首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subsistence hunting presents a conservation challenge by which biodiversity preservation must be balanced with safeguarding of human livelihoods. Globally, subsistence hunting threatens primate populations, including Madagascar's endemic lemurs. We used population viability analysis to assess the sustainability of lemur hunting in Makira Natural Park, Madagascar. We identified trends in seasonal hunting of 11 Makira lemur species from household interview data, estimated local lemur densities in populations adjacent to focal villages via transect surveys, and quantified extinction vulnerability for these populations based on species-specific demographic parameters and empirically derived hunting rates. We compared stage-based Lefkovitch with periodic Leslie matrices to evaluate the impact of regional dispersal on persistence trajectories and explored the consequences of perturbations to the timing of peak hunting relative to the lemur birth pulse, under assumptions of density-dependent reproductive compensation. Lemur hunting peaked during the fruit-abundant wet season (March–June). Estimated local lemur densities were roughly inverse to body size across our study area. Life-history modeling indicated that hunting most severely threatened the species with the largest bodies (i.e., Hapalemur occidentalis, Avahi laniger, Daubentonia madagascariensis, and Indri indi), characterized by late-age reproductive onsets and long interbirth intervals. In model simulations, lemur dispersal within a regional metapopulation buffered extinction threats when a majority of local sites supported growth rates above the replacement level but drove regional extirpations when most local sites were overharvested. Hunt simulations were most detrimental when timed to overlap lemur births (a reality for D. madagascariensis and I. indri). In sum, Makira lemurs were overharvested. Regional extirpations, which may contribute to broad-scale extinctions, will be likely if current hunting rates persist. Cessation of anthropogenic lemur harvest is a conservation priority, and development programs are needed to help communities switch from wildlife consumption to domestic protein alternatives.  相似文献   

2.
Animal‐mediated seed dispersal is important for sustaining biological diversity in forest ecosystems, particularly in the tropics. Forest fragmentation, hunting, and selective logging modify forests in myriad ways and their effects on animal‐mediated seed dispersal have been examined in many case studies. However, the overall effects of different types of human disturbance on animal‐mediated seed dispersal are still unknown. We identified 35 articles that provided 83 comparisons of animal‐mediated seed dispersal between disturbed and undisturbed forests; all comparisons except one were conducted in tropical or subtropical ecosystems. We assessed the effects of forest fragmentation, hunting, and selective logging on seed dispersal of fleshy‐fruited tree species. We carried out a meta‐analysis to test whether forest fragmentation, hunting, and selective logging affected 3 components of animal‐mediated seed dispersal: frugivore visitation rate, number of seeds removed, and distance of seed dispersal. Forest fragmentation, hunting, and selective logging did not affect visitation rate and were marginally associated with a reduction in seed‐dispersal distance. Hunting and selective logging, but not fragmentation, were associated with a large reduction in the number of seeds removed. Fewer seeds of large‐seeded than of small‐seeded tree species were removed in hunted or selectively logged forests. A plausible explanation for the consistently negative effects of hunting and selective logging on large‐seeded plant species is that large frugivores, as the predominant seed dispersers for large‐seeded plant species, are the first animals to be extirpated from hunted or logged forests. The reduction in forest area after fragmentation appeared to have weaker effects on frugivore communities and animal‐mediated seed dispersal than hunting and selective logging. The differential effects of hunting and selective logging on large‐ and small‐seeded tree species underpinned case studies that showed disrupted plant‐frugivore interactions could trigger a homogenization of seed traits in tree communities in hunted or logged tropical forests. Meta Análisis de los Efectos de la Perturbación Humana sobre la Dispersión de Semillas por Animales  相似文献   

