首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The removal, alteration and fragmentation of habitat in many parts of the world has led to a loss of biodiversity. Within the prevailing societal limitations the process is not easily reversed. Attempts are being made to minimise the fragmentation of remaining habitat by strategically reversing or managing habitat loss. Although their relative usefulness is a topic of debate among ecologists, habitat corridors are seen as one way of maintaining spatially dependent ecological processes within landscapes where habitat has been seriously depleted. Corridors can only be effective if they significantly contribute to the species sustaining processes of gene flow, resource access or the colonisation of vacant patches. We present a spatial habitat modelling methodology for evaluating the contribution and potential contribution of connecting paths to landscape connectivity. We have developed the spatial links tool (SLT), which maps link value across a region. The SLT combines connectivity measures from metapopulation ecology with the least cost path algorithm from graph theory, and can be applied to continuously variable landscape data. Combined with expert judgement, link value maps can be used to delineate habitat corridors. The approach capitalises on some synergies between ecological relevance and computational efficiency to produce an easily applied heuristic tool that has been successfully applied in NSW Australia.  相似文献   

2.
Habitat corridors are important tools for maintaining connectivity in increasingly fragmented landscapes, but generally they have been considered in single‐species approaches. Corridors intended to facilitate the movement of multiple species could increase persistence of entire communities, but at the likely cost of being less efficient for any given species than a corridor intended specifically for that species. There have been few tests of the trade‐offs between single‐ and multispecies corridor approaches. We assessed single‐species and multispecies habitat corridors for 5 threatened mammal species in tropical forests of Borneo. We generated maps of the cost of movement across the landscape for each species based on the species’ local abundance as estimated through hierarchical modeling of camera‐trap data with biophysical and anthropogenic covariates. Elevation influenced local abundance of banded civets (Hemigalus derbyanus) and sun bears (Helarctos malayanus). Increased road density was associated with lower local abundance of Sunda clouded leopards (Neofelis diardi) and higher local abundance of sambar deer (Rusa unicolor). Pig‐tailed macaque (Macaca nemestrina) local abundance was lower in recently logged areas. An all‐species‐combined connectivity scenario with least‐cost paths and 1 km buffers generated total movement costs that were 27% and 23% higher for banded civets and clouded leopards, respectively, than the connectivity scenarios for those species individually. A carnivore multispecies connectivity scenario, however, increased movement cost by 2% for banded civets and clouded leopards. Likewise, an herbivore multispecies scenario provided more effective connectivity than the all‐species‐combined scenario for sambar and macaques. We suggest that multispecies habitat connectivity plans be tailored to groups of ecologically similar, disturbance‐sensitive species to maximize their effectiveness. Evaluación de la Conectividad de Terrenos Multiespecie en una Comunidad Tropical de Mamíferos  相似文献   

3.
Centrality metrics evaluate paths between all possible pairwise combinations of sites on a landscape to rank the contribution of each site to facilitating ecological flows across the network of sites. Computational advances now allow application of centrality metrics to landscapes represented as continuous gradients of habitat quality. This avoids the binary classification of landscapes into patch and matrix required by patch-based graph analyses of connectivity. It also avoids the focus on delineating paths between individual pairs of core areas characteristic of most corridor- or linkage-mapping methods of connectivity analysis. Conservation of regional habitat connectivity has the potential to facilitate recovery of the gray wolf (Canis lupus), a species currently recolonizing portions of its historic range in the western United States. We applied 3 contrasting linkage-mapping methods (shortest path, current flow, and minimum-cost-maximum-flow) to spatial data representing wolf habitat to analyze connectivity between wolf populations in central Idaho and Yellowstone National Park (Wyoming). We then applied 3 analogous betweenness centrality metrics to analyze connectivity of wolf habitat throughout the northwestern United States and southwestern Canada to determine where it might be possible to facilitate range expansion and interpopulation dispersal. We developed software to facilitate application of centrality metrics. Shortest-path betweenness centrality identified a minimal network of linkages analogous to those identified by least-cost-path corridor mapping. Current flow and minimum-cost-maximum-flow betweenness centrality identified diffuse networks that included alternative linkages, which will allow greater flexibility in planning. Minimum-cost-maximum-flow betweenness centrality, by integrating both land cost and habitat capacity, allows connectivity to be considered within planning processes that seek to maximize species protection at minimum cost. Centrality analysis is relevant to conservation and landscape genetics at a range of spatial extents, but it may be most broadly applicable within single- and multispecies planning efforts to conserve regional habitat connectivity.  相似文献   

