首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A prerequisite for prey to show adaptive behavioural responses to predators is that the prey has the ability to recognise predators as threats. While predator recognition can be innate in many situations, learning is often essential. For many aquatic species, one common way to learn about predators is through the pairing of a novel predator odour with alarm cues released from injured conspecifics. One study with fish demonstrated that this mode of learning not only allows the prey to recognise the predatory cues as a threat, but also mediates the level of threat associated with the predator cues (i.e. threat-sensitive learning). When the prey is exposed to the novel predator with a high concentration of alarm cues, they subsequently show a high intensity of antipredator response to the predator cues alone. When exposed to the predator with a low concentration of alarm cues, they subsequently show a low-intensity response to the predator cues. Here, we investigated whether larval mosquitoes Culex restuans have the ability to learn to recognise salamanders as a threat through a single pairing of alarm cues and salamander odour and also whether they would learn to respond to salamander cues in a threat-sensitive manner. We conditioned individual mosquitoes with water or a low, medium or high concentration of crushed conspecific cues (alarm cues) paired with salamander odour. Mosquitoes exposed to salamander odour paired with alarm cues and subsequently exposed to salamander odour alone responded to the salamander as a threat. Moreover, the intensity of antipredator response displayed during the conditioning phase matched the response intensity during the testing phase. This is the first demonstration of threat-sensitive learning in an aquatic invertebrate.  相似文献   

2.
Amphibians are able to learn to recognize their future predators during their embryonic development (the ghost of predation future). Here, we investigate whether amphibian embryos can also acquire additional information about their future predators, such as the level of threat associated with them and the time of day at which they would be the most dangerous. We exposed woodfrog embryos (Rana sylvatica) to different concentrations of injured tadpole cues paired with the odor of a tiger salamander (Ambystoma tigrinum) between 1500 and 1700 hours for five consecutive days and raised them for 9 days after hatching. First, we showed that embryos exposed to predator odor paired with increasing concentrations of injured cues during their embryonic development subsequently display stronger antipredator responses to the salamander as tadpoles, thereby demonstrating threat-sensitive learning by embryonic amphibians. Second, we showed that the learned responses of tadpoles were stronger when the tadpoles were exposed to salamander odor between 1500 and 1700 hours, the time at which the embryos were exposed to the salamander, than during earlier (1100–1300 hours) or later (1900–2100 hours) periods. Our results highlight the amazing sophistication of learned predator recognition by prey and emphasize the importance of temporal considerations in experiments examining risk assessment by prey.  相似文献   

3.
Recent investigations have indicated that animals are able to use chemical cues of predators to assess the magnitude of predation risk. One possible source of such cues is predator diet. Chemical cues may also be important in the development of antipredator behaviour, especially in animals that possess chemical alarm substances. Tadpoles of the common toad (Bufo bufo) are unpalatable to most vertebrate predators and have an alarm substance. Tadpoles of the common frog (Rana temporaria) lack both these characters. We experimentally studied how predator diet, previous experience of predators and body size affect antipredator behaviour in these two tadpole species. Late-instar larvae of the dragonfly Aeshna juncea were used as predators. The dragonfly larvae were fed a diet exclusively of insects, R. temporaria tadpoles or B. bufo tadpoles. R. temporaria tadpoles modified their behaviour according to the perceived predation risk. Depending on predator diet, the tadpoles responded with weak antipredatory behaviour (triggered by insect-fed predators) or strong behaviour (triggered by tadpole-fed predators) with distinct spatial avoidance and lowered activity level. The behaviour of B. bufo in predator diet treatments was indistinguishable from that in the control treatment. This lack of antipredator behaviour is probably related to the effective post-encounter defenses and more intense competitive regime experienced by B. bufo. The behaviour of both tadpole species was dependent on body size, but this was not related to predator treatments. Our results also indicate that antipredator behaviour is largely innate in tadpoles of both species and is not modified by a brief exposure to predators. Received: 22 August 1996 / Accepted after revision: 31 January 1997  相似文献   