3.
Abstract: Subsistence hunting affects vast tracts of tropical wilderness that otherwise remain structurally unaltered, yet distinguishing hunted from nonhunted tropical forests presents a difficult problem because this diffuse form of resource extraction leaves few visible signs of its occurrence. I used a standardized series of line-transect censuses conducted over a 10-year period to examine the effects of subsistence game harvest on the structure of vertebrate communities in 25 Amazonian forest sites subjected to varying levels of hunting pressure. Crude vertebrate biomass, which was highly correlated with hunting pressure, gradually declined from nearly 1200 kg km−2 at nonhunted sites to less than 200 kg km−2 at heavily hunted sites. Hunting had a negative effect on the total biomass and relative abundance of vertebrate species in different size classes at these forest sites, but it did not affect their overall density. In particular, persistent hunting markedly reduced the density of large-bodied game species (>5 kg), which contributed a large proportion of the overall community biomass at nonhunted sites (65–78%) and lightly hunted sites (55–71%). Nutrient-rich floodplain forests contained a consistently greater game biomass than nutrient-poor unflooded forests, once I controlled for the effects of hunting pressure. Conservative estimates of game yields indicate that as many as 23.5 million game vertebrates, equivalent to 89,224 tons of bushmeat with a market value of US$190.7 million, are consumed each year by the rural population of Brazilian Amazonia, which illustrates the enormous socioeconomic value of game resources in the region. My cross-site comparison documents the staggering effect of subsistence hunters on tropical forest vertebrate communities and highlights the importance of considering forest types and forest productivity in game management programs.  相似文献   

4.
Abstract: Understanding the spatial dimensions of hunting and prey population dynamics is important in order to estimate the sustainability of hunting in tropical forests. We investigated how hunting offtake of vertebrates differed in mixed forest and monodominant forest (composed of Gilbertiodendron dewevrei) and over different spatial extents within the hunting catchment around the logging town of Kabo, Congo. In 9 months of recall surveys with hunters, we gathered information on over 1500 hunting trips in which ungulates were 65% of the species killed and 82% of harvested biomass. Hunters supplied information on animals killed and the hunting trip, including the area visited (i.e., hunting zone; 11 separate zones within a 506 km2 catchment or commonly hunted area). Over 65% of all animals were killed in monodominant forest, which made up 28% of the hunting catchment, and zones with small amounts of monodominant forest were used most frequently by hunters. Given the large offtakes from monodominant forests, we suggest that animal dispersal may be maintaining high, localized harvests in these areas. We believe hunters preferred to hunt in monodominant forest because the understory was accessible and that areas with small amounts of monodominant forest and large amounts of mixed forest were more productive. The variation in hunting pressure we found between and within hunting zones differs from past examinations of spatial variation in hunting offtake, where entire hunting catchments were considered population sinks and areas with low to no hunting (no‐take zones) were outside hunting catchments. Future use of no‐take zones to manage hunting should incorporate variability in offtake within hunting catchments.  相似文献   

5.
Abstract: Subsistence game hunting has profound negative effects on the species diversity, standing biomass, and size structure of vertebrate assemblages in Amazonian forests that otherwise remain largely undisturbed. These effects are likely to be considerably aggravated by forest fragmentation because fragments are more accessible to hunters, allow no (or very low rates of  ) recolonization from nonharvested source populations, and may provide a lower-quality resource base for the frugivore-granivore vertebrate fauna. I examined the likelihood of midsized to large-bodied bird and mammal populations persisting in Amazonian forest fragments of variable sizes whenever they continue to be harvested by subsistence hunters in the aftermath of isolation. I used data from a comprehensive compilation of game-harvest studies throughout Neotropical forests to estimate the degree to which different species and populations have been overharvested and then calculated the range of minimum forest areas required to maintain a sustainable harvest. The size distribution of 5564 Amazonian forest fragments—estimated from Landsat images of six regions of southern and eastern Brazilian Amazonia—clearly shows that these are predominantly small and rarely exceed 10 ha, suggesting that persistent overhunting is likely to drive most midsized to large vertebrate populations to local extinction in fragmented forest landscapes. Although experimental studies on this negative synergism remain largely unavailable, the prospect that increasingly fragmented Neotropical forest regions can retain their full assemblages of avian and mammalian species is unlikely.  相似文献   

