首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
黄河三角洲自然保护区的酶活性季节特征一定程度影响了该地植被分布类型,为研究黄河三角洲自然保护区不同植被土壤酶活性的季节特征,分别选取碱蓬(Suaeda salsa)、柽柳(Tamarix chinensis)、芦苇(Phragmites communis)、刺槐(Black Locust)和高粱(Sorghum)5种典...  相似文献   

2.
The present study aims to analyze the interaction of prevailing biotic pressure on soil environment with emphasis on its physicochemical and microbiological characteristics determining soil fertility status and thus supporting plant and animal biodiversity in Nanda Devi Biosphere Reserve (NDBR) which is located in northern part of Uttaranchal hills between 79 degrees 40'E to 80 degrees 05'E longitude and 30 degrees 17'N to 30 degrees 41'E latitude. The experimental results revealed that the physico-chemical characteristics (viz., moisture, pH, EC, C, N, P, K, CEC) of soil were maximum in moderately grazed meadow and minimum in intensively grazed meadow. Soil microbial analysis measured in terms of total viable count (TVC) exhibited grazing sensitivity trend being maximum population of bacteria > fungi > actinomycetes. The soil microbial population was positively correlated with soil respiration, dehydrogenase activity, acid phosphatase and microbial biomass, which exhibited uneven trend with grazing pressure. Soil from moderately grazed meadow showed highest microbial count and enzyme activities, whilst intensively grazed meadow showed lowest microbial count and enzyme activities. This depicts the beneficial role of prescribed grazing up to limited extent in management of soil fertility, which might have supported luxuriant growth of a variety of grasses.  相似文献   

3.
城市土壤重金属和有机污染物复合污染广泛存在,而城市草坪除草剂的应用使城市绿地土壤的农药污染问题成为了新的关注点。为了准确评价城市绿地重金属污染土壤的农药污染生态风险,选择不同重金属污染程度的土壤为研究对象,以土壤有机氮矿化量、基础呼吸以及土壤酶活性为指标,采用室内模拟试验方法,探讨了草坪除草剂环草隆污染对土壤微生物的生态毒理效应。结果表明:(1)土壤有机氮矿化、基础呼吸、芳基硫酸酯酶和碱性磷酸酶对重金属和环草隆污染响应较为敏感,脲酶和蔗糖酶对重金属和环草隆污染不敏感。(2)环草隆浓度为0~1 000 mg·kg~(-1)范围内,和污染较轻的样点N土壤的碱性磷酸酶活性抑制(激活)率的线性相关关系显著,和污染较为严重的样点D和G土壤的芳基硫酸酯酶活性抑制(激活)率的线性关系显著。(3)土壤中环草隆对样点D和G土壤芳香硫酸酯酶活性、对样点N土壤碱性磷酸酶活性抑制(激活)率的EC10分别为568 mg·kg~(-1)、1 306 mg·kg~(-1)(抑制值)和56 mg·kg~(-1)(激活值)、99 mg·kg~(-1),EC50分别为1 901 mg·kg~(-1)、3 806 mg·kg~(-1)、2 321 mg·kg~(-1)。以上研究结果能够为城市土壤重金属和农药复合污染生态风险评价提供基础数据和技术方法。  相似文献   

