling of 15N following addition of the tracer enabled calculation of leaf litter and fine-root N pool turnover utilizing an exponential decay function. Fine-root 15N recovery peaked at 3.7% +/- 1.7% the year the tracer was applied, while leaf litter 15N recovery peaked in the two years following tracer application at approximately 8%. These results suggest shoots are primarily constructed from N taken up in previous years, while fine roots are constructed from new N. The residence time of N was 6.5 years in leaf litter and 3.1 years in fine roots. The longer residence time and higher recovery rate are evidence that leaves were a stronger sink for labeled N than fine roots, but the relatively short residence time of tracer N in both pools suggests that there is not tight intra-ecosystem cycling of N in this mature forest.  相似文献   

7.
珠江三角洲四种森林类型土壤CO2通量特征研究   总被引:1,自引:0,他引:1  
采用开路式土壤CO2通量测量系统Li-8100&Li-8150对珠江三角洲地区尾叶桉(Eucalyptus urophylla)人工林、乡土树种恢复林、针阔叶混交林和常绿阔叶林4种林型的土壤CO2通量进行了观测。结果表明:4种森林类型年均土壤CO2通量为尾叶桉人工林(3.35μmol.m-2.s-1)>针阔叶混交林(2.66μmol.m-2.s-1)>乡土树种恢复林(2.09μmol.m-2.s-1)>常绿阔叶林(1.86μmol.m-2.s-1);旱季土壤CO2通量明显小于雨季。前3种森林类型凋落物呼吸处理表明,旱季对照组土壤CO2通量均小于相应的去除凋落物组、雨季则相反,全年的对比结果显示,3种森林类型的凋落物呼吸贡献分别达到1.3%、7.1%和10.8%。土壤CO2通量与10 cm土壤温度呈显著指数相关,且土壤CO2通量温度敏感指数表现为针阔叶混交林Q10最大(3.49),尾叶桉人工林Q10最小(1.95)。  相似文献   

8.
采用开路式土壤CO2通量测量系统Li-8100&Li-8150对珠江三角洲地区尾叶桉(Eucalyptus urophylla)人工林、乡土树种恢复林、针阔叶混交林和常绿阔叶林4种林型的土壤CO2通量进行了观测。结果表明:4种森林类型年均土壤CO2通量为尾叶桉人工林(3.35μmol.m-2.s-1)〉针阔叶混交林(2.66μmol.m-2.s-1)〉乡土树种恢复林(2.09μmol.m-2.s-1)〉常绿阔叶林(1.86μmol.m-2.s-1);旱季土壤CO2通量明显小于雨季。前3种森林类型凋落物呼吸处理表明,旱季对照组土壤CO2通量均小于相应的去除凋落物组、雨季则相反,全年的对比结果显示,3种森林类型的凋落物呼吸贡献分别达到1.3%、7.1%和10.8%。土壤CO2通量与10 cm土壤温度呈显著指数相关,且土壤CO2通量温度敏感指数表现为针阔叶混交林Q10最大(3.49),尾叶桉人工林Q10最小(1.95)。  相似文献   

9.
Evergreen and deciduous plants are widely expected to have different impacts on soil nitrogen (N) availability because of differences in leaf litter chemistry and ensuing effects on net N mineralization (N(min)). We evaluated this hypothesis by compiling published data on net N(min) rates beneath co-occurring stands of evergreen and deciduous trees. The compiled data included 35 sets of co-occurring stands in temperate and boreal forests. Evergreen and deciduous stands did not have consistently divergent effects on net N(min) rates; net N(min) beneath deciduous trees was higher when comparing natural stands (19 contrasts), but equivalent to evergreens in plantations (16 contrasts). We also compared net N(min) rates beneath pairs of co-occurring genera. Most pairs of genera did not differ consistently, i.e., tree species from one genus had higher net N(min) at some sites and lower net N(min) at other sites. Moreover, several common deciduous genera (Acer, Betula, Populus) and deciduous Quercus spp. did not typically have higher net N(min) rates than common evergreen genera (Pinus, Picea). There are several reasons why tree effects on net N(min) are poorly predicted by leaf habit and phylogeny. For example, the amount of N mineralized from decomposing leaves might be less than the amount of N mineralized from organic matter pools that are less affected by leaf litter traits, such as dead roots and soil organic matter. Also, effects of plant traits and plant groups on net N(min) probably depend on site-specific factors such as stand age and soil type.  相似文献   