6.
Hunting and the Likelihood of Extinction of Amazonian Mammals   总被引:9,自引:0,他引:9  
Species inhabiting tropical forests are thought to be on the verge of mass extinction. Much work has focused on extinction rates caused by deforestation; however, many of the recorded extinctions that have occurred since 1600 were a result of overhunting. We collected data on the relative abundance of large-bodied mammals in the northeastern Peruvian Amazon in areas with persistent hunting pressure and in areas with infrequent hunting pressure. We quantified the effects of hunting by calculating the change in abundance of species between the infrequently and persistently hunted sites. We report that in Amazonian mammals weighing more than 1 kg the degree of population declines caused by hunting is correlated with the species' intrinsic rate of natural increase (rmax  ), longevity, and generation time. Our results show that species with long-lived individuals, low rates of increase, and long generation times are more vulnerable to extinction than species with short-lived individuals, high rates of increase, and shorter generations.  相似文献   

7.
Tree recruitment in an empty forest   总被引:3,自引:0,他引:3  
To assess how the decimation of large vertebrates by hunting alters recruitment processes in a tropical forest, we compared the sapling cohorts of two structurally and compositionally similar forests in the Rio Manu floodplain in southeastern Peru. Large vertebrates were severely depleted at one site, Boca Manu (BM), whereas the other, Cocha Cashu Biological Station (CC), supported an intact fauna. At both sites we sampled small (> or =1 m tall, <1 cm dbh) and large (> or =1 cm and <10 cm dbh) saplings in the central portion of 4-ha plots within which all trees > or =10 cm dbh were mapped and identified. This design ensured that all conspecific adults within at least 50 m (BM) or 55 m (CC) of any sapling would have known locations. We used the Janzen-Connell model to make five predictions about the sapling cohorts at BM with respect to CC: (1) reduced overall sapling recruitment, (2) increased recruitment of species dispersed by abiotic means, (3) altered relative abundances of species, (4) prominence of large-seeded species among those showing depressed recruitment, and (5) little or no tendency for saplings to cluster closer to adults at BM. Our results affirmed each of these predictions. Interpreted at face value, the evidence suggests that few species are demographically stable at BM and that up to 28% are increasing and 72% decreasing. Loss of dispersal function allows species dispersed abiotically and by small birds and mammals to substitute for those dispersed by large birds and mammals. Although we regard these conclusions as preliminary, over the long run, the observed type of directional change in tree composition is likely to result in biodiversity loss and negative feedbacks on both the animal and plant communities. Our results suggest that the best, and perhaps only, way to prevent compositional change and probable loss of diversity in tropical tree communities is to prohibit hunting.  相似文献   

8.
Abstract: Primates are regularly hunted for bushmeat in tropical forests, and systematic ecological monitoring can help determine the effect hunting has on these and other hunted species. Monitoring can also be used to inform law enforcement and managers of where hunting is concentrated. We evaluated the effects of law enforcement informed by monitoring data on density and spatial distribution of 8 monkey species in Taï National Park, Côte d’Ivoire. We conducted intensive surveys of monkeys and looked for signs of human activity throughout the park. We also gathered information on the activities of law‐enforcement personnel related to hunting and evaluated the relative effects of hunting, forest cover and proximity to rivers, and conservation effort on primate distribution and density. The effects of hunting on monkeys varied among species. Red colobus monkeys (Procolobus badius) were most affected and Campbell's monkeys (Cercopithecus campbelli) were least affected by hunting. Density of monkeys irrespective of species was up to 100 times higher near a research station and tourism site in the southwestern section of the park, where there is little hunting, than in the southeastern part of the park. The results of our monitoring guided law‐enforcement patrols toward zones with the most hunting activity. Such systematic coordination of ecological monitoring and law enforcement may be applicable at other sites.  相似文献   