4.
Abstract:  Because of widespread habitat fragmentation, maintenance of landscape connectivity has become a major focus of conservation planning, but empirical tests of animal movement in fragmented landscapes remain scarce. We conducted a translocation experiment to test the relative permeability of three landscape elements (open habitat, shrubby secondary vegetation, and wooded corridors) to movement by the Chucao Tapaculo ( Scelorchilus rubecula ), a forest understory bird endemic to South American temperate rainforest. Forty-one radio-tagged subjects were translocated (individually) to three landscape treatments consisting of small release patches that were either entirely surrounded by open habitat (pasture), entirely surrounded by dense shrubs, or linked to other patches by wooded corridors that were otherwise surrounded by open matrix. The number of days subjects remained in release patches before dispersal (a measure of habitat resistance) was significantly longer for patches surrounded by open habitat than for patches adjoining corridors or surrounded by dense shrubs. These results indicate that open habitat significantly constrains Chucao dispersal, in accord with expectation, but dispersal occurs equally well through wooded corridors and shrub-dominated matrix. Thus, corridor protection or restoration and management of vegetation in the matrix (to encourage animal movement) may be equally feasible alternatives for maintaining connectivity.  相似文献   

5.
Evaluating the Effectiveness of Corridors: a Genetic Approach   总被引:9,自引:0,他引:9  
Abstract: The effectiveness of corridors in maintaining dispersal in fragmented landscapes is a question of considerable conservation and ecological importance. We tested the efficacy of corridors as residual landscape structures in maintaining population structure in the red-backed vole ( Clethrionomys gapperi ), a closed-canopy specialist, and the deer mouse (   Peromyscus maniculatus ), a habitat generalist. In coniferous forests managed for timber production in northeastern Washington, we sampled pairs of populations in three landscape classes: (1) contiguous landscapes, in which sites were located completely within a matrix of closed-canopy forest; (2) corridor landscapes, in which sites were connected by a corridor of closed-canopy forest; and (3) isolated landscapes, in which sites were separated from one another by clearcut or young regeneration stands. For each species, we used four microsatellite loci to quantify genetic distance between population pairs. Nei's genetic distance (   D s  ) increased from smallest to largest in the order of contiguous, corridor, and isolated landscapes for C. gapperi. For P. maniculatus, genetic distances across landscape configurations were not significantly different. The differences between the two species indicate that they respond differently to the presence of forest corridors. In managed forests, corridors between unlogged habitats appear to maintain higher population connectivity for C. gapperi than landscapes without corridors.  相似文献   

6.
Abstract: Corridors have been proposed to reduce isolation and increase population persistence in fragmented landscapes, yet little research has evaluated the types of landscapes in which corridors will be most effective. I tested the hypothesis that corridors increase patch colonization by a butterfly, Junonia coenia , regardless of the butterfly's initial distance from a patch. I chose J. coenia because it has been shown to move between patches preferentially through corridors. Individuals were released 16–192 m away from open experimental patches into adjacent open corridors or forest. Neither corridors nor distance had a significant effect on patch colonization, but there was a significant interaction between the presence or absence of corridors and distance. At small distances (16–64 m), J. coenia was more likely to colonize open patches when released within forest than within open corridors, most likely because J. coenia used corridors as habitat. Nevertheless, patch colonization by butterflies released within forest decreased rapidly as distance from patches increased, as predicted by a null model of random movement. Colonization did not change with distance in the corridor, and at long distances (128–192 m), butterflies released in corridors were twice as likely to colonize open patches as those released in forest. These results suggest that one critical factor, interpatch distance, may determine the relative effectiveness of corridors and other landscape configurations, such as stepping stones, in reducing isolation in fragmented landscapes. When distances between patches are short compared to an animal's movement ability, a stepping stone approach may most effectively promote dispersal. Alternatively, the conservation value of corridors is highest relative to other habitat configurations when longer distances separate patches in fragmented landscapes.  相似文献   