4.
Little has been done to compare the relative importance of various mechanisms through which prey assess the potential risk from natural enemies. We used predator-naive spider mites (Tetranychus urticae, Tetranychidae) to (1) compare the responses of prey to chemical cues from enemy and non-enemy species and (2) investigate the source of these cues. In the laboratory, we observed the distribution of T. urticae in response to cues from nine mite species, including (1) predators of spider mites, (2) predators/parasites of other animals, and (3) fungivores/pollen-feeders. When given a choice over 24 h, spider mites foraged and oviposited in fewer numbers on leaf discs that were previously exposed to predatory or parasitic mites (including species incapable of attacking spider mites) than on clean leaf discs (unexposed to mites). Interestingly, previous exposure of leaf arenas to fungivores and pollen-feeders had no significant effect on spider mite distribution. We then observed the response of T. urticae to cues from two species of predator that had been reared on a diet of either spider mites or pollen. T. urticae showed stronger avoidance of leaf discs that were previously exposed to spider-mite-fed predators than of discs exposed to pollen-fed predators. Nevertheless, for one predator species (Amblyseius andersoni), T. urticae still preferred to forage and oviposit on clean (unexposed) discs than on discs exposed to pollen-fed predators. Protein-derived metabolic wastes of predatory or parasitic mites may provide a general cue about potential predation risk for T. urticae. However, T. urticae also avoided areas exposed to pollen-fed predators, suggesting there may be other sources of enemy recognition by the spider mites. We discuss the ecological and evolutionary mechanisms that may influence the scope of information through which animals assess predation risk. Received: 11 January 1999 / Received in revised form: 25 October 1999 / Accepted: 20 November 1999  相似文献   

5.
In aquatic environments, many prey rely on chemosensory information from injured (alarm cues) or stressed conspecifics (disturbance cues) to assess predation risk. Alarm cues are considered as a sign of higher risk than disturbance cues. These cues could be used by prey to learn potential new predators. In this study, we tested whether Iberian green frog tadpoles (Pelophylax perezi) exhibited antipredator responses to alarm and disturbance cues of conspecifics and whether tadpoles could associate new predators with alarm or disturbance cues. Tadpoles reduced their activity in the presence of disturbance cues, but only weakly when compared with their response to alarm cues. Also, tadpoles learned to recognize new predators from association with alarm or disturbance cues. However, the period of retention of the learned association was shorter for disturbance than alarm cues. Our results indicate that tadpoles are able to modify their antipredatory behavior according to (1) the degree of risk implied by the experimental cues (2) their previous experience of chemical cues of the predator.  相似文献   

6.
Summary. Recent studies have demonstrated that under weakly acidic conditions (pH 6.0), many prey fishes, including juvenile rainbow trout (Onchorhynchus mykiss), do not exhibit overt antipredator responses to conspecific chemical alarm cues. In laboratory trials, we investigated the potential effects of reduced pH on the ability of hatchery reared, predator naïve juvenile rainbow trout to acquire the recognition of a novel predator (yellow perch, Perca flavenscens). Initially, we exposed trout to the odour of a predatory yellow perch, buffered to pH 6.0 (weakly acidic) or pH 7.0 (neutral) paired with conspecific skin extracts (also buffered to pH 6.0 or 7.0) or a distilled water control. Juvenile trout exhibited significant increase in antipredator behaviour when exposed to neutral skin extract (pH 7.0). When retested 48 hours later to perch odour alone (pH 7.0), only trout initially conditioned with neutral skin extracts (pairs with either neutral or acidic perch odour) exhibited a learned recognition of perch odour as a predator risk. Those initially exposed to weakly acidic skin extract or the distilled water control did not show a learned response to predator odour. These results demonstrate that the ability to acquire the recognition of novel predators is impaired under weakly acidic conditions, as would occur in natural waterways affected by acidic precipitation.  相似文献   

7.
Prey often adopt antipredator strategies to reduce the likelihood of predation. In the presence of predators, prey may use antipredator strategies that are effective against a single predator (specific) or that are effective against several predators (nonspecific). Most studies have been confined to single predator environments although prey are often faced with multiple predators. When more than one predator is present, specific antipredator behaviours can conflict and avoidance of one predator may increase vulnerability to another. To test how prey cope with this dilemma, I recorded the behaviours of lizards responding to the nonlethal cues of a bird and snake presented singly and simultaneously. Lizards use specific and conflicting antipredator tactics when confronted with each predator, as evidenced by refuge use. However, when both predators were present, lizards refuge use was the same as in the predator-free environment, indicating that they abandoned refuge use as a primary mechanism for predator avoidance. In the presence of both predators, they reduced their overall movement and time spent thermoregulating. This shift in behaviour may represent a compromise to minimize overall risk, following a change in predator exposure. This provides evidence of plasticity in lizard antipredator behaviour and shows that prey responses to two predators cannot be accurately predicted from what is observed when only one predator is present.Communicated by W. Cooper  相似文献   

