首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thresholds in Songbird Occurrence in Relation to Landscape Structure   总被引:5,自引:0,他引:5  
Abstract:  Theory predicts the occurrence of threshold levels of habitat in landscapes, below which ecological processes change abruptly. Simulation models indicate that below critical thresholds, fragmentation of habitat influences patch occupancy by decreasing colonization rates and increasing rates of local extinction. Uncovering such putative relationships is important for understanding the demography of species and in developing sound conservation strategies. Using segmented logistic regression, we tested for thresholds in occurrence of 15 bird species as a function of the amount of suitable habitat at multiple scales (150–2000-m radii). Suitable habitat was defined quantitatively based on previously derived, spatially explicit distribution models for each species. The occurrence of 10 out of 15 species was influenced by the amount of habitat at a landscape scale (≥500-m radius). Of these species all but one were best predicted by threshold models. Six out of nine species exhibited asymptotic thresholds; the effects of habitat loss intensified at low amounts of habitat in a landscape. Landscape thresholds ranged from 8.6% habitat to 28.7% (     = 18.5 ± 2.6%[95% CI]). For two species landscape thresholds coincided with sensitivity to fragmentation; both species were more likely to occur in large patches, but only when the amount of habitat in a landscape was low. This supports the fragmentation threshold hypothesis. Nevertheless, the occurrence of most species appeared to be unaffected by fragmentation, regardless of the amount of habitat present at landscape extents. The thresholds we identified may be useful to managers in establishing conservation targets. Our results indicate that findings of landscape-scale studies conducted in regions with relatively high proportions of habitat and low fragmentation may not be applicable in regions with low habitat proportions and high fragmentation.  相似文献   

2.
Abstract: We investigated the persistence of three medium-sized (2–9 kg), rare forest mammals in the fragmented mist-belt Podocarpus forests of the midlands of KwaZulu-Natal Province, South Africa. We recorded patch occupancy of blue duiker (   Philantomba monticola ), tree hyrax (   Dendrohyrax arboreus ), and samango monkey ( Cercopithecus mitis labiatus ) in 199 forest patches. Their rarity is ascribed to the fragmentation and destruction of their forest habitat. Incidence functions, derived from presence and absence data, were formulated as generalized linear models, and environmental effects were included in the fitted logistic models. The small and mostly solitary hyrax and duiker persisted in smaller patches than the large and social monkey. Although this result follows expectations based on relative home-range sizes of each species, the incidence probability of the samango monkey was invariant with increasing isolation, whereas a gradual decrease with increasing isolation was observed for the hyrax and duiker. Group dynamics may inhibit dispersal and increase the isolation effect in social species such as samango monkeys. A mainland-island metapopulation model adequately describes patterns of patch occupancy by the hyrax and duiker, but the monkeys' poor dispersal ability and obvious area-dependent extirpation suggest that they exist in transient, nonequilibrium (declining) metapopulations. Through identification of large forest patches for careful protection and management, the survival of all three species—especially the monkey—could be prolonged. Because no functional metapopulation may exist for the monkey, however, this is an emergency measure. For the duiker and hyrax, larger patches should form part of a network of smaller and closer patches in a natural matrix.  相似文献   

3.
The incidence function model is derived from a linear first-order Markov chain of the presence or absence of a species in a habitat patch. The model can be parameterized with "snapshot" presence/absence data from a patch network. Using the estimated parameter values the Markov chain can be iterated in the same or in some other patch network to generate quantitative predictions about transient metapopulation dynamics and the stochastic steady state. We tested the ability of the incidence function model to predict patch occupancy using extensive data on an endangered butterfly, the Glanville fritillary ( Melitaea cinxia ) Parameter values were estimated with data collected from a 50-patch network in 1991. In 1993 we surveyed the entire geographic range of the species in Finland, within an area of 50 × 70 km2, with 1502 habitat patches (dry meadows) of which 536 were occupied. Model predictions were generated for the 1502 patches and were compared with the observed pattern of occupancy in 1993. The model predicted patch occupancy well in more than half of the study area, but prediction was poor for one quarter of the area, probably because of regional variation in habitat quality and because metapopulations may have been perturbed away from the steady state. The incidence function model provides a practical tool for making quantitative predictions about metapopulation dynamics of species living in fragmented landscapes.  相似文献   