10.
In view of growing interest in understanding how biodiversity affects ecosystem functioning, we investigated effects of riparian plant diversity on litter decomposition in forest streams. Leaf litter from 10 deciduous tree species was collected during natural leaf fall at two locations (Massif Central in France and Carpathians in Romania) and exposed in the field in litter bags. There were 35 species combinations, with species richness ranging 1-10. Nonadditive effects on the decomposition of mixed-species litter were minor, although a small synergistic effect was observed in the Massif Central stream where observed litter mass remaining was significantly lower overall than expected from data on single-species litter. In addition, variability in litter mass remaining decreased with litter diversity at both locations. Mean nitrogen concentration of single- and mixed-species litters (0.68-4.47% of litter ash-free dry mass) accounted for a large part of the variation in litter mass loss across species combinations. For a given species or mixture, litter mass loss was also consistently faster in the Massif Central than in the Carpathians, and the similarity in general stream characteristics, other than temperature, suggests that this effect was largely due to differences in thermal regimes. These results support the notion that decomposition of litter mixtures is primarily driven by litter quality and environmental factors, rather than by species richness per se. However, the observed consistent decrease in variability of decomposition rate with increasing plant species richness indicates that conservation of riparian tree diversity is important even when decomposition rates are not greatly influenced by litter mixing.  相似文献   

11.
《Ecological modelling》2004,175(2):151-167
Throughfall may contribute large amounts of nutrients to forest soils via the leaching of accumulated dry particulates on the canopy, and by altering incoming precipitation, it may have some control on the acid–base status of the soil. Unfortunately, information about throughfall in forests is sparse and thus, scientists must deal with this gap in knowledge before conducting regional applications of dynamic soil acidification models. The first objective of this paper was to test the possibility of developing regression equations that could allow modellers to estimate throughfall nutrient fluxes using wet deposition nutrient fluxes as input data. The second objective was to test the relative importance of this simplification on regional applications of the dynamic soil–atmosphere model Soil Acidification in Forested Ecosystems (SAFE) using one published application of this model as the base case. Annual throughfall nutrient fluxes were estimated successfully from annual wet deposition fluxes for individual ions. The success of these relationships were however inversely proportional to the intensity at which an ion was involved in exchange reactions: models generally performed better with more conservative ions. The simulation of the soil acid–base status with SAFE suggested that it was appropriate to use the throughfall estimates yielded using the regression equations. Also, testing of the SAFE output using different regression equations in throughfall showed that, in the case of base cations, the key for modelling the soil acid–base status was to produce accurate throughfall estimates of Ca and Mg, and that K had marginal effects. However, a small bias in solution pH was introduced as the balance between alkalinity and acidity in the different categories of deposition appeared to be diverging from the base case (measured) values. The use of our approach at other sites may indicate if there is a systematic bias or not in the regressions. Yet, results suggest that the regression equations are appropriate for the purpose of modelling the soil acid–base status at the scale of the landscape because it assures that the same set of assumptions in throughfall are used for each application.  相似文献   

12.
植物叶片汞浓度与大气气态单质汞(GEM/Hg0)浓度的线性关系表明叶片汞浓度大小可用于指示植物生长区内GEM浓度的高低水平.通过分析上海市绿地公园(25座)中常见落叶树木樱花、水杉、法桐叶片汞浓度的时空变化特征,探究区域内GEM含量水平及分布特征.2017年5—10月对7座公园中这3种树木叶汞浓度进行连续监测,结果显示叶汞浓度与叶片生长时间呈显著线性正相关关系(P<0.01),表明叶片在生长期内不断吸收累积大气汞.而且在生长期内,3种树木叶汞浓度日累积速率(g·kg-1·d-1)具有相似的变化趋势,意味着不同树木叶汞的累积对外界环境的响应可能是一致的,除树种差异外.同年11月初,25座公园(包含上述7座)中樱花、水杉、法桐衰老叶片叶汞浓度为(54.2±12,31.8—76.7)μg·kg-1、(42.0±9,23.5—67.9)μg·kg-1、(36.1±11,21.4—60.3)μg·kg-1(平均值,范围),有显著的种间差异(P<0.01),而在中心城区和郊区间无显著差异(P>0.05).空间插值分析结果初步表明衰老叶片叶汞浓度的空间梯度差异不大,且高值区域没有完全重合.这表明了利用衰老叶片叶汞浓度反映区域GEM浓度整体水平空间分布规律存在一定的不确定性,仍需进一步深入研究.  相似文献   