9.
Primary tropical forests are renowned for their high biodiversity and carbon storage, and considerable research has documented both species and carbon losses with deforestation and agricultural land uses. Economic drivers are now leading to the abandonment of agricultural lands, and the area in secondary forests is increasing. We know little about how long it takes for these ecosystems to achieve the structural and compositional characteristics of primary forests. In this study, we examine changes in plant species composition and aboveground biomass during eight decades of tropical secondary succession in Puerto Rico, and compare these patterns with primary forests. Using a well-replicated chronosequence approach, we sampled primary forests and secondary forests established 10, 20, 30, 60, and 80 years ago on abandoned pastures. Tree species composition in all secondary forests was different from that of primary forests and could be divided into early (10-, 20-, and 30-year) vs. late (60- and 80-year) successional phases. The highest rates of aboveground biomass accumulation occurred in the first 20 years, with rates of C sequestration peaking at 6.7 +/- 0.5 Mg C x ha(-1) x yr(-1). Reforestation of pastures resulted in an accumulation of 125 Mg C/ha in aboveground standing live biomass over 80 years. The 80 year-old secondary forests had greater biomass than the primary forests, due to the replacement of woody species by palms in the primary forests. Our results show that these new ecosystems have different species composition, but similar species richness, and significant potential for carbon sequestration, compared to remnant primary forests.  相似文献   

10.
Poulsen JR  Clark CJ  Bolker BM 《Ecology》2012,93(3):500-510
The loss of animals in tropical forests may alter seed dispersal patterns and reduce seedling recruitment of tree species, but direct experimental evidence is scarce. We manipulated dispersal patterns of Manilkara mabokeensis, a monkey-dispersed tree, to assess the extent to which spatial distributions of seeds drive seedling recruitment. Based on the natural seed shadow, we created seed distributions with seeds deposited under the canopy ("no dispersal"), with declining density from the tree ("natural dispersal"), and at uniform densities ("good dispersal"). These distributions mimicked dispersal patterns that could occur with the extirpation of monkeys, low levels of hunting, and high rates of seed dispersal. We monitored seedling emergence and survival for 18 months and recorded the number of leaves and damage to leaves. "Good dispersal" increased seedling survival by 26%, and "no dispersal" decreased survival by 78%, relative to "natural dispersal." Using a mixed-effects survival model, we decoupled the distance and density components of the seed shadow: seedling survival depended on the seed density, but not on the distance from the tree. Although community seedling diversity tended to decrease with longer dispersal distances, we found no conclusive evidence that patterns of seed dispersal influence the diversity of the seedling community. Local seed dispersal does affect seedling recruitment and survival, with better dispersal resulting in higher seedling recruitment; hence the loss of dispersal services that comes with the reduction or extirpation of seed dispersers will decrease regeneration of some tree species.  相似文献   

11.
Humans influence tropical rainforest animals directly via exploitation and indirectly via habitat disturbance. Bushmeat hunting and logging occur extensively in tropical forests and have large effects on particular species. But how they alter animal diversity across landscape scales and whether their impacts are correlated across species remain less known. We used spatially widespread measurements of mammal occurrence across Malaysian Borneo and recently developed multispecies hierarchical models to assess the species richness of medium‐ to large‐bodied terrestrial mammals while accounting for imperfect detection of all species. Hunting was associated with 31% lower species richness. Moreover, hunting remained high even where richness was very low, highlighting that hunting pressure persisted even in chronically overhunted areas. Newly logged sites had 11% lower species richness than unlogged sites, but sites logged >10 years previously had richness levels similar to those in old‐growth forest. Hunting was a more serious long‐term threat than logging for 91% of primate and ungulate species. Hunting and logging impacts across species were not correlated across taxa. Negative impacts of hunting were the greatest for common mammalian species, but commonness versus rarity was not related to species‐specific impacts of logging. Direct human impacts appeared highly persistent and lead to defaunation of certain areas. These impacts were particularly severe for species of ecological importance as seed dispersers and herbivores. Indirect impacts were also strong but appeared to attenuate more rapidly than previously thought. The lack of correlation between direct and indirect impacts across species highlights that multifaceted conservation strategies may be needed for mammal conservation in tropical rainforests, Earth's most biodiverse ecosystems. Correlación y Persistencia de los Impactos de la Caza y la Tala sobre los Mamíferos de los Bosques Tropicales  相似文献   

