首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为探究海洋中多环芳烃(PAHs)对海洋生物的毒性作用,以皱纹盘鲍(Haliotis discus hannai)为受试生物,采用半静水式实验方式,探讨了2种多环芳烃苯并[a]芘和9,10-二甲基蒽对皱纹盘鲍早期发育的毒性效应。在不同浓度的苯并[a]芘和9,10-二甲基蒽作用下,观察皱纹盘鲍的卵子受精率、胚胎发育时间和幼体死亡率。结果表明,高浓度的多环芳烃处理组与对照组相比,卵子的受精率显著降低,胚胎发育时间和幼体死亡率显著增加,与处理浓度之间存在显著的剂量-效应关系(P<0.05)。3~12 d中,苯并[a]芘对皱纹盘鲍幼体的LC_(10)分别为11.6、8.18、7.67和7.66 mg·L~(-1),9,10-二甲基蒽对皱纹盘鲍幼体的LC10分别为14.91、14.11、12.82和9.64 mg·L~(-1)。苯并[a]芘毒性大于9,10-二甲基蒽。  相似文献   

2.
采用半静水式毒性试验,研究了6种苯系物(苯、甲苯、乙基苯、邻–二甲苯、间–二甲苯、对–二甲苯)对虾夷扇贝的生殖毒性作用。在水温(16±0.5)℃、盐度30.0、p H 8.0条件下,用0.5、2.5、12.5 mg·L-1的苯、甲苯、乙基苯、邻–二甲苯、间–二甲苯、对–二甲苯处理虾夷扇贝的精子、胚胎和幼体,观察6种苯系物对虾夷扇贝的精子活力、卵子受精率、胚胎延滞率、胚胎畸形率、孵化率、幼体畸形率的影响。同时通过透射电镜观察6种苯系物(2.5 mg·L-1)对虾夷扇贝精子超微结构的损伤作用。结果发现:不同浓度苯系物处理组与对照组(0.0 mg·L-1)相比,虾夷扇贝精子的运动时间、卵子受精率及胚胎孵化率显著降低;胚胎发育延滞率、胚胎畸形率和幼体畸形率显著增加为并与处理浓度之间存在显著的剂量—效应关系。以上结果表明实验浓度下,6种苯系物对虾夷扇贝具有较强的胚胎毒性和生殖毒性作用。通过电镜切片发现,2.5 mg·L-1的苯、甲苯、乙基苯、邻–二甲苯、间–二甲苯、对–二甲苯导致虾夷扇贝精子超微结构损伤,表现为:精子质膜断裂、部分溶解,线粒体质膜和内嵴断裂、部分溶解。苯系物对虾夷扇贝精子超微结构的损伤可能是影响其精子活力和降低卵子受精率的主要原因之一。上述结果为苯系物对海洋贝类的生殖毒性评价提供基础数据。  相似文献   

3.
海洋中的多环芳烃(PAHs)具有较强的生物毒性,且海洋动物早期发育阶段是对环境因素变化响应的最敏感阶段。为探究海洋多环芳烃类有机污染物对仿刺参(Apostichopus japonicus)早期发育阶段原肠胚的毒性影响,采用半静态毒性实验方法,分别考察了4种多环芳烃苯并[a]芘、3-甲基菲、惹烯及2-甲基蒽对仿刺参原肠胚的24、48、72、96 h急性毒性效应。结果表明,在10、50、100、200μg·L~(-1)暴露浓度下,随着暴露时间的延长和暴露浓度的升高,4种多环芳烃对仿刺参原肠胚产生不同程度的急性毒性效应,仿刺参原肠胚存活率与4种多环芳烃浓度之间分别存在显著的剂量-效应关系(P0.05)。苯并[a]芘对仿刺参原肠胚在24、48 h的半致死浓度(LC_(50))分别为294.4、225.64 mg·L~(-1),3-甲基菲在24、48、72、96 h的LC_(50)分别为404.5、300.7、81.4、17.6mg·L~(-1),惹烯在24、48、72 h的LC_(50)分别为243.1、230、186 mg·L~(-1),2-甲基蒽在24、48、72、96 h的LC_(50)分别244、231.6、152.6、142.9 mg·L~(-1)。4种多环芳烃的安全浓度(SC)分别为39.76、49.8、61.8、62.6μg·L~(-1),其毒性大小顺序为苯并[a]芘3-甲基菲惹烯2-甲基蒽。基于定量构效关系(QSAR)的研究结果可知多环芳烃化合物的毒性差异可能与分子结构等性质有关。该实验为深入研究多环芳烃对海洋环境的毒性效应提供了理论依据。  相似文献   