4.
A key question facing conservation biologists is whether declines in species' distributions are keeping pace with landscape change, or whether current distributions overestimate probabilities of future persistence. We use metapopulations of the marsh fritillary butterfly Euphydryas aurinia in the United Kingdom as a model system to test for extinction debt in a declining species. We derive parameters for a metapopulation model (incidence function model, IFM) using information from a 625-km2 landscape where habitat patch occupancy, colonization, and extinction rates for E. aurinia depend on patch connectivity, area, and quality. We then show that habitat networks in six extant metapopulations in 16-km2 squares were larger, had longer modeled persistence times (using IFM), and higher metapopulation capacity (lambdaM) than six extinct metapopulations. However, there was a > 99% chance that one or more of the six extant metapopulations would go extinct in 100 years in the absence of further habitat loss. For 11 out of 12 networks, minimum areas of habitat needed for 95% persistence of metapopulation simulations after 100 years ranged from 80 to 142 ha (approximately 5-9% of land area), depending on the spatial location of habitat. The area of habitat exceeded the estimated minimum viable metapopulation size (MVM) in only two of the six extant metapopulations, and even then by only 20%. The remaining four extant networks were expected to suffer extinction in 15-126 years. MVM was consistently estimated as approximately 5% of land area based on a sensitivity analysis of IFM parameters and was reduced only marginally (to approximately 4%) by modeling the potential impact of long-distance colonization over wider landscapes. The results suggest a widespread extinction debt among extant metapopulations of a declining species, necessitating conservation management or reserve designation even in apparent strongholds. For threatened species, metapopulation modeling is a potential means to identify landscapes near to extinction thresholds, to which conservation measures can be targeted for the best chance of success.  相似文献   

5.
Abstract: Habitat fragmentation and the division of populations into spatially separated units have led to the increasing use of metapopulation models to characterize these populations. One prominent model that has served as a heuristic tool was introduced by Levins and is based on a collection of simplifying assumptions that exclude information on the dynamics and spatial distribution of local populations. Levins's and similar models predict the proportion of occupied habitat patches at equilibrium and the conditions needed to avoid total extinction. There are many obvious concerns about using such models, including how realistic alterations might change the predictions and whether occupancy has any relationship to population-level processes. Although many of the assumptions of these simple models are known to be unrealistic, we do not know how the assumptions affect model predictions. We simulated a metapopulation, and our results show that assumptions such as homogeneity of habitat patches, random migration among patches, equivalent extinction probabilities in all patches, and a large number of patches can lead to large overestimations of habitat occupancy. But when we explicitly modeled the underlying population dynamics within each patch, we found (1) that there was a strong correlation between proportion of occupied patches and total metapopulation size and (2) that the distribution of individuals among patches was relatively insensitive to model assumptions. Thus, our results show that although realistic modifications will change model predictions for occupancy, occupancy and population trends will be correlated. These correlations between occupancy and population size suggest that occupancy models may have some utility in conservation applications.  相似文献   

6.
Abstract:  We evaluated the importance of small (<5 ha) forest patches for the conservation of regional plant diversity in the tropical rainforest of Los Tuxtlas, Mexico. We analyzed the density of plant species (number of species per 0.1 ha) in 45 forest patches of different sizes (1–700 ha) in 3 landscapes with different deforestation levels (4, 11, and 24% forest cover). Most of the 364 species sampled (360 species, 99%) were native to the region, and only 4 (1%) were human-introduced species. Species density in the smallest patches was high and variable; the highest (84 species) and lowest (23 species) number of species were recorded in patches of up to 1.8 ha. Despite the small size of these patches, they contained diverse communities of native plants, including endangered and economically important species. The relationship between species density and area was significantly different among the landscapes, with a significant positive slope only in the landscape with the highest deforestation level. This indicates that species density in a patch of a given size may vary among landscapes that have different deforestation levels. Therefore, the conservation value of a patch depends on the total forest cover remaining in the landscape. Our findings revealed, however, that a great portion of regional plant diversity was located in very small forest patches (<5 ha), most of the species were restricted to only a few patches (41% of the species sampled were distributed in only 1–2 patches, and almost 70% were distributed in 5 patches) and each landscape conserved a unique plant assemblage. The conservation and restoration of small patches is therefore necessary to effectively preserve the plant diversity of this strongly deforested and unique Neotropical region.  相似文献   

