首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
甲胺磷农药降解菌HS-A32的分离鉴定及降解特性   总被引:5,自引:0,他引:5  
从长期受有机磷农药污染的土壤中分离到一株降解菌HS-A32,能以甲胺磷作为唯一的碳源和氮源生长.HS-A32菌降解甲胺磷的最适温度为30℃,最适pH值为7.0,甲胺磷的最适降解浓度为1 000 mg/L,降解率达82%.聚酰胺薄层色谱(TLC)可检测到降解产物中有NH4 生成.HS-A32菌能以多种碳、氮源生长,外加可利用的碳源和氮源能促进甲胺磷的降解.通过16S rDNA扩增、测序,运用BLAST检索分析,构建系统进化树.结合生理生化鉴定,初步确定HS-A32为不动杆菌属(Acinetobacter).HS-A32菌还能降解甲基对硫磷等多种有机磷农药.图6表1参14  相似文献   

2.
高铁酸钾对菠菜中3种有机磷农药残留降解的影响   总被引:2,自引:0,他引:2  
菠菜(Spinaciao leracea L.)是我国出口的重要蔬菜品种之一,其农药残留是制约我国菠菜出口的重要"技术壁垒".在露地栽培条件下,研究了叶面喷施高铁酸钾水溶液对菠菜中有机磷农药的降解作用,并探讨了高铁酸钾对菠菜相关酶活、MDA含量及品质指标的影响.结果表明,叶面喷施不同浓度的高铁酸钾(200、400、600mg·L-1)可有效降低菠菜中敌敌畏、毒死蜱和乐果等有机磷农药的残留量.随着高铁酸钾喷施浓度的增大,菠菜中敌敌畏、毒死蜱和乐果残留量显著降低;试验浓度下以600mg·L-1高铁酸钾处理的降解效果最好,可使菠菜中敌敌畏、毒死蜱和乐果的降解率达到72.43%、87.15%和75.45%.叶面喷施高铁酸钾对菠菜过氧化物酶(POD)、过氧化氢酶(CAT)活性、MDA含量以及品质指标没有明显影响.试验表明高铁酸钾具有降解有机磷农药残留的作用,在菠菜生产中将高铁酸钾作为有机磷农药残留降解制剂是可行的.  相似文献   

3.
通过实验,探讨了用纳米TiO2光催化处理有机磷农药模拟废水和实际应用的有机磷农药的可行性.实验表明,以测定不同时间PO43-的浓度来衡量有机磷的降解率,并以此来衡量有机磷农药及其中间产物降解的程度是合理的.光催化降解甲胺磷和水胺硫磷的结果,显示了有机磷农药的降解率与其结构有关.实际应用的有机磷农药也可用光催化降解.  相似文献   

4.
采用室内模拟试验方法,研究了苯噻菌酯在东北黑土、江西红壤和南京黄棕壤中的降解、吸附和迁移特性.结果表明,苯噻菌酯在3种不同土壤中的降解顺序为东北黑土南京黄棕壤江西红壤,半衰期分别为32.8、37.9、51.7 d,属于中等降解农药.随着土壤含水量(20%—80%)增加,苯噻菌酯的降解速率加快.苯噻菌酯在灭菌土壤中降解速率明显减慢,渍水条件下降解速率加快,说明土壤中微生物,特别是厌氧微生物是影响苯噻菌酯降解的重要因素.此外,土壤中有机质和氧化物能促进苯噻菌酯的降解.3种土壤对苯噻菌酯的吸附均较好地符合Freundich方程,吸附系数Kd值分别为171.33、102.41和135.89,属于较易吸附农药.苯噻菌酯在土壤中移动性较差,属于难淋溶农药.  相似文献   