4.
The objectives of this study were to elucidate the effects of soil amendments [Ferrous sulfate (FeII), red mud, FeII with calcium carbonate (FeII/L) or red mud (RM/F), zero-valent iron (ZVI), furnace slag, spent mushroom waste and by-product fertilizer] on arsenic (As) stabilization and to establish relationships between soil properties, As fractions and soil enzyme activities in amended As-rich gold mine tailings (Kangwon and Keumkey). Following the application of amendments, a sequential extraction test and evaluation of the soil enzyme activities (dehydrogenase and β-glucosidase) were conducted. Weak and negative relationships were observed between water-soluble As fractions (AsWS) and oxalate extractable iron, while AsWS was mainly affected by dissolved organic carbon in alkaline tailings sample (Kangwon) and by soil pH in acidic tailings sample (Keumkey). The soil enzyme activities in both tailings were mainly associated with AsWS. Principal component and multiple regression analyses confirmed that AsWS was the most important factor to soil enzyme activities. However, with some of the treatments in Keumkey, contrary results were observed due to increased water-soluble heavy metals and carbon sources. In conclusion, our results suggest that to simultaneously achieve decreased AsWS and increased soil enzyme activities, Kangwon tailings should be amended with FeII, FeII/L or ZVI, while only ZVI or RM/F would be suitable for Keumkey tailings. Despite the limitations of specific soil samples, this result can be expected to provide useful information on developing a successful remediation strategy of As-contaminated soils.  相似文献   

5.
镧施用下黄潮土酶活性的动态变化   总被引:1,自引:0,他引:1  
通过模拟试验研究了镧施用下黄潮土酶活性的动态变化。土壤脱氢酶、碱性磷酸酶、脲酶及蔗糖酶活性均随培养时间延长而降低。镧强烈抑制土壤脱氢酶活性 ,在 3 0mg/kg时达到显著水平 (P <0 0 5 ) ,最大抑制率达到 3 9%。镧对土壤碱性磷酸酶活性也有抑制 ,最大抑制率为 1 5 %。镧对土壤脲酶活性影响不明显。镧对土壤蔗糖酶活性表现出不同程度的刺激作用 ,最大刺激率达到 1 5 %。土壤脱氢酶活性是评价稀土元素环境效应的敏感指标。  相似文献   

6.
A field experiment was conducted to study the dissipation kinetics of herbicides pendimethalin and oxyfluorfen in black soil of peanut field at half recommended rate (HRE), recommended rate and double recommended rate as well as to assess their effects on soil microbial parameters and enzymatic activities. In addition, their role in the transformations and availability of some plant nutrients like nitrogen transformation (through ammonification and nitrification processes) and availability of phosphorous were also studied. Incorporation of these herbicides was found to stimulate the activity of soil microbial biomass carbon, fluorescein diacetate hydrolysing activity, alkaline phosphatase and ammonification rates, while dehydrogenase activity, acid phosphatase, nitrification rate and available phosphorous was adversely affected. However, urease remains almost unchanged except for little stimulation at later stages. Dissipation of pendimethalin and oxy?uorfen followed first-order reaction kinetics with half-life (T1/2) of 13.7–20.1 and 21.5–27.4 days, respectively. Residues of both herbicides persisted up to 60 days in the soil at all the doses except 45 days for pendimethalin at HRE.  相似文献   

7.
The vegetation effects on changes of soil physicochemical properties and microbial activities in the costal sand dune were investigated to understand the roles of vegetation on sand dune ecosystem. Eight sites from six vegetation zones and two bare zones in the dune front, dune crest, and dune back regions were selected. Soil microbial enzyme activities of β-glucosidase, acid phosphatase, arylsulfatase, and dehydrogenase, and soil physicochemical properties of each site were evaluated. The results showed that all the enzyme activities were higher in the mixed vegetation sites with native sand dune plants and naturalized plants and in Pinus thunbergii community site both located in the dune back regions where the accumulation of organic matter and nitrogen were more prominent. The results demonstrated that soil organic matter and nutrients are the primary determinants of the microbial activity in sand dune where are exposed to a gradient of physicochemical stress such as high salinity, moisture and salt spray. Therefore, the conservation of vegetation that generates more soil organic matter and nutrients is important factor in controlling the soil microbial activities and biogeochemical cycles in the coastal sand dune systems.  相似文献   