7.
McRae BH  Dickson BG  Keitt TH  Shah VB 《Ecology》2008,89(10):2712-2724
Connectivity among populations and habitats is important for a wide range of ecological processes. Understanding, preserving, and restoring connectivity in complex landscapes requires connectivity models and metrics that are reliable, efficient, and process based. We introduce a new class of ecological connectivity models based in electrical circuit theory. Although they have been applied in other disciplines, circuit-theoretic connectivity models are new to ecology. They offer distinct advantages over common analytic connectivity models, including a theoretical basis in random walk theory and an ability to evaluate contributions of multiple dispersal pathways. Resistance, current, and voltage calculated across graphs or raster grids can be related to ecological processes (such as individual movement and gene flow) that occur across large population networks or landscapes. Efficient algorithms can quickly solve networks with millions of nodes, or landscapes with millions of raster cells. Here we review basic circuit theory, discuss relationships between circuit and random walk theories, and describe applications in ecology, evolution, and conservation. We provide examples of how circuit models can be used to predict movement patterns and fates of random walkers in complex landscapes and to identify important habitat patches and movement corridors for conservation planning.  相似文献   

8.
Understanding mechanisms influencing the movement paths of animals is essential for comprehending behavior and accurately predicting use of travel corridors. In Yellowstone National Park (USA), the effects of roads and winter road grooming on bison (Bison bison) travel routes and spatial dynamics have been debated for more than a decade. However, no rigorous studies have been conducted on bison spatial movement patterns. We collected 121 380 locations from 14 female bison with GPS collars in central Yellowstone to examine how topography, habitat type, roads, and elevation affected the probability of bison travel year-round. We also conducted daily winter bison road use surveys (2003-2005) to quantify how topography and habitat type influenced spatial variability in the amount of bison road travel. Using model comparison techniques, we found the probability of bison travel and spatial distribution of travel locations were affected by multiple topographic and habitat type attributes including slope, landscape roughness, habitat type, elevation, and distances to streams, foraging areas, forested habitats, and roads. Streams were the most influential natural landscape feature affecting bison travel, and results suggest the bison travel network throughout central Yellowstone is spatially defined largely by the presence of streams that connect foraging areas. Also, the probability of bison travel was higher in regions of variable topography that constrain movements, such as in canyons. Pronounced travel corridors existed both in close association with roads and distant from any roads, and results indicate that roads may facilitate bison travel in certain areas. However, our findings suggest that many road segments used as travel corridors are overlaid upon natural travel pathways because road segments receiving high amounts of bison travel had similar landscape features as natural travel corridors. We suggest that most spatial patterns in bison road travel are a manifestation of general spatial travel trends. Our research offers novel insights into bison spatial dynamics and provides conceptual and analytical frameworks for examining movement patterns of other species.  相似文献   