4.
苯并(a)芘对鲫鱼(Carassius auratus)肝脏抗氧化酶的影响   总被引:13,自引:0,他引:13  
研究了苯并(a)芘(BaP)暴露对鲫鱼肝脏抗氧化酶的影响.共设置4个处理组,浓度分别为每千克体重0.01mg、0.1mg、1mg和10mg,暴露方式采用腹腔注射,分别在暴露后6h、12h、48h和96h测定肝脏超氧化物歧化酶(SOD)、过靴氢酶(CAT)和谷胱甘肽过氧化物酶(GPX)活性.结果显示,所有暴露浓度对SOD活性明显抑制,各处理组活性在暴露后6h均低于对照组,在暴露后12h至48h有所回升,暴露后96h又降至对照水平以下.0.01mg kg^-1、0.1mg kg^-1处理组CA3、活性在暴露期间无显著改变,1mg kg^-1、10mg kg^-1处理组CAT活性在暴露后12h显著升高,暴露后96h回落至对照水平以下,此时10mg kg^-1处理组与对照组差异显著.对照组GPX活性在暴露后出现波动,0.1mg kg^-1处理组在暴露后96h显著低于对照组,而其它处理组活性与对照组在暴露期间无显著差异.结果表明,BaP能对鲫鱼肝脏抗氧化酶产生影响,多种抗氧化酶活性相结合可作为BaP暴露的生物标志物.图3参18  相似文献   

5.
功能植物内生细菌筛选及对多环芳烃降解效能研究   总被引:3,自引:0,他引:3  
功能植物内生细菌在防治土壤和植物多环芳烃(PAHs)污染方面具有潜力。从PAHs污染区采集了铁苋菜(Acalypha australis)、香附子(Cyperus rotundus)和麦冬(Ophiopogon japonicus)等健康植物样品,采用平板直接分离法获得8株能降解芘的植物内生细菌,主要为Enterobacter、Chitinophaga和Xanthomonas等菌属,其10 d对芘(50mg·L~(-1))的降解率为7. 59%~45. 50%。综合内生细菌在共代谢基质存在条件下的芘降解效能,选择从麦冬中分离出的Enterobacter sp. PRd5细菌为研究对象,探究其在各种环境条件下的芘降解性能。结果显示,Enterobacter sp.PRd5 10 d对芘(50 mg·L~(-1))的降解率为41. 37%~50. 63%,7 d可降解95%以上的萘(500 mg·L~(-1))、芴(100mg·L~(-1))和菲(50 mg·L~(-1))等低分子量多环芳烃,10 d对荧蒽(50 mg·L~(-1))和苯并[a]芘(10 mg·L~(-1))等高分子量多环芳烃的降解率分别为35. 89%和17. 44%。降解芘的优化条件研究结果显示,Enterobacter sp. PRd5在p H值6. 0~8. 0、温度25~35℃、外加盐浓度0~10 g·L~(-1)、装液量10~30 mL·(100 mL)-1、接种量3%~17%、芘初始质量浓度25~50 mg·L~(-1)和外加100 mg·L~(-1)葡萄糖条件下,可获得较高的芘降解效能。  相似文献   

6.
苯并\[a\]芘对马氏珠母贝肝组织抗氧化酶活性的影响   总被引:1,自引:1,他引:0  
为揭示不同浓度苯并[a]芘(B[a]P)对海洋贝类的生态毒理效应,将马氏珠母贝(Pinctada martensi)暴露于不同浓度(1、4和8μg.L-1)B[a]P中,检测暴露3、7和10d后,B[a]P对马氏珠母贝肝组织抗氧化酶(超氧化物歧化酶SOD、谷胱甘肽硫转移酶GST和过氧化氢酶CAT)活性的影响。结果表明:暴露时间3d时,随着B[a]P浓度的增加,SOD活性无明显变化,GST的活性被激活,在7d和10d受到抑制,GST活性表现为抑制,并表现出一定的剂量-效应关系,而CAT的活性在染毒后第7天受到激活;暴露时间10d时,SOD活性增加,GST活性和CAT活性均受到抑制。B[a]P暴露时间相同,GST活性和CAT活性变化趋势基本相似。B[a]P浓度相同(1和4μg.L-1)时,随着暴露时间的延长,SOD活性无明显变化,GST的活性受到抑制,CAT的活性表现为先激活后抑制的趋势。另外,相对于SOD活性,GST和CAT的活性变化可以更好地反映B[a]P对马氏珠母贝胁迫的毒性效应。  相似文献   