8.
Effects of pesticides on soil enzymes: a review   总被引:4,自引:0,他引:4  
The use of pesticides in agriculture has highly increased during the last 40 years to increase crop yields. However, today most pesticides are polluting water, soil, atmosphere and food. Pesticides are also impact soil enzymes, which are essential catalysts ruling the quality of soil life. In particular, the activity of soil enzymes control nutrient cycles, and, in turn, fertilization. Here, we review the effects of pesticides on the activity of soil enzymes in terrestrial ecosystems. Enzymes include dehydrogenase, fluorescein diacetate hydrolase, acid phosphatase, alkaline phosphatase, phosphatase, β-glucosidase, cellulase, urease and aryl-sulfatase. Those enzymes are involved in the cycles of carbon, nitrogen, sulfur and phosphorus. The main points of our analysis are (1) the common inhibition of dehydrogenase in 61 % of studies, stimulation of cellulase in 56 % of studies and no response of aryl-sulfatase in 67 % of studies. (2) Fungicides have mainly negative effects on enzymatic activities. (3) Insecticides can be classified into two groups, the first group represented by endosulfan having an overall positive impact while the second group having a negative effect. (4) Herbicides can be classified into two groups, one group with few positive effect and another group with negative effect.  相似文献   

9.
Acid and alkaline phosphatase activities have been partially characterized in Ruditapes philippinarum (Adams and Reeve, 1850). Two activity peaks at pH=4.5 and pH 10.5 were detected in the gill, digestive gland, mantle, siphon and foot. Acid phosphatase activity was higher than that of alkaline phosphatase. The highest activity for both enzymes was observed in the digestive gland and, in decreasing order, the gill, foot, siphon and mantle. Alkaline phosphatase activity was similar in the mantle, siphon and foot. K m values were determined for both enzymes in the gill and digestive gland. Hill coefficients were near 1, indicating no allosteric behaviour for either enzyme in the two organs. The optimum temperature was the same for acid phosphatase in both gill and digestive gland (50 °C), while for alkaline phosphatase it differed for these two organs (gill, 40 °C; digestive gland, 35 °C). The apparent activation energy was obtained from Arrhenius plots, and ranged from 8.61 kcal/mol for alkaline phosphatase in the gill, to 10.84 kcal/mol for acid phosphatase in the digestive gland. The effects of metals (1 mM conc) on both enzyme activities were assayed in vitro. Hg strongly inhibited the enzyme activities in the gill and digestive gland, probably because of its affinity for the sulphydryl group. Histochemically, acid phosphatase in the gill was located in a granular form throughout the gill cells, but was undetectable in the ciliate epithelium of the gill filaments. Alkaline phosphatase was located in the gill skeleton. Clam size and phosphatase activities were inversely related, probably reflecting a decrease in shell deposition with inereasing size. As a function of season, both enzymes were present in lowest amounts in winter, when undifferentiated sex cells were predominant in the germinative epithelium, and highest in summer, when ripe individuals of both sexes were more frequent.  相似文献   

10.
The activities of extracellular enzymes are important in understanding decomposition of soil organic matter in wetlands subjecting to drying. The activity of soil extracellular enzymes (β-glucosidase, N-acetylglucosaminidase, and phosphatase), and related physicochemical parameters were monitored in constructed freshwater wetlands during a one-month drying manipulation. Drying increased redox potential and decreased soil water content significantly (P<0.05). Higher content of soil organic matter (P<0.05) and higher concentrations of inorganic N (nitrate, P<0.01; and ammonia, P<0.001) were also observed significantly under drying condition. Soil hydrolase enzyme activities were stimulated significantly (β-glucosidase, P<0.05; N-acetylglucosaminidase, P<0.01; and phosphatase, P<0.001), and a two-phase pattern of enzyme activities was revealed under drying condition. The increase of soil enzyme activities under drying condition was significantly related to soil redox potential (P<0.001). Drying strongly affected soil enzyme activities only when soil water content remained above an optimal level for enzymatic catalysis (higher than 23% w/w), corresponding to redox potentials below 250–300 mV. Our results suggest that, under drying condition, potential enzyme activities may be regulated by redox potential, in respect to soil moisture, and consequently alter nutrient availability in wetlands.  相似文献   