8.
Many prey assess predation risk through predator chemical cues. Numerous studies have shown that (1) prey sometimes respond to chemical cues produced by heterospecifics and (2) that many species are capable of associative learning. This study extends this research by focusing on predation risk assessment and antipredator behavior in environments containing chemical cues produced by multiple prey species. The results show that green frog (Rana clamitans) tadpoles (1) assess risk from the chemical cue produced during predation by a heterospecific (gray tree frog, Hyla versicolor, tadpoles) and (2) can exhibit similarly strong behavioral responses to a mix of conspecific and heterospecific cues compared to conspecific cue alone, depending on their conditioning environment. I then discuss how the prey choice of the predators and the relative abundances of the prey species should influence the informational value of heterospecific cues.  相似文献   

9.
Numerous studies have examined how predator diets influence prey responses to predation risk, but the role predator diet plays in modulating prey responses remains equivocal. We reviewed 405 predator–prey studies in 109 published articles that investigated changes in prey responses when predators consumed different prey items. In 54 % of reviewed studies, prey responses were influenced by predator diet. The value of responding based on a predator’s recent diet increased when predators specialized more strongly on particular prey species, which may create patterns in diet cue use among prey depending upon whether they are preyed upon by generalist or specialist predators. Further, prey can alleviate costs or accrue greater benefits using diet cues as secondary sources of information to fine tune responses to predators and to learn novel risk cues from exotic predators or alarm cues from sympatric prey species. However, the ability to draw broad conclusions regarding use of predator diet cues by prey was limited by a lack of research identifying molecular structures of the chemicals that mediate these interactions. Conclusions are also limited by a narrow research focus. Seventy percent of reviewed studies were performed in freshwater systems, with a limited range of model predator–prey systems, and 98 % of reviewed studies were performed in laboratory settings. Besides identifying the molecules prey use to detect predators, future studies should strive to manipulate different aspects of prey responses to predator diet across a broader range of predator–prey species, particularly in marine and terrestrial systems, and to expand studies into the field.  相似文献   

10.
The ability to discriminate between more dangerous and less dangerous predators can have serious fitness advantages for fish juveniles. This is especially true for hatchery-reared fish young used for stocking, because their post-release mortality is often much higher than that of wild-born conspecifics. We tested whether two coexisting fish predators and their different diets induce innate behavioral responses in predator-naive Arctic charr (Salvelinus alpinus) young originating from an endangered hatchery-bred population used for re-introductions. We predicted the antipredator responses of charr to be stronger towards chemical cues of brown trout (Salmo trutta) and pikeperch (Stizostedion lucioperca) than towards odorless control water. More pronounced antipredator behavior was predicted in treatments with predators fed on charr than when their diet consisted of another sympatric salmonid, European grayling (Thymallus thymallus), or when they were food-deprived. The Arctic charr young showed strong antipredator responses in all brown trout treatments, whereas odors of the less likely predator pikeperch were avoided with conspecific diet only. Freezing was the most sensitive antipredator behavior, as it was completely absent in control treatments. We found considerable individual variation in the amount and strength of antipredator responses. Although almost half of the charr failed to show antipredator behavior towards the piscivores, those with the innate ability showed highly sensitive recognition of predator odors. Our results indicate that the innate antipredator behavior of the juvenile fish is already finely tuned to respond specifically to chemical cues from different fish predators and even their diets.Communicated by J. Krause  相似文献   