5.
敌敌畏是广泛使用的有机磷农药之一,具有较高的水溶性,对水生动物的危害较大.为探讨敌敌畏降解菌对水体中中毒鱼类的降毒效果,测定了敌敌畏对斑马鱼(Brachydanio rerio)的急性毒性,研究了一株敌敌畏高效降解菌--类球红细菌(Rhodobacter sphaeroides)的解毒作用.结果显示:敌敌畏对斑马鱼24、48、72、96h的LC50分别为42.9、37.5、30.7、25.6mg L-1,安全浓度为2.6mg L-1,属低毒农药;在不同敌敌畏暴露浓度的养鱼水中添加类球红细菌(5×107CFU mL-1)可以显著降低斑马鱼的死亡率,28.3mg L-1和33.6mg L-1敌敌畏暴露浓度下,斑马鱼96h死亡率分别由对照组(不添加类球红细菌)的63.3%和96.7%降低到0;利用液相色谱检测了敌敌畏在添加和不添加类球红细菌的养鱼水中的降解规律,结果表明类球红细菌对斑马鱼的保护作用主要是快速降解水中的敌敌畏,并且没有产生对鱼有毒的降解产物.本研究获得了敌敌畏对斑马鱼的基础毒理学数据,同时为微生物降解水体中的农药残留提供了科学依据.  相似文献   

6.
海藻多糖稀土配合物对蔬菜有机磷农药残留的降解作用   总被引:1,自引:0,他引:1  
以小白菜、甘蓝、芹菜为试验材料,采用大田试验研究了海藻多糖稀土配合物对蔬菜中有机磷农药残留的影响.试验结果表明,叶面喷施海藻多糖稀土配合物对小白菜、甘蓝、芹菜中毒死蜱、氧化乐果、敌敌畏等有机磷农药残留具有明显的降解作用;对甘蓝中毒死蜱和氧化乐果的降解效果优于小白菜,但对芹菜中毒死蜱的降解效果远不及甘蓝和小白菜,表现出一定的作物选择性.叶面喷施海藻多糖稀土配合物对敌敌畏等磷酸酯类有机磷农药的降解作用比毒死蜱、氧化乐果等硫代磷酸酯类有机磷农药的降解强烈,表现出一定的农药选择性;另外,喷水对叶片表面残存农药具有一定的冲洗作用,可减少叶面农药的残留量;叶面喷施海藻多糖稀土配合物对甘蓝和小白菜中有机磷农药的降解率远高于叶面喷水.以上结果表明海藻多糖稀土配合物确实具有降解有机磷农药残留的作用.在蔬菜生产中将海藻多糖稀土配合物作为农药残留降解制剂是可行的,有利于蔬菜安全生产和提高蔬菜产品的食用安全性。  相似文献   

7.
有机磷农药的大量生产和使用,导致其在土壤环境中累积,从而危害人类健康.通常,有机磷农药会在环境中发生光解、水解、生物降解等自然降解反应,但对于较高浓度的有机磷农药污染,其自然降解程度远远不足,无法在短时间内实现污染土壤的安全利用,因此发展了多种人工强化修复有机磷农药技术.本文在解析有机磷农药自然降解机理的基础上,综述了其主流的人工强化修复技术的原理与研究现状,并对未来研究方向提出建议,为有机磷农药降解人工强化技术的研究与工程应用提供技术支撑.  相似文献   

8.
木质素的有效降解是秸秆等农业废物减量化及资源化利用的难点.采用连续驯化培养的方法,从农业废物堆肥过程升温、降温和腐熟3个阶段的微生物菌群中分别筛选驯化出3组具有木质素降解能力的复合菌MC1、MC2和MC3.通过初筛和复筛实验,筛选出一组性能稳定并具有高效木质素降解能力的复合菌,并对其继代培养的稳定性进行了验证.结果表明,从堆肥升温阶段筛选出的复合菌MC1的木质素降解能力最强.在37℃静置条件下液态发酵培养14d,d6时复合菌MC1各酶活值均达到最大,其中木质素过氧化物酶酶活为258.37UL-1,锰过氧化物酶酶活486.39UL-1,漆酶酶活为49.25UL-1;d14时木质素降解率达到36.25%.继代培养实验结果表明复合菌MC1具有较好的稳定性.图2表1参19  相似文献   

9.
氯乙酰胺类除草剂微生物降解研究进展   总被引:4,自引:0,他引:4  
主要介绍了几种氯乙酰胺类除草剂的微生物降解机制和相关降解酶.目前没有一种纯菌培养物或混合菌群能完全矿化异丙甲草胺和甲草胺,它们只能被细菌和真菌共代谢.毒草胺能被纯菌或混合菌群完全矿化,且有几种不同的矿化途径.乙草胺是我国生产量和使用量最多的三大除草剂之一,然而关于其微生物降解方面的研究在国内外报道的非常少,因此关于乙草胺被微生物降解和矿化的研究工作还有待于进一步加强.参45  相似文献   