7.
以模式生物酿酒酵母为材料,研究亚砷酸钠对细胞生长、抗氧化酶活性、丙二醛(MDA)含量及胞内活性氧(ROS)水平的影响。结果显示,加入亚砷酸钠(终浓度0.1~0.6 mmol·L~(-1))后,培养液在600 nm处的光密度值(OD600值)低于对照组,并呈浓度依赖性降低。经亚砷酸钠处理12 h后,酵母细胞中过氧化物酶(POD)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)和总抗氧化能力(T-AOC)活性均增高,但胞内ROS水平和MDA含量与对照组无显著差异。砷处理24 h后,POD在0.2 mmol·L~(-1)砷处理组中活性最高,而CAT、SOD和T-AOC活性呈浓度依赖性增高;胞内ROS水平和MDA含量在高浓度砷组(0.4和0.6 mmol·L~(-1))显著增高。结果表明,亚砷酸钠可抑制酵母细胞生长,改变细胞内抗氧化酶活性,较高浓度时可引起细胞氧化损伤。  相似文献   

8.
将马氏珠母贝(Pinctada martensi)暴露于不同质量浓度(1、4和8μg.L-1)苯并[a]芘B[a]P中,检测暴露后第3、7和10天后,马氏珠母贝鳃组织抗氧化酶(超氧化物歧化酶SOD、谷胱甘肽硫转移酶GST和过氧化氢酶CAT)对苯并[a]芘胁迫的生态毒理效应。结果表明:暴露时间为3、7 d时,SOD活性无明显变化,随着暴露时间的延长,SOD活性在第10天时被激活;在胁迫初期,GST活性被激活,随后表现出逐渐降低的趋势,在暴露后10 d,不同质量浓度组GST活性变化趋于稳定。当暴露质量浓度相同时,表现出明显的时—效关系;而CAT活性在第7天被激活,随着时间的延长,高质量浓度(4和8μg.L-1)组表现出先升高后下降的趋势,并表现出一定的时-效关系。SOD、GST和CAT均可作为B[a]P污染的生物标志物,活性变化相对于SOD,GST和CAT对B[a]P的胁迫更加敏感。  相似文献   

9.
2013年12月在呼和浩特市主城区9个环境空气监测点位同步采集PM_(10)样品,对PM_(10)浓度和16种多环芳烃的浓度、污染特征进行了分析,使用特征比值和主成分分析对多环芳烃来源进行了解析.9个监测点位的PM_(10)浓度介于23.5—322μg·m-3之间,16种多环芳烃总量介于5.34—850 ng·m-3之间.荧蒽、芘、苯并[a]蒽、、苯并[b]荧蒽、苯并[a]芘、苯并[g,h,i]苝和茚并[1,2,3-cd]芘等多环芳烃单体浓度较高,这8种多环芳烃占多环芳烃总浓度的80.4%.主成分分析所获得污染源结果和特征比值法定性判断出的污染源结果一致,燃烧源、机动车尾气源和石油源为主要污染源,分别贡献61.3%、16.0%和10.4%.  相似文献   

10.
纳米氧化镍(nNiO)作为一种广泛使用的纳米颗粒,其水生毒理效应研究还很有限。为探索n Ni O对海洋贝类的毒性机制,本研究将长牡蛎(Crassostrea gigas)置于不同浓度(0、1、10、100 mg·L~(-1))的n Ni O中暴露96 h,分别测定鳃和消化腺组织的丙二醛(MDA)含量和超氧化物歧化酶(SOD)、过氧化物酶(POD)以及过氧化氢酶(CAT)活性,并通过实时荧光定量PCR技术测定了鳃和消化腺中应激蛋白HSP70和AOX基因的表达变化。结果显示:在100 mg·L~(-1)n Ni O处理下,2种组织中MDA含量均显著性升高(P0.01),显示纳米颗粒造成了长牡蛎的脂质过氧化,并可能引起相应的氧化损伤。同时,n Ni O暴露也诱导了长牡蛎抗氧化酶(SOD、CAT和POD)活性的改变。其中,SOD和CAT活性在10 mg·L~(-1)浓度处理组达到最高,而POD活性在1 mg·L~(-1)浓度组即达最高值。在高浓度n Ni O(100 mg·L~(-1))胁迫下,3种抗氧化酶的活性均比低浓度(1和10 mg·L~(-1))处理组降低,表明抗氧化酶的保护作用在较低浓度暴露下更有效;而热激蛋白(hsp70)和交替氧化酶(aox)基因却分别在长牡蛎消化腺和鳃组织中上调表达(P0.01),并表现出一定的组织差异。说明高浓度纳米颗粒暴露中主要是应激蛋白发挥了作用。本文结果为纳米氧化镍对海洋双壳贝类的毒性机制研究及生态风险评估提供了基础数据。  相似文献   