11.
三江平原小叶章湿地土壤酶活性的季节动态   总被引:2,自引:0,他引:2  
万忠梅  宋长春 《生态环境》2010,19(5):1215-1220
选取三江平原小叶章(Calamagrostis angustifolia)沼泽湿地为研究对象,于5—9月采集0~20cm土壤样品,分析了小叶章湿地土壤酶活性的季节动态变化,并探讨了其与土壤有机碳和全氮含量的关系。结果表明:小叶章湿地土壤脲酶、蔗糖酶、淀粉酶、纤维素酶、酸性磷酸酶、过氧化氢酶活性具有明显的季节变化特点,变异系数分别为13.1%、7.9%、13.6%、9.8%、5.0%、27.0%。土壤脲酶、蔗糖酶、酸性磷酸酶、过氧化氢酶、纤维素酶活性具有相似的动态规律,均在6月份出现一个波峰值,但最大值出现的月份不同,脲酶、蔗糖酶、纤维素酶在9月份时的酶活性最高,而酸性磷酸酶和过氧化氢酶在6月份时酶活性最高。淀粉酶活性动态规律表现为5—7月酶活性降低,而后酶活性升高,9月份酶活性最高,此时淀粉酶的水解能力最大。并且,随着季节变化,小叶章湿地土壤脲酶、蔗糖酶、纤维素酶活性与有机碳含量显著正相关(p〈0.05),淀粉酶、酸性磷酸酶活性与土壤全氮含量显著正相关(p〈0.05)。  相似文献   

12.
植物群落对铜尾矿废弃地土壤微生物量和酶活性的影响   总被引:1,自引:0,他引:1  
以铜尾矿废弃地为对象,研究了铜尾矿废弃地上植物群落发展与表层尾矿微生物量C、N和脱氢酶、过氧化氢碱性磷酸酶和脲酶活性的变化,探讨了植物群落-微生物量C、N_土壤酶活性之间的相互关系.结果表明,随着植物群落的发展,铜尾矿废弃地表层尾矿微生物量和酶活性在不断增加;铜官山老尾矿废弃地白茅群落下表层尾矿(TBM)微生物量和酶活性与杨山冲尾矿废弃地及铜官山新尾矿废弃地表层尾矿微生物量和酶活性存在显著差异性(p<0.05).相关分析表明铜尾矿废弃地表层尾矿微生物量C、N与土壤有机质、总氮之间呈显著正相关(P<0.01);脱氧酶、碱性磷酸酶及脲酶与微生物量C、微生物量N、土壤有机质、总氮之问呈显著正相关(P<0.01),但过氧化氢酶与微生物量C、微生物量N、土壤有机质、总氮之间呈显著负相关(P<0.01).  相似文献   

13.
Under the intensive agricultural system, direct application of animal slurries to soils can provide a sustainable disposal of these wastes by inducing positive changes in soil quality and fertility. However, how animal wastes quantitatively affect the key nutrients (C, N, P and S) transforming soil enzymes is not clearly known. A greenhouse spinach cultivation study demonstrated that pig slurry, either in raw (RS) or processed (aerobically aged) (PS) form, significantly (p?β-glucosidase (23–39%), urease (59–103%), nitrate reductase (73–103%) and dehydrogenase (27–72%)) and microbial growth in soil as compared to the unamended control. However, it did not significantly (p?>?.05) alter the aryl sulphatase enzyme activity. Slurry applications also significantly improved the macro (N, P and K) and micronutrients (Cu, Mn, Zn and Fe) uptake by spinach plant and hence the yield (2.9–3.38 times higher than control). Similarly, compared to chemical fertilisers the application of pig slurries improved soil biological and biochemical parameters as well as plant nutrients uptake. This study demonstrated the closing of global energy and nutrient cycles through land application of animal wastes without compromising the crop yield.  相似文献   