10.
从农药厂污水处理池的活性污泥中分离到一株高效氯氰菊酯农药降解菌,命名为PSB07-13。根据该菌体培养特征、菌落形态特征、活细胞光谱吸收特征、生理生化特性、光合作用内膜系统结构类型,并结合16S rRNA(Genebank Accession NO.EU366142)序列相似性分析,将其鉴定为沼泽红假单胞菌(Rhodopseudomonas palustris)。利用气相色谱对PSB07-13的降解能力进行了测定,结果表明:该菌培养6d后,对50mg·L-1的氯氰菊酯的降解率达到80.94%。降解特性研究结果表明:该菌在含氯氰菊酯培养基中的最适生长温度为30℃、pH为7.0及光照强度为7500lx;该菌不能以氯氰菊酯为唯一碳源和能源生长;该降解菌还能较好地降解甲氰菊酯、联苯菊酯、溴氰菊酯等菊酯类农药。该农药残留降解菌可以用于农药厂有机废水处理及农田农药残留降解,具有一定的应用前景。  相似文献   

11.
有机磷农药对蛋白核小球藻的毒性相互作用研究   总被引:1,自引:0,他引:1  
水体中农药复合污染产生的毒性效应具有潜在风险。为系统考察有机磷农药(OPs)混合物对淡水生态系统中绿藻的联合毒性效应,以马拉硫磷(MIT)、敌敌畏(DDVP)、敌百虫(TRC)、乐果(DIT)和氧乐果(OMT)等5种OPs作为混合物组分,运用直接均分射线法设计9组二元混合物体系共45条混合物射线。利用96孔微板测定5种OPs及其二元混合物对蛋白核小球藻(C. pyrenoidosa)的生长抑制毒性,通过基于置信区间的组合指数法分析混合物的联合毒性及毒性相互作用。结果表明,以p EC50为毒性指标,5种OPs对C. pyrenoidosa的毒性大小顺序为:TRCMITDDVPOMTDIT,OPs对C. pyrenoidosa的毒性大小受其中心磷原子的电正性影响;因混合组分的不同,部分OPs混合物对C. pyrenoidosa的联合毒性依赖于组分浓度比; OPs混合物对C. pyrenoidosa的毒性相互作用以加和为主,部分发生拮抗作用,发生拮抗作用的混合体系具有低效应区域呈加和作用,高效应区域呈拮抗作用的规律;与MIT混合的体系均有发生拮抗作用,且依赖于MIT浓度,MIT浓度比例越高,拮抗作用越强,OPs混合物的毒性相互作用与组分浓度比相关; OPs混合物的毒性相互作用组分浓度比依赖性与其联合毒性的组分浓度比依赖性规律不相关。  相似文献   

12.
• Bioremediation is the most cost-effective approach for degradation of HBCDs. • Bacteria or bacterial consortia are used in the cases of bio-augmentation. • Microbes combined with phytoremediation increase the remediation efficiency. Hexabromocyclododecanes (HBCDs) are the most common brominated flame-retardants after polybrominated diphenyl ethers. HBCDs can induce cancer by causing inappropriate antidiuretic hormone syndrome. Environmental contamination with HBCDs has been detected globally, with concentrations ranging from ng to mg. Methods to degrade HBCDs include physicochemical methods, bioremediation, and phytoremediation. The photodegradation of HBCDs using simulated sunlight or ultraviolet lamps, or chemical catalysts are inefficient and expensive, as is physicochemical degradation. Consequently, bioremediation is considered as the most cost-effective and clean approach. To date, five bacterial strains capable of degrading HBCDs have been isolated and identified: Pseudomonas sp. HB01, Bacillus sp. HBCD-sjtu, Achromobacter sp. HBCD-1, Achromobacter sp. HBCD-2, and Pseudomonas aeruginosa HS9. The molecular mechanisms of biodegradation of HBCDs are discussed in this review. New microbial resources should be explored to increase the resource library in order to identify more HBCD-degrading microbes and functional genes. Synthetic biology methods may be exploited to accelerate the biodegradation capability of existing bacteria, including modification of the degrading strains or functional enzymes, and artificial construction of the degradation microflora. The most potentially useful method is combining micro-degradation with physicochemical methods and phytoremediation. For example, exogenous microorganisms might be used to stimulate the adsorption capability of plants for HBCDs, or to utilize an interaction between exogenous microorganisms and rhizosphere microorganisms to form a new rhizosphere microbial community to enhance the biodegradation and absorption of HBCDs.  相似文献   