11.
为了研究苯并(b)荧蒽这一典型的多环芳烃化合物对水生生物的毒性效应,测定了不同浓度(2.0、10.0和50.0 μg· L-1)苯并(b)荧蒽胁迫15 d和清水释放10 d后翡翠贻贝(Perna viridis)内脏团组织中抗氧化酶(CAT、SOD和GPx)活性和MDA含量的变化.结果表明,2.0 μg· L-1浓度组...  相似文献   

12.
运用均匀设计优化一株新鞘氨醇菌Novosphingobium pentaromativorans stain US6-1对芘、荧蒽、苯并[a]芘等高分子量多环芳烃(High molecular weigh polycyclic aromatic hydrocarbons,HMW-PAHs)的降解条件.结果表明,在最适生长条件(30℃、pH 6.5及NaCl浓度为2.5%)下,接种量与底物浓度是影响该菌降解能力的关键因素.在接种量D660 nm为0.6、芘初始浓度56 mg L-1、培养时间5 d的情况下,菌株US6-1对芘的降解达到32.5 mg L-1,预测平均准确率达99.38%;在接种量D660 nm为0.6、荧蒽初始浓度48 mg L-1、培养时间5 d的情况下,对荧蒽的降解达到34.3 mg L-1,预测平均准确率达99.61%;在接种量D660 nm为0.1、苯并[a]芘初始浓度60 mg L-1、培养时间为5 d时,对苯并[a]芘的降解达到24 mg L-1,预测平均准确率达98.75%.菌株US6-1对芘及苯并[a]芘的降解能力比未优化前分别提高了29.2%与58%.  相似文献   

13.
研究纳米硫化镉(Nano-Cd S)材料对肺癌细胞系A549的毒性及氧化损伤作用。培养A549细胞,经传代后接种于6孔板中,每孔2 m L完全培养基,接种次日进行染毒。用直径20~30 nm、长度80~100 nm的Nano-Cd S进行染毒,染毒浓度分别为0、5、10、20、40和80 mg·L~(-1)。染毒24 h后用MTT检测细胞存活率,以存活率在80%左右的浓度为后续实验染毒浓度。应用流式细胞技术,用荧光探针法检测A549细胞的活性氧(reactive oxygen species,ROS)含量,PI-Annexin-V法检测细胞凋亡情况;用试剂盒检测细胞中超氧化物岐化酶(superoxide dismutase,SOD)和过氧化氢酶(catalase,CAT)活性以及丙二醛(malondialdehyde,MDA)含量,判断细胞氧化损伤情况。不同浓度Nano-Cd S处理细胞24 h之后,细胞存活率随剂量的增加而下降,浓度为10、20、40和80μg·L~(-1)时,存活率分别为(88.71%±0.80%)、(81.93%±3.06%)、(75.23%±1.13%)和(70.66%±5.63%),且各组间差异均具有统计学意义(P0.05)。以浓度为10和20 mg·L~(-1)的Nano-Cd S染毒24 h后,胞内ROS含量和细胞凋亡率随染毒剂量的增加而增加(P0.05);浓度为10 mg·L~(-1)时,细胞凋亡率为(6.26%±0.44%)。与对照相比,各染毒组SOD和CAT活性和MDA含量升高,20 mg·L~(-1)染毒组SOD和CAT活性和MDA含量高于10 mg·L~(-1)染毒组(P0.05)。研究表明,纳米硫化镉能引起A549细胞的氧化损伤和细胞凋亡,具有明显的细胞毒性。  相似文献   