9.
Wildlife corridors aim to promote species’ persistence by connecting habitat patches across fragmented landscapes. Their implementation is limited by patterns of land ownership and complicated by differences in the jurisdictional and regulatory authorities under which lands are managed. Terrestrial corridor conservation requires coordination across jurisdictions and sectors subject to site-specific overlapping sources of legal authority. Mapping spatial patterns of legal authority concurrent with habitat condition can illustrate opportunities to build or leverage capacity for connectivity conservation. Streamside areas provide pragmatic opportunities to leverage existing policy mechanisms for riverine and terrestrial habitat connectivity across boundaries. Conservation planners and practitioners can make use of these opportunities by harmonizing actions for multiple conservation outcomes. We formulated an integrative, data-driven method for mapping multiple sources of legal authority weighted by capacity for coordinating terrestrial habitat conservation along streams. We generated a map of capacity to coordinate streamside corridor protections across a wildlife habitat gap to demonstrate this approach. We combined values representing coordination capacity and naturalness to generate an integrated legal-ecological resistance map for connectivity modeling. We then computed least-cost corridors across the integrated map, masking the terrestrial landscape to focus on streamside areas. Streamside least-cost corridors in the integrated, local-scale model diverged (∼25 km) from national-scale least-cost corridors based on naturalness. Spatial categories comparing legal- and naturalness-based resistance values by stream reach highlighted potential locations for building or leveraging existing capacity through spatial coordination of policy mechanisms or restoration actions. Agencies or nongovernmental organizations intending to restore or maintain habitat connectivity across fragmented landscapes can use this approach to inform spatial prioritization and build coordination capacity. Article impact statement: Combined mapping of legal authority and habitat condition reveals capacity to coordinate actions along streams for clean water and wildlife.  相似文献   

10.
Circuit-theory applications to connectivity science and conservation   总被引:1,自引:0,他引:1  
Conservation practitioners have long recognized ecological connectivity as a global priority for preserving biodiversity and ecosystem function. In the early years of conservation science, ecologists extended principles of island biogeography to assess connectivity based on source patch proximity and other metrics derived from binary maps of habitat. From 2006 to 2008, the late Brad McRae introduced circuit theory as an alternative approach to model gene flow and the dispersal or movement routes of organisms. He posited concepts and metrics from electrical circuit theory as a robust way to quantify movement across multiple possible paths in a landscape, not just a single least-cost path or corridor. Circuit theory offers many theoretical, conceptual, and practical linkages to conservation science. We reviewed 459 recent studies citing circuit theory or the open-source software Circuitscape. We focused on applications of circuit theory to the science and practice of connectivity conservation, including topics in landscape and population genetics, movement and dispersal paths of organisms, anthropogenic barriers to connectivity, fire behavior, water flow, and ecosystem services. Circuit theory is likely to have an effect on conservation science and practitioners through improved insights into landscape dynamics, animal movement, and habitat-use studies and through the development of new software tools for data analysis and visualization. The influence of circuit theory on conservation comes from the theoretical basis and elegance of the approach and the powerful collaborations and active user community that have emerged. Circuit theory provides a springboard for ecological understanding and will remain an important conservation tool for researchers and practitioners around the globe.  相似文献   

11.
Understanding the processes leading to population declines in fragmented landscapes is essential for successful conservation management. However, isolating the influence of disparate processes, and dispersal in particular, is challenging. The Grey Shrike-thrush, Colluricincla harmonica, is a sedentary woodland-dependent songbird, with learned vocalizations whose incidence in suitable habitat patches falls disproportionally with decline in tree cover in the landscape. Although it has been suggested that gaps in tree cover might act as barriers to its dispersal, the species remains in many remnants of native vegetation in agricultural landscapes, suggesting that it may have responded to habitat removal and fragmentation by maintaining or even increasing dispersal distances. We quantified population connectivity of the Grey Shrike-thrush in a system fragmented over more than 120 years using genetic (microsatellites) and acoustic (song types) data. First, we tested for population genetic and acoustic structure at regional and local scales in search of barriers to dispersal or gene flow and signals of local spatial structuring indicative of restricted dispersal or localized acoustic similarity. Then we tested for effects of habitat loss and fragmentation on genetic and acoustic connectivity by fitting alternative models of mobility (isolation-by-distance [the null model] and reduced and increased movement models) across treeless vs. treed areas. Birds within -5 km of each other had more similar genotypes and song types than those farther away, suggesting that dispersal and song matching are limited in the region. Despite restricted dispersal detected for females (but not males), populations appeared to be connected by gene flow and displayed some cultural (acoustic) connectivity across the region. Fragmentation did not appear to impact greatly the dispersal of the Grey Shrike-thrush: none of the mobility models fit the genetic distances of males, whereas for females, an isolation-by-distance model could not be rejected in favor of the models of reduced or increased movement through treeless gaps. However, dissimilarities of the song types were more consistent with the model of reduced cultural connectivity through treeless areas, suggesting that fragmentation impedes song type sharing in the Grey Shrike-thrush. Our paper demonstrates that habitat fragmentation hinders important population processes in an Australian woodland bird even though its dispersal is not detectably impacted.  相似文献   