13.
盐基离子随穿透雨和树干茎流的迁移成为森林元素输入的重要组成部分.在迁移过程中,冠层淋溶、树干冲刷等改变了盐基离子含量,而不同林型的林冠特征、树皮性质等存在差异,因此盐基离子含量在不同林型中可能存在差异对米槠次生林和杉木人工林穿透雨、树干茎流进行为期4年的监测,对比研究4种盐基离子(K+、Ca2+、Na+、Mg2+)浓度和输入量的动态特征.结果显示:(1)米槠次生林树干茎流Ca2+、Mg2+浓度显著低于杉木人工林而K+浓度显著高于杉木人工林;穿透雨除Na+浓度外均为米槠次生林显著高于杉木人工林.穿透雨和树干茎流Na+浓度林型差异不显著.(2)两种林型盐基离子季节动态变化基本一致,在雨季旱季各有一个峰值,雨季浓度普遍低于旱季.米槠次生林盐基离子浓度稳定性普遍高于杉木人工林.(3)分析盐基离子浓度与降雨强度的关系发现:Ca2+、K+、Mg2+浓度随雨量级的增加而降低,Na+浓度随雨量级的增加而增加.(4)观测期间米槠次生林穿透雨累计输入Ca2+、K+、Mg2+和Na+总量分别为47.97、35.17、7.15和12.94 kg/hm2,树干茎流累计输入Ca2+、K+、Mg2+和Na+总量分别为11.38、6.21、1.54和3.00 kg/hm2;杉木人工林穿透雨累计输入Ca2+、K+、Mg2+和Na+总量分别为47.24、26.63、6.43和11.55 kg/hm2,树干茎流累计输入Ca2+、K+、Mg2+和Na+总量分别为4.11、1.20、0.50和0.83 kg/hm2.米槠次生林的林内雨盐基离子输入量大于杉木人工林.总体而言,米槠次生林比杉木人工林有更高的养分输入,能更好地维持生态系统养分的供应;上述结果有助于进一步认识森林物质随水文过程的流动,可为人工林经营管理提供一定科学基础数据.(图6表1参36)  相似文献   

14.
利用土壤中钼元素资料 110 376个数据 ,癌死亡调查资料 7870 80例 ,研究了胃癌、食管癌、肝癌、宫颈癌、肺癌、大肠癌、白血病、鼻咽癌、乳腺癌死亡率与人群生存区土壤环境中钼元素的关系。结果表明 ,胃癌、食管癌、宫颈癌死亡率与钼元素有相关性 ,等级相关系数分别为 - 0 .4 2 4 6( P<0 .0 2 5) ,- 0 .54 53( P<0 .0 0 2 5) ,- 0 .3369( P<0 .0 5)。  相似文献   

15.
为了解长江上游低山丘陵区马尾松(Pinus massoniana)人工林生态系统的C、N、P分配格局及化学计量特征,本文采用时空互代的方法,在宜宾高县来复林区选取三种不同林龄(5年生幼龄林、14年生中龄林、39年生成熟林),但立地条件相近、样地情况基本一致的马尾松(Pinus massoniana)人工林作为研究对象,对马尾松针叶、凋落物及土壤中的C、N、P含量及 w(C)?w(N)?w(P)化学计量特征进行测定和分析。结果表明,(1)C、N、P 含量均表现为针叶〉凋落物〉土壤,且在三个库之间差异显著;(2)林龄对针叶、凋落物、土壤的 C、N、P 及 w(C)?w(N)、w(C)?w(P)计量比均有显著影响。(3)土壤 C、N、P含量在成熟林中最高;针叶和凋落物的C含量在成熟林中最低,N、P含量则在中龄林中最高。(4)随林龄增加马尾松对N、P的利用效率降低,针叶、凋落物及土壤的w(C)?w(N)与 w(C)?w(P)均表现为下降。(5)马尾松针叶w(N)?w(P)比值在14.37~15.53之间,说明该地区马尾松人工林受N和P的共同限制,但林龄对N、P养分限制的影响不显著。为提高该区马尾松人工林的生产力,建议在人工林的抚育管理中要适当增加N肥和P肥,同时也可在马尾松人工林引入豆科固氮植物以提高地力。该研究将马尾松针叶、凋落物及土壤结合起来探究随林龄增长C、N、P养分元素的分配格局及化学计量特征的变化,有助于全面、系统地揭示马尾松人工林生态系统的养分循环,对指导马尾松人工林生产,调节和改善林木生长环境,提高系统的养分利用效率及林地生产力具有重要意义。  相似文献   