7.
The effects of patch size and isolation on metapopulation dynamics have received wide empirical support and theoretical formalization. By contrast, the effects of patch quality seem largely underinvestigated, partly due to technical difficulties in properly assessing quality. Here we combine habitat-quality modeling with four years of demographic monitoring in a metapopulation of greater white-toothed shrews (Crocidura russula) to investigate the role of patch quality on metapopulation processes. Together, local patch quality and connectivity significantly enhanced local population sizes and occupancy rates (R2 = 14% and 19%, respectively). Accounting for the quality of patches connected to the focal one and acting as potential sources improved slightly the model explanatory power for local population sizes, pointing to significant source-sink dynamics. Local habitat quality, in interaction with connectivity, also increased colonization rate (R2 = 28%), suggesting the ability of immigrants to target high-quality patches. Overall, patterns were best explained when assuming a mean dispersal distance of 800 m, a realistic value for the species under study. Our results thus provide evidence that patch quality, in interaction with connectivity, may affect major demographic processes.  相似文献   

8.
9.
Here we propose an integrated framework for modeling connectivity that can help ecologists, conservation planners and managers to identify patches that, more than others, contribute to uphold species dispersal and other ecological flows in a landscape context. We elaborate, extend and partly integrate recent network-based approaches for modeling and supporting the management of fragmented landscapes. In doing so, experimental patch removal techniques and network analytical approaches are merged into one integrated modeling framework for assessing the role of individual patches as connectivity providers. In particular, we focus the analyses on the habitat availability metrics PC and IIC and on the network metric Betweenness Centrality. The combination and extension of these metrics jointly assess both the immediate connectivity impacts of the loss of a particular patch and the resulting increased vulnerability of the network to subsequent disruptions. In using the framework to analyze the connectivity of two real landscapes in Madagascar and Catalonia (NE Spain), we suggest a procedure that can be used to rank individual habitat patches and show that the combined metrics reveal relevant and non-redundant information valuable to assert and quantify distinctive connectivity aspects of any given patch in the landscape. Hence, we argue that the proposed framework could facilitate more ecologically informed decision-making in managing fragmented landscapes. Finally, we discuss and highlight some of the advantages, limitations and key differences between the considered metrics.  相似文献   

10.
《Ecological modelling》2005,183(4):411-423
Habitat fragmentation can decrease local population persistence by reducing connectivity, which is a function of dispersal of individuals among habitat fragments. Dispersal is often treated as diffusion in population models, even though for many species it is a result of a series of behavioral decisions. We developed a metapopulation model to explore the potential importance of dispersal behaviors in driving metapopulation dynamics. We incorporated types of behavior that affect dispersal—colonization inhibiting, colonization enhancing, extinction inhibiting, extinction enhancing, rescue enhancing, rescue inhibiting—into Levins’ (1969) metapopulation model and projected occupancy rates for a variety of parameter values. Examples from the literature of behaviors associated with each of these parameters are provided. Our model simplifies into previously published metapopulation models that incorporate only a single behavior, and we present a density-dependent rescue function that leads to multiple non-zero equilibria. We found a variety of behavioral effects on metapopulations. Rescue enhancement fills patches faster than does colonization enhancement or extinction inhibition, and declines in patch occupancy are moderate with extinction enhancement, but colonization inhibition causes metapopulation extinction. We also found that with colonization and extinction inhibitions, equilibrium patch occupancy is inversely related to patch turnover rate. With density-dependent rescue, persistence depends not only on the strength of the strong rescue effect, but also on having a sufficient initial fraction of patches occupied; the stronger the rescue effect, the lower this fraction can be. This study suggests that dispersal behavior can have strong influences on metapopulation dynamics. It confirms the importance of understanding the relationship between landscape structure and dispersal behavior in understanding population persistence.  相似文献   

11.
Abstract:  Organisms respond to their surroundings at multiple spatial scales, and different organisms respond differently to the same environment. Existing landscape models, such as the "fragmentation model" (or patch-matrix-corridor model) and the "variegation model," can be limited in their ability to explain complex patterns for different species and across multiple scales. An alternative approach is to conceptualize landscapes as overlaid species-specific habitat contour maps. Key characteristics of this approach are that different species may respond differently to the same environmental conditions and at different spatial scales. Although similar approaches are being used in ecological modeling, there is much room for habitat contours as a useful conceptual tool. By providing an alternative view of landscapes, a contour model may stimulate more field investigations stratified on the basis of ecological variables other than human-defined patches and patch boundaries. A conceptual model of habitat contours may also help to communicate ecological complexity to land managers. Finally, by incorporating additional ecological complexity, a conceptual model based on habitat contours may help to bridge the perceived gap between pattern and process in landscape ecology. Habitat contours do not preclude the use of existing landscape models and should be seen as a complementary approach most suited to heterogeneous human-modified landscapes.  相似文献   