13.
以壳聚糖微球为载体的固定化乙酰胆碱酯酶的基本性质   总被引:1,自引:0,他引:1  
张爱静  孟范平  杨菲菲 《环境化学》2011,30(6):1068-1074
为探讨以壳聚糖微球为载体制备的固定化乙酰胆碱酯酶(AChE)用于监测海水有机磷农药的可行性,研究了固定化酶在海水中的基本性质,如环境适应性、动力学性质、稳定性、对农药响应规律等.结果表明,与溶液酶相比,固定化酶对海水温度、盐度、pH值等因素的适应能力提高;固定化酶分子构象的改变增加了酶与底物之间的空间障碍,米氏常数增加...  相似文献   

14.
巢湖生态系统中微量有机污染物的研究进展   总被引:1,自引:0,他引:1  
本文综述了目前巢湖生态系统中微量有机污染物研究的主要进展。巢湖微量有机污染物研究起步较晚,但发展较快。目前已研究的微量有机污染物包括有机氯农药、多氯联苯、多环芳烃、多溴联苯醚、邻苯二甲酸酯、全氟烷基酸类物质、四溴双酚A、抗生素和有机磷农药。研究内容主要包括水、大气、降尘、沉积物、悬浮物、水生生物等多介质分布、来源解析、跨界面迁移、归趋模拟与风险评估等方面。期望本文的综述,可以为巢湖微量有机污染物风险管理和水质改善提供重要决策支撑,对于在其他湖泊开展此类研究有所裨益。  相似文献   

15.
段海明 《生态环境》2012,(9):1608-1613
筛选分离降解微生物解决有机磷农药残留给水体和土壤环境带来的污染问题是一项可行的生物修复技术。采用富集培养和定时取样分析有机磷农药残留的方法,分离驯化出三株能够降解有机磷农药的细菌,研究了其形态特征和生理生化特性并对其16SrDNA序列进行了分析,同时比较了三菌株对甲基对硫磷(Methyl-parathion)、毒死蜱(Chlorpyrifos)和_二唑磷(Triazophos)的降解特性。结果表明:通过富集培养得到10菌株具有降解甲基对硫磷和毒死蜱的能力,比较确定HY-1、HY-2和HY-4三菌株作为研究对象,经鉴定为蜡状芽孢杆菌(Bacilluscereus)的不同菌株,三菌株在Genbank上的登录号分别为:eu915687、eu915686和eu915688。在甲基对硫磷质量浓度为50mg·L-1时,三菌株72h的降解率分别为91.7%、87.7%与92.4%.降解率无显著性差异(P〉0.05),当甲基对硫磷质量浓度增加到100mg·L-1时,三菌株对甲基对硫磷的降解率有所下降,其中HY-2对甲基对硫磷的降解率下降最大达23%,且和其他两菌株有显著性差异(P〈0.05o三菌株72h对100mg·L-1毒死蜱的降解率分别达到64.8%、53.7%和56.5%,在不同的毒死蜱初始质量浓度下,HY-1和HY-4两菌株对毒死蜱的降解率无显著性差异(P〉0.05),HY-2与HY-1、HY-4两菌株有显著性差异(P〈0.05o三菌株对三唑磷的降解率均较低,其中HY-2对初始质量浓度为100mg·L-1三唑磷的降解率最高仅为20.7%,其余两菌株对三唑磷的降解率比HY-2低且无显著性差异(P〉0.05o可以得出本研究分离得到的蜡状芽孢杆菌不同菌株对有机磷农药的降解存在多态性。  相似文献   

16.
运用双相(水-硅油)系统可进行有机物降解菌的筛选.本实验用此法获得了多环芳烃(PAHs)的降解菌,降解菌对PAHs有较好的降解作用.堆肥法处理PAHs中接入筛选到的降解菌可以大大加强降解效果.堆肥过程中堆温升高很快,对一些PAHs如荧蒽、芘、苯并[a]芘等可以彻底清除,对更多环的PAHs也可降到很低的浓度.图1表3参4  相似文献   