12.
Landscape corridors, strips of habitat that connect otherwise isolated habitat patches, are commonly employed during management of fragmented landscapes. To date, most reported effects of corridors have been positive; however, there are long-standing concerns that corridors may have unintended consequences. Here, we address concerns over whether corridors promote propagation of disturbances such as fire. We collected data during prescribed fires in the world's largest and best replicated corridor experiment (Savannah River Site, South Carolina, USA), six -50-ha landscapes of open (shrubby/herbaceous) habitat within a pine plantation matrix, to test several mechanisms for how corridors might influence fire. Corridors altered patterns of fire temperature through a direct connectivity effect and an indirect edge effect. The connectivity effect was independent of fuel levels and was consistent with a hypothesized wind-driven "bellows effect." Edges, a consequence of corridor implementation, elevated leaf litter (fuel) input from matrix pine trees, which in turn increased fire temperatures. We found no evidence for corridors or edges impacting patterns of fire spread: plots across all landscape positions burned with similar probability. Impacts of edges and connectivity on fire temperature led to changes in vegetation: hotter-burning plots supported higher bunch grass cover during the field season after burning, suggesting implications for woody/herbaceous species coexistence. To our knowledge, this represents the first experimental evidence that corridors can modify landscape-scale patterns of fire intensity. Corridor impacts on fire should be carefully considered during landscape management, both in the context of how corridors connect or break distributions of fuels and the desired role of fire as a disturbance, which may range from a management tool to an agent to be suppressed. In our focal ecosystem, longleaf pine woodland, corridors might provide a previously unrecognized benefit during prescribed burning activities, by promoting fire intensity, which may assist in promoting plant biodiversity.  相似文献   

13.
Spatially explicit population models (SEPMs) are often considered the best way to predict and manage species distributions in spatially heterogeneous landscapes. However, they are computationally intensive and require extensive knowledge of species' biology and behavior, limiting their application in many cases. An alternative to SEPMs is graph theory, which has minimal data requirements and efficient algorithms. Although only recently introduced to landscape ecology, graph theory is well suited to ecological applications concerned with connectivity or movement. This paper compares the performance of graph theory to a SEPM in selecting important habitat patches for Wood Thrush (Hylocichla mustelina) conservation. We use both models to identify habitat patches that act as population sources and persistent patches and also use graph theory to identify patches that act as stepping stones for dispersal. Correlations of patch rankings were very high between the two models. In addition, graph theory offers the ability to identify patches that are very important to habitat connectivity and thus long-term population persistence across the landscape. We show that graph theory makes very similar predictions in most cases and in other cases offers insight not available from the SEPM, and we conclude that graph theory is a suitable and possibly preferable alternative to SEPMs for species conservation in heterogeneous landscapes.  相似文献   