11.
Predator–prey relationship was studied in three sympatric species of anuran tadpoles. The study design consisted of allowing predaceous Hoplobatrachus tigerinus tadpoles to devour prey tadpoles (Sphaerotheca breviceps and Bufo melanostictus) placed in a plastic tub (five tadpoles of each species, stage ~27) in 30 min. In trials without refugia, more tadpoles of Bufo fell prey compared to Sphaerotheca. In contrast, provision of refugia using hydrilla plant reversed predation risk of the two species. The swimming speed (V max = 64.55 ± 1.45 cm/s) of Hoplobatrachus tadpoles was much higher compared to the prey species (Bufo: 3.6 ± 0.4 cm/s; Sphaerotheca: 27.6 ± 1.6 cm/s). Poor swimming ability may account for the observed vulnerability of the Bufo tadpoles to predation especially in clear waters; refugia overcame predation to some extent. On the other hand, Sphaerotheca tadpoles that swim faster than the toad tadpoles were less vulnerable in open areas; refugia actually hindered swimming and increased predation. Experiments with association choice tests show that predaceous tadpoles detect prey based on both visual and chemical cues. On the other hand, the prey tadpoles detected predator based exclusively on chemical rather than visual cues. The antipredator defense strategy of the toad tadpoles is manifested in the form of reduced movements, remaining still for longer times and, increased burst speed. The present findings also suggest that in both prey species predator detection has a genetic basis since naive tadpoles with no prior exposure to predators exhibit fright response on first encounter with them.  相似文献   

12.
Biological invasions and habitat alteration are often detrimental to native species, but their interactions are difficult to predict. Interbreeding between native and introduced species generates novel genotypes and phenotypes, and human land use alters habitat structure and chemistry. Both invasions and habitat alteration create new biological challenges and opportunities. In the intensively farmed Salinas Valley, California (U.S.A.), threatened California tiger salamanders (Ambystoma californiense) have been replaced by hybrids between California tiger salamander and introduced barred tiger salamanders (Ambystoma tigrinum mavortium). We conducted an enclosure experiment to examine the effects habitat modification and relative frequency of hybrid and native California tiger salamanders have on recruitment of salamanders and their prey, Pacific chorus frogs (Pseudacris regilla). We tested whether recruitment differed among genetic classes of tiger salamanders (hybrid or native) and pond hydroperiod (seasonal or perennial). Roughly 6 weeks into the experiment, 70% (of 378 total) of salamander larvae died in 4 out of 6 ponds. Native salamanders survived (n = 12) in these ponds only if they had metamorphosed prior to the die‐offs. During die‐offs, all larvae of native salamanders died, whereas 56% of hybrid larvae died. We necropsied native and hybrid salamanders, tested water quality, and queried the California Department of Pesticide Regulation database to investigate possible causes of the die‐offs. Salamander die‐offs, changes in the abundance of other community members (invertebrates, algae, and cyanobacteria), shifts in salamander sex ratio, and patterns of pesticide application in adjacent fields suggest that pesticide use may have contributed to die‐offs. That all survivors were hybrids suggests that environmental stress may promote rapid displacement of native genotypes. Efectos Letales de la Calidad del Agua sobre Salamandras de California Amenazadas pero no sobre Salamandras Híbridas Concurrentes  相似文献   

13.
Summary. In amphibians and fishes, evidence is increasing that chemical cues from injured conspecifics can play a role in the chemical labelling and learned recognition of unfamiliar predators. In this laboratory study, we tested the prediction that prior chemical exposure to a non-native predator feeding on conspecific tadpoles will subsequently allow tadpoles of the common toad (Bufo bufo) to recognize the chemical cues specifically released by this starved predator. Furthermore, we investigated the vulnerability of this chemically-mediated process to herbicide contamination. With these aims in view, groups of tadpoles were kept either unexposed or exposed for ten days to chemical cues from Turkish crayfish (Astacus leptodactylus) previously fed on tadpoles, both in uncontaminated water and in the presence of four sublethal concentrations of amitrole (0.01, 0.1, 1 and 10 mg.l−1). We then assessed the effects of the six conditioning treatments on general activity and behavioural response to chemical cues from starved crayfish. Larval treatments did not affect the general activity of the tadpoles. By contrast, the treatments had significant effects on the behavioural response to the test solution prepared form starved crayfish. The only tadpoles to show an antipredator behavioural response to the chemical stimulation from starved crayfish belonged to the groups derived from chemical exposure to tadpole-fed crayfish in uncontaminated water and in contaminated water with the lowest concentration of amitrole (0.01 mg.l−1). Conversely, this chemical stimulation produced no behavioural change in the control group or in the groups derived from exposure to tadpole-fed crayfish in contaminated water containing 0.1, 1 and 10 mg.l−1 of amitrole. This study demonstrates that chemical cues released during the predator’s feeding activity can subsequently be used by common toad tadpoles in the recognition of an unfamiliar predator. In addition, our results show that the presence of sublethal amitrole concentrations can impair this recognition process. Such a pesticide effect might be especially detrimental for amphibian populations threatened by invasive predators.  相似文献   