12.
Extinction Rates of North American Freshwater Fauna   总被引:18,自引:0,他引:18  
Abstract: Since 1900, 123 freshwater animal species have been recorded as extinct in North America. Hundreds of additional species of fishes, mollusks, crayfishes, and amphibians are considered imperiled. Using an exponential decay model, we derived recent and future extinction rates for North American freshwater fauna that are five times higher than those for terrestrial fauna. Assuming that imperiled freshwater species will not survive throughout the next century, our model projects a future extinction rate of 4% per decade, which suggests that North America's temperate freshwater ecosystems are being depleted of species as rapidly as tropical forests.  相似文献   

13.
Rethinking Tropical Forest Conservation: Perils in Parks   总被引:12,自引:0,他引:12  
Abstract: According to some conservationists, large, pristine, uninhabited parks are the defining criterion of success in conserving tropical forests. They argue that human residents in tropical forests inevitably deplete populations of large animals through hunting, which triggers a chain reaction of ecological events that greatly diminish the conservation value of these forests. Hence, they believe that removal of people from tropical forests is an essential step in the creation of successful parks and in the conservation of nature in the tropics. This approach can lead to undesirable consequences, however. Forest residents—and rural people generally—are potent political actors in tropical forest regions and an essential component of the environmental political constituencies that are necessary for the long-term conservation of tropical forests. In Amazonia and elsewhere, rural people are defending far bigger areas of tropical forest from unfettered deforestation and logging than are parks, thereby conserving the ecological services provided by these forests and the majority of their component plant and animal species. Moreover, the data are too sparse to judge the effects of forest peoples on populations of large forest animals. The establishment of pristine, tropical forest parks is an important conservation goal, but the exclusive pursuit of this goal undermines the broader objectives of conservation when it identifies forest residents and other rural people as the enemies of nature.  相似文献   

14.
Effect of Hunting in Source-Sink Systems in the Neotropics   总被引:3,自引:0,他引:3  
Abstract: Previous studies of the sustainability of wildlife hunting in the Neotropics have not considered the potential dispersal of animals into hunted areas. A literature review of studies of subsistence hunting in the Neotropics suggests that hunting is often conducted in areas adjacent to relatively undisturbed habitat that may act as sources of animals for the hunted sites. We compared studies of tapir (   Tapirus terrestris ) hunting at different sites to illustrate the potential bias of sustainability evaluations based on local productivity. The limited information available suggests that dispersal could have a key role in rebuilding animal populations depleted by hunting. Thus, factors that strongly affect dispersal—such as spatial distribution and size of areas with and without hunting, population size in source areas, and social behavior—should be considered when the sustainability of hunting is evaluated in areas with heterogeneous hunting pressure. We suggest the application of two models that use spatial controls (recognizing the potential source-sink nature of some hunted systems and protecting unhunted refugia) to avoid wildlife overexploitation when biological data and enforcement capabilities to regulate harvests are limited. This approach may produce more reliable evaluations of sustainability, provide information on the dynamics of hunting systems, and help local communities and policymakers conserve key areas (including protected areas) that may act as game sources.  相似文献   