16.
The chemistry of bulk precipitation, throughfall, stemflow and soil waters beneath an oak wood (Quercus petraea) canopy and soil waters under moorland vegetation were measured at two sites on acid brown podzolic soils near Llyn Brianne in rural mid-Wales, UK. Between March 1986 and November 1988, precipitation was 4354 mm and annual interception losses from the oak canopy averaged 13% of incident precipitation. Throughfall and stemflow were more acid and concentrations of most solutes were increased 2- to 4-fold compared with bulk precipitation. Nitrate was the only solute retained within the tree canopy. Throughfall collected beneath patches of bracken on the forest floor was less acidic but contained substantially higher concentrations of major ions than bulk precipitation and oak throughfall. the moorland soil was more acidic, contained more exchangeable calcium but less exchangeable aluminium and potassium than the woodland soil. Soil waters beneath both vegetation types were acidic (mean pH range 4.5-4.9) and dominated by sodium and chloride. with the exception of calcium, soil water solute concentrations were greater beneath oak. These differences are ascribed to larger atmospheric inputs beneath the oak canopy compared with the shorter grasses, combined with the effect of differences in nutrient dynamics and water fluxes. Variations in soil water aluminium chemistry are explained in terms of ion exchange and podzolisa-tion processes. the water quality implications of increased upland afforestation of moorland by broadleaved trees are discussed.  相似文献   

17.
The chemistry of bulk precipitation, throughfall, stemflow and soil waters beneath an oak wood (Quercus petraea) canopy and soil waters under moorland vegetation were measured at two sites on acid brown podzolic soils near Llyn Brianne in rural mid-Wales, UK. Between March 1986 and November 1988, precipitation was 4354 mm and annual interception losses from the oak canopy averaged 13% of incident precipitation. Throughfall and stemflow were more acid and concentrations of most solutes were increased 2- to 4-fold compared with bulk precipitation. Nitrate was the only solute retained within the tree canopy. Throughfall collected beneath patches of bracken on the forest floor was less acidic but contained substantially higher concentrations of major ions than bulk precipitation and oak throughfall. the moorland soil was more acidic, contained more exchangeable calcium but less exchangeable aluminium and potassium than the woodland soil. Soil waters beneath both vegetation types were acidic (mean pH range 4.5-4.9) and dominated by sodium and chloride. with the exception of calcium, soil water solute concentrations were greater beneath oak. These differences are ascribed to larger atmospheric inputs beneath the oak canopy compared with the shorter grasses, combined with the effect of differences in nutrient dynamics and water fluxes. Variations in soil water aluminium chemistry are explained in terms of ion exchange and podzolisa-tion processes. the water quality implications of increased upland afforestation of moorland by broadleaved trees are discussed.  相似文献   