14.
Effectiveness of Corridors Relative to Enlargement of Habitat Patches   总被引:1,自引:0,他引:1  
Abstract:  The establishment of biological corridors between two otherwise isolated habitat patches is a common yet contentious strategy for conserving populations in fragmented landscapes. We compared the effectiveness of corridors with the effectiveness of an alternate conservation strategy, the enlargement of existing habitat patches. We used a spatially explicit population model that simulated population size in two kinds of patches. One patch had a corridor that connected it to a larger "source" patch and the other patch was unconnected and enlarged at the periphery by an area the same size as the corridor. Patch isolation, corridor width, patch size, and the probability that individuals would cross the border from habitat to matrix were varied independently. In general, population size was greater in enlarged patches than in connected patches when patches were relatively large and isolated. Corridor width and the probability of crossing the border from habitat to matrix did not affect the relative benefit of corridors versus patch enlargement. Although biological corridors may mitigate potential effects of inbreeding depression at long time scales, our results suggest that they are not always the best method of conserving fragmented populations.  相似文献   

15.
The isolation of habitat patches is often cited as having a major impact on the dynamics of small populations occupying patches in a complex landscape. Few studies, however, have provided field data demonstrating that isolation has an identifiable effect on specific populations independent of other factors such as local habitat quality or that landscape factors such as corridors can alleviate such effects. We conducted field surveys of Bachman's Sparrow ( Aimophila aestivalis ) populations in regions, which we call linear landscapes, where suitable habitat patches were isolated to varying degrees from potential sources of dispersing birds. In these linear landscapes, isolated patches of habitat were less likely to be colonized than were nonisolated patches. We also found that corridor configurations of habitat patches improved the ability of sparrows to find and settle in newly created patches. These results suggest that, for species that do not disperse easily through inhospitable landscapes, habitat occupancy at a regional scale can be enhanced by careful landscape design and planning.  相似文献   

16.
Abstract:  Security infrastructure along international boundaries threatens to degrade connectivity for wildlife. To explore potential effects of a fence under construction along the U.S.–Mexico border on wildlife, we assessed movement behavior of two species with different life histories whose regional persistence may depend on transboundary movements. We used radiotelemetry to assess how vegetation and landscape structure affect flight and natal dispersal behaviors of Ferruginous Pygmy-Owls ( Glaucidium brasilianum ), and satellite telemetry, gene-flow estimates, and least-cost path models to assess movement behavior and interpopulation connectivity of desert bighorn sheep ( Ovis canadensis mexicana ). Flight height of Pygmy-Owls averaged only 1.4 m (SE 0.1) above ground, and only 23% of flights exceeded 4 m. Juvenile Pygmy-Owls dispersed at slower speeds, changed direction more, and had lower colonization success in landscapes with larger vegetation openings or higher levels of disturbance ( p ≤ 0.047), which suggests large vegetation gaps coupled with tall fences may limit transboundary movements. Female bighorn sheep crossed valleys up to 4.9 km wide, and microsatellite analyses indicated relatively high levels of gene flow and migration (95% CI for FST= 0.010–0.115, Nm = 1.9–24.8, M = 10.4–15.4) between populations divided by an 11-km valley. Models of gene flow based on regional topography and movement barriers suggested that nine populations of bighorn sheep in northwestern Sonora are linked by dispersal with those in neighboring Arizona. Disruption of transboundary movement corridors by impermeable fencing would isolate some populations on the Arizona side. Connectivity for other species with similar movement abilities and spatial distributions may be affected by border development, yet mitigation strategies could address needs of wildlife and humans.  相似文献   

17.
Increasing connectivity is an important strategy for facilitating species range shifts and maintaining biodiversity in the face of climate change. To date, however, few researchers have included future climate projections in efforts to prioritize areas for increasing connectivity. We identified key areas likely to facilitate climate‐induced species’ movement across western North America. Using historical climate data sets and future climate projections, we mapped potential species’ movement routes that link current climate conditions to analogous climate conditions in the future (i.e., future climate analogs) with a novel moving‐window analysis based on electrical circuit theory. In addition to tracing shifting climates, the approach accounted for landscape permeability and empirically derived species’ dispersal capabilities. We compared connectivity maps generated with our climate‐change‐informed approach with maps of connectivity based solely on the degree of human modification of the landscape. Including future climate projections in connectivity models substantially shifted and constrained priority areas for movement to a smaller proportion of the landscape than when climate projections were not considered. Potential movement, measured as current flow, decreased in all ecoregions when climate projections were included, particularly when dispersal was limited, which made climate analogs inaccessible. Many areas emerged as important for connectivity only when climate change was modeled in 2 time steps rather than in a single time step. Our results illustrate that movement routes needed to track changing climatic conditions may differ from those that connect present‐day landscapes. Incorporating future climate projections into connectivity modeling is an important step toward facilitating successful species movement and population persistence in a changing climate.  相似文献   