14.
多环芳烃(PAHs)化合物中的苯并[a]芘和PAHs暴露检测标志物1-羟基芘与心脏功能障碍有关,但其生物学机制尚不清楚。为研究苯并[a]芘和1-羟基芘对心脏的毒性作用,基于人胚胎干细胞分化心肌细胞(hESC-CM)研究了苯并[a]芘和1-羟基芘对心肌细胞活性氧(ROS)生成、CYP基因表达和DNA损伤等的影响。结果表明,苯并[a]芘和1-羟基芘对h ESC-CM活性无影响,但能显著增强细胞ROS水平,诱导DNA损伤。此外,苯并[a]芘还能诱导细胞线粒体促凋亡基因的表达。研究表明,苯并[a]芘和1-羟基芘能通过诱导氧化应激和DNA损伤事件导致h ESC-CM损伤,在一定程度上解释了多环芳烃暴露导致心脏疾病的分子机制。  相似文献   

15.
我国近岸局部海域的重金属污染严重威胁着生态环境和人类健康。吡啶硫酮铜(CuPT)和吡啶硫酮锌(ZnPT)在海洋防污和化工产品中的应用近来逐年增加,对其生态毒性及其机理进行研究迫在眉睫。本文以我国南海常见多毛类——华美盘管虫(Hydroides elegans Haswell)为受试生物,研究了CuPT和ZnPT对华美盘管虫的抗氧化系统的影响。试验结果表明在CuPT和ZnPT胁迫下,华美盘管虫体内的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽还原酶(GR)的活性,以及还原型谷胱甘肽含量(GSH)和丙二醛(MDA)含量发生与暴露毒物种类、浓度和时间相关的变化。SOD、CAT和GR的活性在较低浓度(25μg·L~(-1))的CuPT胁迫6 h后呈显著上升趋势,但随暴露时间延长(12 h和24 h),GR的活性显著下降;而暴露于较低浓度(50μg·L~(-1))的Zn PT中,仅SOD活性显著升高,CAT和GR的活性都显著下降。在较高Cu PT(100μg·L~(-1))或Zn PT(200μg·L~(-1))浓度中,CAT和GR的活性都显著下降。GSH含量对Cu PT或Zn PT胁迫的响应呈现明显的时间效应,即随暴露时间的延长,通常由显著上升转为显著下降。MDA含量在Cu PT(100μg·L~(-1))或Zn PT(200μg·L~(-1))高浓度组中呈显著升高趋势。  相似文献   

16.
通过气质联用仪和液质联用仪的非靶向检测,结合主成分分析(PCA)和正交偏最小二乘法-判别分析(OPLS-DA)等方法,对日本沼虾肝胰腺进行代谢物分析,以研究在非致死剂量的亚硝酸盐或氨胁迫下,日本沼虾肝胰腺新陈代谢的变化。经亚硝酸盐(0.5 mg·L~(-1),以N计)胁迫2 d后,鉴定到具有显著差异的代谢化合物46个,涉及氨基酸代谢、脂肪酸代谢和甘油磷脂代谢等; p H=9.0时,氨(1.0 mg·L~(-1),以N计,即非离子氨氮为0.378 mg·L~(-1))胁迫后,鉴定出显著差异性代谢化合物52个,涉及三羧酸循环、氨基酸代谢和甘油磷脂等代谢通路。选择p H=9.0氨(1.0 mg·L~(-1))胁迫组对日本沼虾肝胰腺中的三羧酸循环进行定量验证实验,结果显示,日本沼虾肝胰腺中草酰乙酸含量与对照组相比在12 h显著升高,24 h和48 h后则与对照组无显著差异。α-酮戊二酸含量与对照组相比在12 h即有显著增加,24 h含量与对照组相比显著下降,48 h后与对照组相比无明显差异。推测p H=9.0时氨氮(1.0 mg·L~(-1))胁迫12 h即会对三羧酸循环产生影响。  相似文献   

17.
以淡水螺为受试生物,研究了中华圆田螺(Cipangopaludina Cahayensis)肝脏中自由基强度、抗氧化酶活性和丙二醛(MDA)含量纳米ZnO暴露21 d时的变化情况.结果表明,纳米ZnO可显著诱导中华圆田螺产生羟基(·OH)自由基;超氧化物歧化酶(SOD)活性和MDA含量的变化趋势相同,0.1—1 mg·L~(-1)暴露下活性随浓度增加逐渐增加,2 mg·L~(-1)时有所回落;过氧化氢酶(CAT)活性呈诱导状态,随浓度增加活性缓慢增大;谷胱甘肽S-转移酶(GST)活性保持抑制状态;·OH信号强度与SOD活性和MDA含量的变化具有一致性;SOD活性和MDA含量激活率较高,CAT激活率则保持稳定.  相似文献   