12.
Abstract:  The lack of management experience at the landscape scale and the limited feasibility of experiments at this scale have increased the use of scenario modeling to analyze the effects of different management actions on focal species. However, current modeling approaches are poorly suited for the analysis of viability in dynamic landscapes. Demographic (e.g., metapopulation) models of species living in these landscapes do not incorporate the variability in spatial patterns of early successional habitats, and landscape models have not been linked to population viability models. We link a landscape model to a metapopulation model and demonstrate the use of this model by analyzing the effect of forest management options on the viability of the Sharp-tailed Grouse (  Tympanuchus phasianellus ) in the Pine Barrens region of northwestern Wisconsin (U.S.A.). This approach allows viability analysis based on landscape dynamics brought about by processes such as succession, disturbances, and silviculture. The landscape component of the model (LANDIS) predicts forest landscape dynamics in the form of a time series of raster maps. We combined these maps into a time series of patch structures, which formed the dynamic spatial structure of the metapopulation component (RAMAS). Our results showed that the viability of Sharp-tailed Grouse was sensitive to landscape dynamics and demographic variables such as fecundity and mortality. Ignoring the landscape dynamics gave overly optimistic results, and results based only on landscape dynamics (ignoring demography) lead to a different ranking of the management options than the ranking based on the more realistic model incorporating both landscape and demographic dynamics. Thus, models of species in dynamic landscapes must consider habitat and population dynamics simultaneously.  相似文献   

13.
Abstract: Corridors have been proposed to reduce isolation and increase population persistence in fragmented landscapes, yet little research has evaluated the types of landscapes in which corridors will be most effective. I tested the hypothesis that corridors increase patch colonization by a butterfly, Junonia coenia , regardless of the butterfly's initial distance from a patch. I chose J. coenia because it has been shown to move between patches preferentially through corridors. Individuals were released 16–192 m away from open experimental patches into adjacent open corridors or forest. Neither corridors nor distance had a significant effect on patch colonization, but there was a significant interaction between the presence or absence of corridors and distance. At small distances (16–64 m), J. coenia was more likely to colonize open patches when released within forest than within open corridors, most likely because J. coenia used corridors as habitat. Nevertheless, patch colonization by butterflies released within forest decreased rapidly as distance from patches increased, as predicted by a null model of random movement. Colonization did not change with distance in the corridor, and at long distances (128–192 m), butterflies released in corridors were twice as likely to colonize open patches as those released in forest. These results suggest that one critical factor, interpatch distance, may determine the relative effectiveness of corridors and other landscape configurations, such as stepping stones, in reducing isolation in fragmented landscapes. When distances between patches are short compared to an animal's movement ability, a stepping stone approach may most effectively promote dispersal. Alternatively, the conservation value of corridors is highest relative to other habitat configurations when longer distances separate patches in fragmented landscapes.  相似文献   

14.
Abstract:  In the northeastern United States, pitch pine (  Pinus rigida Mill.)–scrub oak ( Quercus ilicifolia Wang.) communities are increasingly threatened by development and fire suppression, and prioritization of these habitats for conservation is of critical importance. As a basis for local conservation planning in a pitch pine–scrub oak community in southeastern Massachusetts, we developed logistic-regression models based on multiscale landscape and patch variables to predict hotspots of rare and declining bird and moth species. We compared predicted moth distributions with observed species-occurrence records to validate the models. We then quantified the amount of overlap between hotspots to assess the utility of rare birds and moths as indicator taxa. Species representation in hotspots and the current level of hotspot protection were also assessed. Predictive models included variables at all measured scales and resulted in average correct classification rates (optimal cut point) of 85.6% and 89.2% for bird and moth models, respectively. The majority of moth occurrence records were within 100 m of predicted habitat. Only 13% of all bird hotspots and 10% of all moth hotspots overlapped, and only a few small patches in and around Myles Standish State Forest were predicted to be hotspots for both taxa. There was no correlation between the bird and moth species-richness maps across all levels of richness ( r =−0.03, p = 0.62). Species representation in hotspots was high, but most hotspots had limited or no protection. Given the lack of correspondence between bird and moth hotspots, our results suggest that use of species-richness indicators for conservation planning may be ineffective at local scales. Based on these results, we suggest that local-level conservation planning in pitch pine–scrub oak communities be based on multitaxa, multiscale approaches.  相似文献   