15.
Abstract: We combined ethnographic investigations with repeated ecological transect surveys in the Dzanga‐Sangha Dense Forest Reserve (RDS), Central African Republic, to elucidate consequences of intensifying mixed use of forests. We devised a framework for transvaluation of wildlife species, which means the valuing of species on the basis of their ecological, economic, and symbolic roles in human lives. We measured responses to hunting, tourism, and conservation of two transvalued species in RDS: elephants (Loxodonta cyclotis) and gorillas (Gorilla gorilla). Our methods included collecting data on encounter rates and habitat use on line transects. We recorded cross‐cultural variation in ideas about and interactions with these species during participant observation of hunting and tourism encounters and ethnographic interviews with hunters, conservation staff, researchers, and tourists. Ecologically, gorillas used human‐modified landscapes successfully, and elephants were more vulnerable than gorillas to hunting. Economically, tourism and encounters with elephants and gorillas generated revenues and other benefits for local participants. Symbolically, transvaluation of species seemed to undergird competing institutions of forest management that could prove unsustainable. Nevertheless, transvaluation may also offer alternatives to existing social hierarchies, thereby integrating local and transnational support for conservation measures. The study of transvaluation requires attention to transnational flows of ideas and resources because they influence transspecies interactions. Cross‐disciplinary in nature, transvalution of species addresses the political and economic challenges to conservation because it recognizes the varied human communities that shape the survival of wildlife in a given site. Transvaluation of species could foster more socially inclusive management and monitoring approaches attuned to competing economic demands, specific species behaviors, and human practices at local scales.  相似文献   

16.
Both evolutionary ecologists and wildlife managers make inference based on how fitness and demography vary in space. Spatial variation in survival can be difficult to assess in the wild because (1) multisite study designs are not well suited to populations that are continuously distributed across a large area and (2) available statistical models accounting for detectability less than 1.0 do not easily cope with geographical coordinates. Here we use penalized splines within a Bayesian state-space modeling framework to estimate and visualize survival probability in two dimensions. The approach is flexible in that no parametric form for the relationship between survival and coordinates need be specified a priori. To illustrate our method, we study a game species, the Eurasian Woodcock Scolopax rusticola, based on band recovery data (5000 individuals) collected over a > 50 000-km2 area in west-central France with contrasted habitats and hunting pressures. We find that spatial variation in survival probability matches an index of hunting pressure and creates a mosaic of population sources and sinks. Such analyses could provide guidance concerning the spatial management of hunting intensity or could be used to identify pathways of spatial variation in fitness, for example, to study adaptation to changing landscape and climate.  相似文献   

17.
Mechanized Logging, Market Hunting, and a Bank Loan in Congo   总被引:5,自引:0,他引:5  
Financing for logging of tropical moist forests in the Republic of Congo is commonly sought in the form of loans from multilateral development banks. Pressure from nongovernmental conservation organizations and from within the banks themselves has resulted in their beginning to assess the environmental consequences of such loans. We conducted one of the first such assessments of an African Development Bank loan to a logging company. Geographic isolation, resulting transportation costs, and market demands have forced commercial loggers within the Sangha region of Congo to exploit only the most valuable timber. This form of timber extraction destroys an average of 6.8% of the canopy and thus, unlike clear cutting, was expected to have a minimal impact on wildlife populations. Line transect counts showed, however, that primate abundance was exceedingly low in logged forest. We believe this is not a direct consequence of canopy reduction, but results from the extremely intensive market hunting that coincides with timber surveying and extraction. Weapons and hunting camps were common, and logging company vehicles transported primates, duikers and other game daily. Wildlife laws of Congo are openly violated and they are not enforced. While market hunting is clearly facilitated and intensified by the presence of logging concessions, it is the Congo's highly urbanized population that provides the ever growing demand for meat, a demand not being met through animal husbandry. Thus, although selective logging in the absence of hunting may have only limited adverse effects on wildlife, when the two are combined the consequences are grave for the Sangha region's wildlife. Loans to logging companies from the African Development Bank should incorporate conditions for ensuring wildlife conservation.  相似文献   