18.
The Application of Neutral Landscape Models in Conservation Biology   总被引:14,自引:0,他引:14  
Neutral landscape models, derived from percolation theory in the field of landscape ecology, are grid-based maps in which complex habitat distributions are generated by random or fractal algorithms. This grid-based representation of landscape structure is compatible with the raster-based format of geographical information systems (GIS), which facilitates comparisons between theoretical and real landscapes. Neutral landscape models permit the identification of critical thresholds in connectivity, which can be used to predict when landscapes will become fragmented. The coupling of neutral landscape models with generalized population models, such as metapopulation theory, provides a null model for generating predictions about population dynamics in fragmented landscapes. Neutral landscape models can contribute to the following applications in conservation: (1) incorporation of complex spatial patterns in (meta)population models; (2) identification of species' perceptions of landscape structure; (3) determination of landscape connectivity; (4) evaluation of the consequences of habitat fragmentation for population subdivision; (5) identification of the domain of metapopulation dynamics; (6) prediction of the occurrence of extinction thresholds; ( 7) determination of the genetic consequences of habitat fragmentation; and (8) reserve design and ecosystem management. This generalized, spatially explicit framework bridges the gap between spatially implicit, patch-based models and spatially realistic GIS applications which are usually parameterized for a single species in a specific landscape. Development of a generalized, spatially explicit framework is essential in conservation biology because we will not be able to develop individual models for every species of management concern.  相似文献   

19.
The Amur tiger (Panthera tigris altaica) is a flagship species of the boreal forest ecosystem in northeastern China and Russia Far East. During the past century, the tiger population has declined sharply from more than 3000 to fewer than 600 individuals, and its habitat has become much smaller and greatly fragmented. Poaching, habitat degradation, habitat loss, and habitat fragmentation have been widely recognized as the primary causes for the observed population decline. Using a population viability analysis tool (RAMAS/GIS), we simulated the effects of poaching, habitat degradation, habitat loss, and habitat fragmentation on the population dynamics and extinction risk of the Amur tiger, and then explored the relative effectiveness of three conservation strategies involving improving habitat quality and establishing movement corridors in China and Russia. A series of controlled simulation experiments were performed based on the current spatial distribution of habitat and field-observed vital rates. Our results showed that the Amur tiger population could be viable for the next 100 years if the current habitat area and quality were well-maintained, with poaching strictly prohibited of the tigers and their main prey species. Poaching and habitat degradation (mainly prey scarcity) had the largest negative impacts on the tiger population persistence. While the effect of habitat loss was also substantial, habitat fragmentation per se had less influence on the long-term fate of the tiger population. However, to sustain the subpopulations in both Russia and China would take much greater conservation efforts. The viability of the Chinese population of tigers would rely heavily on its connectivity with the largest patch on the other side of the border. Improving the habitat quality of small patches only or increasing habitat connectivity through movement corridors alone would not be enough to guarantee the long-term population persistence of the Amur tiger in both Russia and China. The only conservation strategy that allowed for long-term persistence of tigers in both countries required both the improvement of habitat quality and the establishment of a transnational reserve network. Our study provides new insights into the metapopulation dynamics and persistence of the Amur tiger, which should be useful in landscape and conservation planning for protecting the biggest cat species in the world.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号