15.
A growing number of programs seek to facilitate species conservation using incentive-based mechanisms. Recently, a market-based incentive program for the federally endangered Golden-cheeked Warbler (Dendroica chrysoparia) was implemented on a trial basis at Fort Hood, an Army training post in Texas, USA. Under this program, recovery credits accumulated by Fort Hood through contracts with private landowners are used to offset unintentional loss of breeding habitat of Golden-cheeked Warblers within the installation. Critical to successful implementation of such programs is the ability to value, in terms of changes to overall species viability, both habitat loss and habitat restoration or protection. In this study, we sought to answer two fundamental questions: Given the same amount of change in breeding habitat, does the change in some patches have a greater effect on metapopulation persistence than others? And if so, can characteristics of a patch (e.g., size or spatial location) be used to predict how the metapopulation will respond to these changes? To answer these questions, we describe an approach for using sensitivity analysis of a metapopulation projection model to predict how changes to specific habitat patches would affect species viability. We used a stochastic, discrete-time projection model based on stage-specific estimates of survival and fecundity, as well as various assumptions about dispersal among populations. To assess a particular patch's leverage, we quantified how much metapopulation viability was expected to change in response to changing the size of that patch. We then related original patch size and distance from the largest patch to each patch's leverage to determine if general patch characteristics could be used to develop guidelines for valuing changes to patches within a metapopulation. We found that both the characteristic that best predicted patch leverage and the magnitude of the relationship changed under different model scenarios. Thus, we were unable to find a consistent set of relationships, and therefore we emphasize the dangers in relying on general guidelines to assess patch value. Instead, we provide an approach that can be used to quantitatively evaluate patch value and identify critical needs for future research.  相似文献   

16.
Because of the dynamic nature of many managed habitats, proper evaluation of conservation efforts calls for models that take into account both spatial and temporal habitat dynamics. We develop a metapopulation model for successional-type systems, in which habitat quality changes over time in a predictable fashion. The occupancy and recruitment of the predatory saproxylic (dependent on dead wood) beetle Harminius undulatus was studied in a managed boreal forest landscape, covering 24,449 ha, in central Sweden. In a first step, we analyzed the beetle's occupancy pattern in relation to stand characteristics, and the amounts of present and past habitat in the surrounding landscape. Managed forest is suitable habitat when > or =60 years old, and immediately after cutting, but not between the ages of 10 and 60 years. The observed occupancy of H. undulatus was positively correlated with the stand's age as habitat. We used a metapopulation model to predict the current probability of occurrence in each forest stand, given the spatiotemporal distribution of suitable forest stands during the last 50 years. Metapopulation parameters were estimated by matching predicted spatial distributions with observed spatial distributions. The model predicted observed spatial distributions better than a similar model that assumed constant habitat quality of each forest stand. Thus, metapopulation models for successional-type systems, such as dead wood dependent organisms in managed forest landscapes, should include habitat dynamics. An estimated 82% of the landscape-wide recruitment took place in managed stands, which covered 87% of the forest area, in comparison with 18% in unmanaged stands, which covered 13% of the forest area. Among the managed stand types, > or =60-year-old stands and 3-7-year-old clear-cuttings contributed to 79% of the total recruitment while 8-59-year-old stands only contributed 3%. The results suggest the following guidelines to improve conditions for H. undulatus and other species with similar habitat requirements: (1) the proportion of the landscape constituted by younger stands should not be allowed to grow too large, (2) the rotation period of managed stands should not be allowed to be too short, and (3) dead wood should be retained and created at final cutting.  相似文献   