18.
Species distribution data are an essential biodiversity variable requiring robust monitoring to inform wildlife conservation. Yet, such data remain inherently sparse because of the logistical challenges of monitoring biodiversity across broad geographic extents. Surveys of people knowledgeable about the occurrence of wildlife provide an opportunity to evaluate species distributions and the ecology of wildlife communities across large spatial scales. We analyzed detection histories of 30 vertebrate species across the Western Ghats biodiversity hotspot in India, obtained from a large-scale interview survey of 2318 people who live and work in the forests of this region. We developed a multispecies occupancy model that simultaneously corrected for false-negative (non-detection) and false-positive (misidentification) errors that interview surveys can be prone to. Using this model, we integrated data across species in composite analyses of the responses of functional species groups (based on disturbance tolerance, diet, and body mass traits) to spatial variation in environmental variables, protection, and anthropogenic pressures. We observed a positive association between forest cover and the occurrence of species with low tolerance of human disturbance. Protected areas were associated with higher occurrence for species across different functional groups compared with unprotected lands. We also observed the occurrence of species with low disturbance tolerance, herbivores, and large-bodied species was negatively associated with developmental pressures, such as human settlements, energy production and mining, and demographic pressures, such as biological resource extraction. For the conservation of threatened vertebrates, our work underscores the importance of maintaining forest cover and reducing deforestation within and outside protected areas, respectively. In addition, mitigating a suite of pervasive human pressures is also crucial for wildlife conservation in one of the world's most densely populated biodiversity hotspots.  相似文献   

19.
Understanding how plant species coexist in tropical rainforests is one of the biggest challenges in community ecology. One prominent hypothesis suggests that rare species are at an advantage because trees have lower survival in areas of high conspecific density due to increased attack by natural enemies, a process known as negative density dependence (NDD). A consensus is emerging that NDD is important for plant-species coexistence in tropical forests. Most evidence comes from short-term studies, but testing the prediction that NDD decreases the spatial aggregation of tree populations provides a long-term perspective. While spatial distributions have provided only weak evidence for NDD so far, the opposing effects of environmental heterogeneity might have confounded previous analyses. Here we use a novel statistical technique to control for environmental heterogeneity while testing whether spatial aggregation decreases with tree size in four tropical forests. We provide evidence for NDD in 22% of the 139 tree species analyzed and show that environmental heterogeneity can obscure the spatial signal of NDD. Environmental heterogeneity contributed to aggregation in 84% of species. We conclude that both biotic interactions and environmental heterogeneity play crucial roles in shaping tree dynamics in tropical forests.  相似文献   

20.
Wildlife subsistence hunting is a major source of protein for tropical rural populations and a prominent conservation issue. The intrinsic rate of natural increase. (rmax) of populations is a key reproductive parameter in the most used assessments of hunting sustainability. However, researchers face severe difficulties in obtaining reproductive data in the wild, so these assessments often rely on classic reproductive rates calculated mostly from studies of captive animals conducted 30 years ago. The result is a flaw in almost 50% of studies, which hampers management decision making. We conducted a 15‐year study in the Amazon in which we used reproductive data from the genitalia of 950 hunted female mammals. Genitalia were collected by local hunters. We examined tissue from these samples to estimate birthrates for wild populations of the 10 most hunted mammals. We compared our estimates with classic measures and considered the utility of the use of rmax in sustainability assessments. For woolly monkey (Lagothrix poeppigii) and tapir (Tapirus terrestris), wild birthrates were similar to those from captive populations, whereas birthrates for other ungulates and lowland‐paca (Cuniculus paca) were significantly lower than previous estimates. Conversely, for capuchin monkeys (Sapajus macrocephalus), agoutis (Dasyprocta sp.), and coatis (Nasua nasua), our calculated reproductive rates greatly exceeded often‐used values. Researchers could keep applying classic measures compatible with our estimates, but for other species previous estimates of rmax may not be appropriate. We suggest that data from local studies be used to set hunting quotas. Our maximum rates of population growth in the wild correlated with body weight, which suggests that our method is consistent and reliable. Integration of this method into community‐based wildlife management and the training of local hunters to record pregnancies in hunted animals could efficiently generate useful information of life histories of wild species and thus improve management of natural resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号