18.
复合人工湿地对有机污染物的去除效果初步研究   总被引:1,自引:0,他引:1  
研究了由不同植物配置(驯化和未驯化)的两组下行和上行植物床组成的复合人工湿地对生活污水的净化效果。结果表明,CODCr和BOD5的去除率达67.3%,68.1%,总氮(TN)的去除率为26.9%,总磷(TP)的去除主要发生在上行床,去除率为81.6%。环芳烃(PAHs)中苊(Ace)、荧蒽(Flu)、芘(Py)、苯并[a]蒽(BaA)、屈(Chr)、苯并[b]荧蒽(BbF)、苯并[a]芘(BaP)、茚并[1,2,3-cd]芘(InP)和苯并[g,h,i](BPR)经下行床后,去除率超过80%,上行床去除较少。驯化床和未驯化床对PAHs的去除效果差异不显著。邻苯二甲酸酯(PAEs)中邻苯二甲酸二乙酯(DEP)和邻苯二甲酸二异丁酯(DiBP)经驯化床后,质量浓度显著升高,经未驯化床后邻苯二甲酸二(2-乙基)己酯(DEHP)含量显著降低。蚕豆根尖微核实验表明,不同植物配置对微核率影响差异并不显著,毒害物质经下行床后大部分被去除。  相似文献   

19.
为深入探讨水体不同浓度重金属联合对水生生物的慢性毒性机制,本研究以日本沼虾(Macrobranchium nipponense)为受试生物,镉(Cd)和铅(Pb)为目标金属,超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、金属硫蛋白(MT)和丙二醛(MDA)为测试终点,研究不同浓度的Cd和Pb单一及联合暴露对日本沼虾的氧化损伤及交互作用。实验结果表明:Cd对虾的致死浓度为1 mg·L-1,当其与同浓度Pb联合时,致死毒性增强;在0.01 mg·L-1和0.1 mg·L-1下联合时均表现为拮抗作用。不同处理组对标志物产生不同程度的诱导或抑制效应,其中,SOD活性均受到胁迫抑制,0.1 mg·L-1Cd暴露10 d后对肝胰腺SOD抑制率达53.38%,0.1 mg·L-1Pb暴露10 d后对肌肉SOD抑制率达70.02%;CAT活性整体受胁迫激活,肝胰腺与肌肉CAT活性在时间尺度上呈现相反的变化规律;肝胰腺中MT和MDA对重金属的敏感性要高于肌肉;综合生物标志物响应(IBR)评价表明,机体在时间尺度上可通过酶活性调节而具有一定的解毒功能,但并不能消除重金属引起的氧化损伤,且重金属单一毒性要高于联合毒性,其中Cd对肝胰腺毒性最大,Pb对肌肉毒性最大。研究结果能够为水体重金属生态风险预警、水质基准制定及流域水环境管理提供依据。  相似文献   

20.
我国36个重点城市饮用水中多环芳烃健康风险评价   总被引:3,自引:0,他引:3  
分别用2种基于不确定性的风险评价方法(蒙特卡洛法和三角模糊数法)和1种基于确定性的风险评价方法(美国EPA终身致癌风险)对我国36个重点城市饮用水中多环芳烃的终生致癌风险进行评价。所研究的98个水厂出水中多环芳烃浓度范围为17.5~408.3 ng·L-1,致癌性多环芳烃(苯并[a]蒽,屈,苯并[b]荧蒽,苯并[k]荧蒽,苯并[a]芘,茚并[1,2,3-cd]芘)的总量浓度为nd~94.7 ng·L-1。所有水厂出水中苯并[a]芘浓度均小于10 ng·L-1。假设出厂水即为最终饮用水,对16种PAHs浓度用毒性当量因子法转化为相对于苯并[a]芘等效浓度(TEQ BaP)。使用概率风险评价方法计算,结果显示在95%的概率区间我国居民通过饮水途径暴露多环芳烃的终生致癌风险小于5.45×10-6(蒙特卡洛法)和7.56×10-6(三角模糊数法)。而采用确定性风险评价方法,计算得到的最大风险为7.12×10-6。两种计算方法得到的我国饮用水中多环芳烃的终生致癌风险都处于可接受水平。比较不同的评价方法后发现,不同方法获得的信息并不完全重合,相对于通常的基于确定性的非概率健康风险评价方法,基于不确定性的概率风险评价方法获得的结果更为保守。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号