14.
Microbial processes, particularly enzyme activities, play crucial functional roles in soil ecology, hence serving as sensitive indicators of soil quality. We assessed the temporal dynamics of microbial biomass and selected soil enzymes (β-d-glucosidase, cellobiohydrolase, polyphenol oxidase, urease, glycine-aminopeptidase and alkaline phosphatase) during wheat cultivation, under four different tillage practices in the rice–wheat system. The four practices involved conventional tilling of soil before cultivating each crop (CTR-CTW); no tilling before cultivating rice but conventional tillage before wheat (NTR-CTW); conventional tilling before cultivating rice but no tilling before wheat (CTR-NTW) and no tilling before cultivation of each crop (NTR-NTW). Microbial biomass and activities of hydrolytic enzymes increased under NTR-NTW followed by CTR-NTW and NTR-CTW with respect to the conventional practice CTR-CTW, thus reflecting improvement in microbial activities with reduced tillage frequency. Enzyme activities generally depended on soil moisture and temperature, but nature of relationships varied among different practices. Nutrient demand appeared to be the strongest driver of alkaline phosphatase and urease, and soil temperature for glycine-aminopeptidase. Under CTR-CTW, activities of most of the extracellular enzymes were related with β-d-glucosidase or urease, but such relations altered under rest of the practices. The study showed that extracellular soil enzymes respond sensitively to tillage practices as well as environmental variables, particularly soil temperature and moisture and hence can serve as a sensitive indicator of changes in soil processes. Considering improvement in microbial biomass and enzymatic activities as indicators of better soil quality, adoption of no tillage apparently improved soil quality. Still, more number of field studies are required under tillage managements to explore the relationships between different enzyme activities and environmental factors.  相似文献   

15.
Changes of Soil Enzyme Activities By Simulated Acid and Nitrogen Deposition   总被引:1,自引:0,他引:1  
Effects of acid and nitrogen depositions on soil microbial activities were studied in a laboratory-based experiment. Five treatments were added to forest soil for five weeks, and soil enzyme activities were determined along with chemical properties. There was little change in pH and nitrogen availability. Dehydrogenase, phosphatase and arylsulphatase activities were decreased by all the acidic treatments compared to the control, while urease activity was increased by the pH 4 treatment. at the same pH treatment, different nitric acid contents induced different urease activities. the results suggest that acid deposition would inhibit microbial activities and that more study is needed to elucidate the impact on nitrogen cycling in forests.  相似文献   

16.
宁夏引黄灌区农田土壤酶活性及其空间变异   总被引:3,自引:3,他引:3  
采集了同一地点不同土地利用方式,及不同地点不同典型土地利用类型下银川平原的灌淤土样品,在分析了土壤基本理化性质的基础上,用奈氏比色法、苯磷酸二钠比色法和高锰酸钾滴定法,分别测定了宁夏引黄灌区农田不同利用方式下土壤的磷酸酶、脲酶、过氧化氢酶的活性状况,并对土壤酶活性与土壤的基本理化性质的相关性进行了相关分析。结果表明,土地利用方式对三种酶活性有很大的影响。12年果园磷酸酶活性最高,常年旱田脲酶和过氧化氢酶活性最高,而盐化旱田及常年淹水的稻田,三种酶活性都很低。脲酶活性与土壤全氮之间显著正相关,全磷与三种酶活性都极显著相关,三种酶之间达到显著或极显著正相关关系。表明磷酸酶、脲酶和过氧化氢酶活性的大小可以敏感地表征宁夏引黄灌区土壤肥力和生产力的高低。  相似文献   