14.
Effective coordination of behaviors such as foraging and avoiding predators requires an assessment of cues provided by other organisms. Integrating cues from multiple sensory modalities may enhance the assessment. We studied cue integration by tadpoles of Oophaga pumilio, which live in small arboreal water pools. In this species, mothers periodically visit their tadpoles and feed them with unfertilized eggs. When mothers visit, tadpoles beg conspicuously by vibrating until fed. However, animals other than mother frogs including potential predators may visit water pools. Thus, when a visitor appears, tadpoles must use visitor cues to decide whether to beg or to remain inactive to avoid predation. To elucidate the cues that prompt these behaviors, we videotaped behavior of O. pumilio tadpoles in response to isolated and multimodal cues. Tadpoles swam more when exposed to visual or visual and chemical cues of adult O. pumilio but only exhibited begging when exposed to visual, chemical, and tactile cues together. Visual, chemical, and tactile cues from either male or female adult O. pumilio stimulated swimming and begging, but the same cues from similarly sized heterospecific frogs did not. Lastly, tadpoles exposed to a potential predator did not beg and swam less than tadpoles with no stimulus. Together, these findings suggest that O. pumilio tadpoles use multimodal cues to modulate swimming behavior accordingly in the presence of egg provisioners, predators, and other visitors and that tadpole begging is induced by multimodal cues of conspecific frogs such that tactile and perhaps chemical cues supplement visual cues.  相似文献   

15.
According to the threat-sensitive predator avoidance hypothesis, selection favors prey that accurately assess the degree of threat posed by a predator and adjust their anti-predator response to match the level of risk. Many species of animals rely on chemical cues to estimate predation risk; however, the information content conveyed in these chemical signatures is not well understood. We tested the threat-sensitive predator avoidance hypothesis by determining the specificity of the information conveyed to prey in the chemical signature of their predator. We found that fathead minnows (Pimephales promelas) could determine the degree of threat posed by northern pike (Esox lucius) based on the concentration of chemical cues used. The proportion of minnows that exhibited an anti-predator response when exposed to a predator cue increased as the concentration of the pike cue used increased. More surprisingly, the prey could also distinguish large pike from small pike based on their odor alone. The minnows responded more intensely to cues of small pike than to cues of large pike. In this predator–prey system small pike likely represent a greater threat than large pike.Communicated by A. Mathis  相似文献   

16.
Antipredator behavior studies generally assess prey responses to single predator species although most real systems contain multiple species. In multi-predator environments prey ideally use antipredator responses that are effective against all predator species, although responses may only be effective against one predator and counterproductive for another. Multi-predator systems may also include introduced predators that the prey did not co-evolve with, so the prey may either fail to recognize their threat (level 1 naiveté), use ineffective responses (level 2 naiveté) or succumb to their superior hunting ability (level 3 naiveté). We analyzed microhabitat selection of an Australian marsupial (koomal, Trichosurus vulpecula hypoleucus) when faced with spatiotemporal differences in the activity/density levels of one native (chuditch, Dasyurus geoffroii) and two introduced predators (red fox, Vulpes vulpes; feral cat, Felis catus). From this, we inferred whether koomal recognized introduced predators as a threat, and whether they minimized predation risk by either staying close to trees and/or using open or dense microhabitats. Koomal remained close to escape trees regardless of the predator species present, or activity/density levels, suggesting koomal employ this behavior as a first line of defense. Koomal shifted to dense cover only under high risk scenarios (i.e., with multiple predator species present at high densities). When predation risk was low, koomal used open microhabitats, which likely provided benefits not associated with predator avoidance. Koomal did not exhibit level 1 naiveté, although further studies are required to determine if they exhibit higher levels of naiveté (2–3) against foxes and cats.  相似文献   

17.
Understanding prey response to predators and their utilization of sensory cues to assess local predation risk is crucial in determining how predator avoidance strategies affect population demographics. This study examined the antipredator behaviors of two ecologically similar species of Caribbean coral reef fish, Coryphopterus glaucofraenum and Gnatholepis thompsoni, and characterized their responses to different reef predators. In laboratory assays, the two species of gobies were exposed to predator visual cues (native Nassau grouper predator vs. invasive lionfish predator), damage-released chemical cues from gobies, and combinations of these, along with appropriate controls. Behavioral responses indicate that the two prey species differ in their utilization of visual and chemical cues. Visual cues from predators were decisive for both species’ responses, demonstrating their relative importance in the sensory hierarchy, whereas damage-released cues were a source of information only for C. glaucofraenum. Both prey species could distinguish between native and invasive predators and subsequently altered their antipredator responses.  相似文献   