17.
化学农药污染土壤植物修复中的环境化学问题   总被引:7,自引:1,他引:7  
报道了利用植草修复受DDT,BHC和Dicofol污染的研究,讨论了化学农药污染土壤植物修复中,农药在植物中富集与在土壤中降解以及结合残留等环境化学问题。研究表明,在植物修复的过程中,通过草对农药吸收的途径而去除土壤中污染物的作用所作的贡献很小,植草的作用可能是通过草的根部向土壤释放酶和某些分泌物,从而激发土壤中微生物的活性,并加速农药生物降解作用的结果。草在不同土壤中修复能力的差异,可能与不同土壤中所存土著微生物的差异以及其活性受酶和某些分泌物所激发差异的结果。选择能使根际区产生强烈的生物降解作用的草品种,是利用草作为化学农药污染土壤修复的关键。土壤与植株中农药结合残留的形成可能是土壤中污染物消除的又一个重要因素。  相似文献   

18.
Effects of pesticides on soil enzymes: a review   总被引:4,自引:0,他引:4  
The use of pesticides in agriculture has highly increased during the last 40 years to increase crop yields. However, today most pesticides are polluting water, soil, atmosphere and food. Pesticides are also impact soil enzymes, which are essential catalysts ruling the quality of soil life. In particular, the activity of soil enzymes control nutrient cycles, and, in turn, fertilization. Here, we review the effects of pesticides on the activity of soil enzymes in terrestrial ecosystems. Enzymes include dehydrogenase, fluorescein diacetate hydrolase, acid phosphatase, alkaline phosphatase, phosphatase, β-glucosidase, cellulase, urease and aryl-sulfatase. Those enzymes are involved in the cycles of carbon, nitrogen, sulfur and phosphorus. The main points of our analysis are (1) the common inhibition of dehydrogenase in 61 % of studies, stimulation of cellulase in 56 % of studies and no response of aryl-sulfatase in 67 % of studies. (2) Fungicides have mainly negative effects on enzymatic activities. (3) Insecticides can be classified into two groups, the first group represented by endosulfan having an overall positive impact while the second group having a negative effect. (4) Herbicides can be classified into two groups, one group with few positive effect and another group with negative effect.  相似文献   

19.
农药内分泌干扰效应研究进展   总被引:1,自引:1,他引:0  
农药作为农业生产过程中的一类重要生产资料,主要用作杀虫剂、杀菌剂和除草剂等。由于农药的大量使用,目前在各类农产品及各种环境介质中都能被检测到,对饮食健康和环境安全带来潜在危害。研究发现,许多农药为内分泌干扰物,其能够干扰人类和其他生物体的内分泌系统正常功能。本文在总结国内外相关研究的基础上,对农药内分泌干扰效应的作用机理及筛选模型进行总结,对有机氯、有机磷和拟除虫菊酯等各类农药的内分泌干扰效应研究进展进行综述,并提出深入探究农药致毒作用机制和低剂量下多种农药联合毒性是本领域的重要研究方向。  相似文献   

20.
稳定同位素技术主要应用于地球化学,它是将人工合成的同位素标记特定的化合物,追踪标记物在生命活动中的变化规律,目前该项技术也广泛应用于环境微生物学、生态学、生物医学等领域.生物修复是利用存在于土壤、地下水和海洋等环境中的生物特别是微生物将有毒、有害的污染物降解为二氧化碳和水,或转化为无害物质,从而使污染的生态环境修复为正常生态环境的过程.这些降解微生物都来自于小部份可培养微生物,对于大部份未可培养降解微生物,通常在实验室条件下很难得到.而利用稳定同位素技术,如13C标记底物,收集利用该底物的微生物核酸,就可以得到具有降解作用的功能微生物,为环境污染生物修复提供重要的菌源和功能基因.环境中的许多物质都可以用SIP来标记,这些标记物主要有PLFA-SIP、DNA-SIP、RNA-SIP等,它们都可以用来在复杂样本中进行有特殊代谢功能微生物的鉴定和分析,在利用微生物进行生物修复中具有重要的意义.图2表1参42  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号