17.
The survival of many species in human-dominated, fragmented landscapes depends on metapopulation dynamics, i.e., on a dynamic equilibrium of extinctions and colonizations in patches of suitable habitat. To understand and predict distributional changes, knowledge of these dynamics can be essential, and for this, metapopulation studies are preferably based on long-time-series data from many sites. Alas, such data are very scarce. An alternative is to use opportunistic data (i.e., collected without applying standardized field methods), but these data suffer from large variations in field methods and search intensity between sites and years. Dynamic site-occupancy models offer a general approach to adjust for variable survey effort. These models extend classical metapopulation models to account for imperfect detection of species and yield estimates of the probabilities of occupancy, colonization, and survival of species at sites. By accounting for detection, they fully correct for among-year variability in search effort. As an illustration, we fitted a dynamic site-occupancy model to 60 years of presence-absence data (more precisely, detection-nondetection) of the heathland butterfly Hipparchia semele in The Netherlands. Detection records were obtained from a database containing volunteer-based data from 1950-2009, and nondetection records were deduced from database records of other butterfly species. Our model revealed that metapopulation dynamics of Hipparchia had changed decades before the species' distribution began to contract. Colonization probability had already started to decline from 1950 onward, but this was counterbalanced by an increase in the survival of existing populations, the result of which was a stable distribution. Only from 1990 onward was survival not sufficient to compensate for the further decrease of colonization, and occupancy started to decline. Hence, it appears that factors acting many decades ago triggered a change in the metapopulation dynamics of this species, which ultimately led to a severe decline in occupancy that only became apparent much later. Our study emphasizes the importance of knowledge of changes in survival and colonization of species in modern landscapes over a very long time scale. It also demonstrates the power of site-occupancy modeling to obtain important population dynamics information from databases containing opportunistic sighting records.  相似文献   

18.
19.
Habitat fragmentation is expected to impose strong selective pressures on dispersal rates. However, evolutionary responses of dispersal are not self-evident, since various selection pressures act in opposite directions. Here we disentangled the components of dispersal behavior in a metapopulation context using the Virtual Migration model, and we linked their variation to habitat fragmentation in the specialist butterfly Proclossiana eunomia. Our study provided a nearly unique opportunity to study how habitat fragmentation modifies dispersal at the landscape scale, as opposed to microlandscapes or simulation studies. Indeed, we studied the same species in four landscapes with various habitat fragmentation levels, in which large amounts of field data were collected and analyzed using similar methodologies. We showed the existence of quantitative variations in dispersal behavior correlated with increased fragmentation. Dispersal propensity from habitat patches (for a given patch size), and mortality during dispersal (for a given patch connectivity) were lower in more fragmented landscapes. We suggest that these were the consequences of two different evolutionary responses of dispersal behavior at the individual level: (1) when fragmentation increased, the reluctance of individuals to cross habitat patch boundaries also increased; (2) when individuals dispersed, they flew straighter in the matrix, which is the best strategy to improve dispersal success. Such evolutionary responses could generate complex nonlinear patterns of dispersal changes at the metapopulation level according to habitat fragmentation. Due to the small size and increased isolation of habitat patches in fragmented landscapes, overall emigration rate and mortality during dispersal remained high. As a consequence, successful dispersal at the metapopulation scale remained limited. Therefore, to what extent the selection of individuals with a lower dispersal propensity and a higher survival during dispersal is able to limit detrimental effects of habitat fragmentation on dispersal success is unknown, and any conclusion that metapopulations would compensate for them is flawed.  相似文献   

20.
The Application of Neutral Landscape Models in Conservation Biology   总被引:14,自引:0,他引:14  
Neutral landscape models, derived from percolation theory in the field of landscape ecology, are grid-based maps in which complex habitat distributions are generated by random or fractal algorithms. This grid-based representation of landscape structure is compatible with the raster-based format of geographical information systems (GIS), which facilitates comparisons between theoretical and real landscapes. Neutral landscape models permit the identification of critical thresholds in connectivity, which can be used to predict when landscapes will become fragmented. The coupling of neutral landscape models with generalized population models, such as metapopulation theory, provides a null model for generating predictions about population dynamics in fragmented landscapes. Neutral landscape models can contribute to the following applications in conservation: (1) incorporation of complex spatial patterns in (meta)population models; (2) identification of species' perceptions of landscape structure; (3) determination of landscape connectivity; (4) evaluation of the consequences of habitat fragmentation for population subdivision; (5) identification of the domain of metapopulation dynamics; (6) prediction of the occurrence of extinction thresholds; ( 7) determination of the genetic consequences of habitat fragmentation; and (8) reserve design and ecosystem management. This generalized, spatially explicit framework bridges the gap between spatially implicit, patch-based models and spatially realistic GIS applications which are usually parameterized for a single species in a specific landscape. Development of a generalized, spatially explicit framework is essential in conservation biology because we will not be able to develop individual models for every species of management concern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号