18.
Cleveland CC  Reed SC  Townsend AR 《Ecology》2006,87(2):492-503
Terrestrial biosphere-atmosphere CO2 exchange is dominated by tropical forests, so understanding how nutrient availability affects carbon (C) decomposition in these ecosystems is central to predicting the global C cycle's response to environmental change. In tropical rain forests, phosphorus (P) limitation of primary production and decomposition is believed to be widespread, but direct evidence is rare. We assessed the effects of nitrogen (N) and P fertilization on litter-layer organic matter decomposition in two neighboring tropical rain forests in southwest Costa Rica that are similar in most ways, but that differ in soil P availability. The sites contain 100-200 tree species per hectare and between species foliar nutrient content is variable. To control for this heterogeneity, we decomposed leaves collected from a widespread neotropical species, Brosimum utile. Mass loss during decomposition was rapid in both forests, with B. utile leaves losing >80% of their initial mass in <300 days. High organic matter solubility throughout decomposition combined with high rainfall support a model of litter-layer decomposition in these rain forests in which rapid mass loss in the litter layer is dominated by leaching of dissolved organic matter (DOM) rather than direct CO2 mineralization. While P fertilization did not significantly affect mass loss in the litter layer, it did stimulate P immobilization in decomposing material, leading to increased P content and a lower C:P ratio in soluble DOM. In turn, increased P content of leached DOM stimulated significant increases in microbial mineralization of DOM in P-fertilized soil. These results show that, while nutrients may not affect mass loss during decomposition in nutrient-poor, wet ecosystems, they may ultimately regulate CO2 losses (and hence C storage) by limiting microbial mineralization of DOM leached from the litter layer to soil.  相似文献   

19.
A field study was conducted to evaluate the effects of exotic earthworm invasions on the rates of leaf litter disappearance in a northern hardwood forest in southcentral New York, USA. Specifically, we assessed whether differences in litter quality and the species composition of exotic earthworm communities affected leaf litter disappearance rates. Two forest sites with contrasting communities of exotic earthworms were selected, and disappearance rates of sugar maple and red oak litter were estimated in litter boxes in adjacent earthworm-free, transition, and earthworm-invaded plots within each site. After 540 days in the field, 1.7-3 times more litter remained in the reference plots than in the earthworm-invaded plots. In the earthworm-invaded plots, rates of disappearance of sugar maple litter were higher than for oak litter during the first year, but by the end of the experiment, the amount of sugar maple and oak litter remaining in the earthworm-invaded plots was identical within each site. The composition of the earthworm communities significantly affected the patterns of litter disappearance. In the site dominated by the anecic earthworm Lumbricus terrestris and the endogeic Aporrectodea tuberculata, the percentage of litter remaining after 540 days (approximately 17%) was significantly less than at the site dominated by L. rubellus and Octolasion tyrtaeum (approximately 27%). This difference may be attributed to the differences in feeding behavior of the two litter-feeding species: L. terrestris buries entire leaves in vertical burrows, whereas L. rubellus usually feeds on litter at the soil surface, leaving behind leaf petioles and veins. Our results showed that earthworms not only accelerate litter disappearance rates, but also may reduce the differences in decomposition rates that result from different litter qualities at later stages of decay. Similarly, our results indicate that earthworm effects on decomposition vary with earthworm community composition. Furthermore, because earthworm invasion can involve a predictable shift in community structure along invasion fronts or through time, the community dynamics of invasion are important in predicting the spatial and temporal effects of earthworm invasion on litter decomposition, especially at later stages of decay.  相似文献   

20.
The forest litter decomposition model (FLDM) described in this paper provides an important basis for assessing the impacts of forest management on seasonal stream water quality and export of dissolved organic carbon (DOC). By definition, models with annual time steps are unable to capture seasonal, within-year variation. In order to simulate seasonal variation in litter decomposition and DOC production and export, we have modified an existing annual FLDM to account for monthly dynamics of decomposition and residual mass in experimental litterbags placed in 21 different forests across Canada.The original annual FLDM was formulated with three main litter pools (fast, slow, and very slow decomposing litter) to address the fact that forest litter is naturally composed of a mixture of organic compounds that decompose at different rates. The annual FLDM was shown to provide better simulations than more complex models like CENTURY and SOMM.The revised monthly model retains the original structure of the annual FLDM, but separates litter decomposition from nitrogen (N) mineralization. In the model, monthly soil temperature, soil moisture, and mean January soil temperature are shown to be the most important controlling variables of within-year variation in decomposition. Use of the three variables in a process-based definition of litter decomposition is a significant departure from the empirical definition in the annual model. The revised model is shown to give similar calculations of residual mass and N concentration as the annual model (r2 = 0.91, 0.78), despite producing very different timeseries of decomposition over six years. It is shown from a modelling perspective that (i) forest litter decomposition is independent of N mineralization, whereas N mineralization is dependent on litter decomposition, and (ii) mean January soil temperature defines litter decomposition in the summer because of winter-temperatures’ role in modifying forest-floor microorganism community composition and functioning in the following summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号