17.
运用典范相关分析(canonical correlation analysis)对桉树人工林地土壤酶活性和土壤营养元素含量关系的研究表明,土壤过氧化氢酶,脲酶和蛋白酶活性与土壤营养元素N,P,K含量关系最大,其中地氧化氢酶与桉树土壤K听转化,K的固定关系密切,对土壤中主要营养物质N素的转化具有重要作用,脲酶的活性同桉树土壤N,P的转化关系密切,蛋白酶促进土壤对植物氮源的供给,而转化酶与P的转化也有一定相关,Zn在一定程度上对转化酶有正效庆,即有促进作用。结合林地生物的生长特征等因子,“综合土壤酶因子”可作为土壤肥力评价的一个生物学指标。图2表4参16  相似文献   

18.
O3浓度升高对麦田土壤碳、氮含量和酶活性的影响   总被引:1,自引:0,他引:1  
近地层O3作为全球最重要的大气污染物之一,其对作物的生长发育、土壤酶活性、土壤碳、氮的影响机制已成为人们关注的重要问题。采用开顶式气室(OTCs)法模拟研究O3浓度升高对冬小麦土壤碳、氮含量和酶活性的影响。结果表明,O3浓度升高导致麦田0~10 cm和10~20 cm土层的全碳(TC)和全氮(TN)含量呈现出下降的趋势。O3浓度升高对土壤酶活性也有影响。在冬小麦灌浆期,O3胁迫可促进土壤脱氢酶活性提高。当O3浓度为120 nL·L-1时,0~10 cm、10~20 cm和20~40 cm土层的脱氢酶活性分别比对照处理提高59.4%、51.5%和22.2%。O3胁迫对土壤转化酶活性的影响随着冬小麦生长期和土壤采样深度的不同而发生变化。在冬小麦拔节期,O3处理对不同土层脲酶活性的影响没有达到显著差异水平,但是在灌浆期,20~40 cm土层的脲酶活性随着O3浓度的增加而提高,在120 nL·L-1浓度O3处理下脲酶活性比对照处理提高24.6%。在O3胁迫条件下土壤转化酶活性与土壤全碳含量、土壤脲酶活性与土壤全氮含量均呈现出显著的正相关关系。  相似文献   

19.
重金属积累对土壤酶活性的影响   总被引:10,自引:0,他引:10  
研究了华北平原某铅冶炼厂附近农田33个土壤样品中重金属积累对土壤酶活性的影响。结果表明,样品中Pb和Cd全量的平均值分别为144和5.59mg·kg-1,DTPA态Pb和Cd含量平均值分别为54.1和0.964mg·kg-1,均超过了未污染农田潮土的正常范围,而Cu、Ni和Zn的有效性和全量与未污染土壤接近;土壤过氧化氢酶活性与DTPA态Pb和Cd含量、全Pb含量均呈显著的负线性关系(P<0.01);与磷酸酶和脲酶相比,土壤脱氢酶活性更易受到土壤中Pb和Cd积累的影响;随DTPA-Ni含量增加,土壤蛋白酶和碱性磷酸酶活性增加(P<0.1);土壤脲酶活性与重金属全量或有效态重金属含量无显著相关性(P>0.1)。以上结果说明,利用土壤过氧化氢酶和脱氢酶活性能够表征基本性质较为一致的土壤中重金属污染程度;与重金属全量相比,有效态重金属对土壤酶活性影响更大。  相似文献   

20.
菲和镉复合污染对土壤微生物的生态毒理效应   总被引:16,自引:1,他引:15  
以土壤酶活性和微生物数量作为生态毒理指标,通过模拟试验,比较分析多环芳烃菲和重金属镉单一与复合污染对土壤微生物的生态毒理效应.结果表明,菲和镉复合污染对土壤蔗糖酶、脲酶和脱氢酶均具有协同抑制作用;而对磷酸酶和微生物的数量具有拮抗抑制作用.菲和镉复合污染及菲单一污染对土壤微生物的活性抑制率从大到小依次为:放线菌>真菌>细菌;镉单一污染则为:真菌>细菌>放线菌.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号