18.
Attributes of the recipient community may affect the invasion success of arriving non-indigenous organisms. In particular, biotic interactions may enhance the resistance of communities to invasion. Invading organisms typically encounter a novel suite of competitors and predators, and thus their invasiveness may be affected by how they cope with these interactions. Behavioral plasticity may help invaders to respond appropriately to novelty. We examined the behavioral responses of highly invasive mosquitofish to representative novel competitors and predators they might encounter as they spread through North America. We compared the behavior of invasive Gambusia holbrooki and G. affinis to that of two close relatives of lower invasive potential (G. geiseri and G. hispaniolae) in order to elucidate whether responses to novelty related to invasiveness. In short-term assays, female Gambusia were paired with a novel competitor, Pimephales promelas, and a novel predator, Micropterus dolomieu. Behavioral responses were measured in terms of foraging success and efficiency, activity, refuge use, predator inspections, and interspecific aggression. Contrary to a priori predictions, invasive and non-invasive responses to novel interactions did not differ consistently. In response to novel competition, both invasive species increased foraging efficiency, but so did G. geiseri. In response to novel predation, only G. holbrooki decreased consumption and activity and increased refuge use. No antipredator response was observed in G. affinis. We found consistent differences, however, between invasives and non-invasives in foraging behavior. Both in the presence and absence of the competitor and the predator, invasives foraged more efficiently and consumed more prey than non-invasives.Communicated by P. Bednekoff  相似文献   

19.
Behavioural ecology is rife with examples of prey animals that are able to adjust the intensity of their anti-predator response to match background risk levels. Often, preys need experience with predators before they will invest in costly anti-predator responses. This means that prey animals often fail to respond to predators during their first encounter. Recently, we have shown that prey raised under high-risk conditions may exhibit avoidance of potential predation cues independent of experience (neophobia). Such phenotypically plastic neophobic predator responses may reduce the initial costs of learning ecologically relevant threats while maintaining sufficient behavioural plasticity to respond to variation in local conditions. Here, we test if induced neophobia results in threat-sensitive behavioural trade-offs in response to a novel chemosensory cue. Our first experiment shows that while juvenile convict cichlids (Amatitlania nigrofasciata) pre-exposed to high (but not low) risk conditions exhibited predator avoidance to a novel odour (rainbow trout, Oncorhynchus mykiss), the response intensity was not influenced by the concentration of trout odour detected. Our second experiment demonstrated that the intensity of anti-predator response towards a novel predator cue was dependent upon the level of background risk. Convict cichlids pre-exposed to high-risk conditions showed stronger responses than those pre-exposed to low-risk conditions, while cichlids pre-exposed to intermediate-risk conditions exhibited intermediate response intensities. Together, these data demonstrate that background levels of risk and not the concentration of novel cues detected shape the induced neophobic response pattern of juvenile convict cichlids.  相似文献   

20.
Abstract:  Managing areas designed for human recreation so that they are compatible with natural amphibian populations can reduce the negative impacts of habitat destruction. We examined the potential for amphibians to complete larval development in golf course ponds in the presence or absence of overwintered bullfrog tadpoles ( Rana catesbeiana ), which are frequently found in permanent, human-made ponds. We reared larval American toads ( Bufo americanus ), southern leopard frogs ( R. sphenocephala ), and spotted salamanders ( Ambystoma maculatum ) with 0 or 5 overwintered bullfrog tadpoles in field enclosures located in ponds on golf courses or in experimental wetlands at a reference site. Survival to metamorphosis of American toads, southern leopard frogs, and spotted salamanders was greater in ponds on golf courses than at reference sites. We attributed this increased survival to low abundance of insect predators in golf course ponds. The presence of overwintered bullfrogs, however, reduced the survival of American toads, southern leopard frogs, and spotted salamanders reared in golf course ponds, indicating that the suitability of the aquatic habitats for these species partly depended on the biotic community present. Our results suggest that ponds in human recreational areas should be managed by maintaining intermediate hydroperiods, which will reduce the presence of bullfrog tadpoles and predators, such as fish, and which may allow native amphibian assemblages to flourish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号