首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Stable isotopic compositions of hydrothermal vent organisms   总被引:4,自引:0,他引:4  
Stable isotopic analyses were used to study trophic relationships in two communities of deep-sea hydrothermal vent organism in the Pacific Ocean. The community at Hanging Gardens on the East Pacific Rise (21°N), sampled in 1985, is dominated by two species of vestimentiferan tubeworms; communities at Alice Springs and Snail Pits on the Marianas Back Arc Spreading Center (western Pacific), sampled in 1987, are dominated by gastropod mollusks, barnacles, and anemones. In both locations, carbon and nitrogen isotopic values of vent invertebrates are significantly different from those of non-vent invertebrates collected at 11°N on the East Pacific Rise and elsewhere in the deep-sea. These distinct isotopic compositions reflect local sources of organic carbon and nitrogen used by vent consumers. Many vent invertebrates lacking chemoautotrophic endosymbionts have 13C-enriched values of-11 to-16%. compared to values of-17 to-22%. normally observed in deep-sea fauna. This suggests that a 13C-enriched food source is trophically important in both vent communities. Free-living bacteria colonizing surfaces and suspended in the water column may constitute this food resource. Nitrogen isotopic analyses show that the food web of the East Pacific Rise community has more trophic levels than the Marianas vent community.  相似文献   

2.
Predicting the dynamics of ecosystems requires an understanding of how trophic interactions respond to environmental change. In Antarctic marine ecosystems, food web dynamics are inextricably linked to sea ice conditions that affect the nature and magnitude of primary food sources available to higher trophic levels. Recent attention on the changing sea ice conditions in polar seas highlights the need to better understand how marine food webs respond to changes in such broad-scale environmental drivers. This study investigated the importance of sea ice and advected primary food sources to the structure of benthic food webs in coastal Antarctica. We compared the isotopic composition of several seafloor taxa (including primary producers and invertebrates with a variety of feeding modes) that are widely distributed in the Antarctic. We assessed shifts in the trophic role of numerically dominant benthic omnivores at five coastal Ross Sea locations. These locations vary in primary productivity and food availability, due to their different levels of sea ice cover, and proximity to polynyas and advected primary production. The delta15N signatures and isotope mixing model results for the bivalves Laternula elliptica and Adamussium colbecki and the urchin Sterechinus neumeyeri indicate a shift from consumption of a higher proportion of detritus at locations with more permanent sea ice in the south to more freshly produced algal material associated with proximity to ice-free water in the north and east. The detrital pathways utilized by many benthic species may act to dampen the impacts of large seasonal fluctuations in the availability of primary production. The limiting relationship between sea ice distribution and in situ primary productivity emphasizes the role of connectivity and spatial subsidies of organic matter in fueling the food web. Our results begin to provide a basis for predicting how benthic ecosystems will respond to changes in sea ice persistence and extent along environmental gradients in the high Antarctic.  相似文献   

3.
The location of an animal within a social group has important effects on feeding success. When animals consume quickly eaten food items, individuals located at the front edge of a group typically have greater foraging success. When groups feed at large clumped resources, dominant individuals can often monopolize the resource, leading to higher feeding success in the center of the group. In order to test these predictions, behavioral data relating foraging success to within-group spatial position were recorded from two habituated groups of ring-tailed coatis (Nasua nasua) in Iguazu, Argentina. Foraging success did not fit expected patterns. When feeding on small ground litter invertebrates, coatis had the same foraging success at all spatial positions. This pattern likely resulted from an abundance of invertebrates in the ground litter. When feeding on fruit, individuals in the front of the group had greater feeding success, which was driven by the relatively quick depletion of fruit trees. Dominant juveniles were often located in the front of the group which led to increased access to food. This resulted in higher feeding success on fruits but simultaneously increased their risk of predation. Although groups typically became more elongated and traveled faster when feeding on fruit, it did not appear that the coatis were drastically changing their spacing strategies when switching between the two food types. Paradoxically, spatial position preferences during invertebrate foraging appeared to be driven by fruit trees. Because fruit trees were encountered so frequently, juveniles ranging at the front edge of the group during invertebrate foraging were the first to arrive at fruit trees and thus had higher foraging success. This study demonstrates the importance of how food patch size and depletion rate affect the spatial preferences of individuals.  相似文献   

4.
A conjoint analysis of gut contents and stable C and N isotopes was applied to determine the main food sources and feeding habits of dominant amphipods in an eelgrass bed (Zostera marina) in Gwangyang Bay, Korea. Gut content observations demonstrated that, while Gammaropsis japonicus and Jassa slatteryi are herbivorous, feeding on epiphytes and detritus, Pontogeneia rostrata and Monocorophium acherusicum are omnivorous, feeding on mesozooplankton fragments and detritus. Stable isotope data confirmed that epiphytes, detritus, and mesozooplankton fragments were major food sources for amphipods in the eelgrass bed. Isotopic mixing model calculations clearly showed an interspecific difference in diet composition. A high isotopic dissimilarity between amphipod taxa demonstrated interspecific trophic diversity, reflecting their herbivorous (G. japonicus and J. slatteryi) and omnivorous (P. rostrata and M. acherusicum) feeding habits and confirmed the detrivorous feeding habits of caprellids. Such trophic diversity at interspecific level of the amphipod species indicates that they use different food resources within their microhabitats and play species-specific functional roles as mediators in trophic pathways from producers to higher-level consumers of the eelgrass ecosystem. Finally, our findings suggest that information on the species-specific trophic ecology of amphipods is needed to better understand their potential role in the trophic dynamics and carbon flow of seagrass bed ecosystems.  相似文献   

5.
This study used morphological, gut content analysis and carbon- and nitrogen-stable isotope analysis to investigate the trophic structure of upper sublittoral (15–30 m deep) and upper bathyal (200–300 m deep) hydrothermal vents and the adjacent non-vent upper bathyal environment off Kueishan Island. The sublittoral vents host no chemosynthetic fauna, but green and red algae, epibiotic biofilm on crustacean surfaces, and zooplankton form the base of the trophic system. Suspension-feeding sea anemones and the generalist omnivorous vent crab Xenograpsus testudinatus occupy higher trophic levels. The upper bathyal hydrothermal vent is a chemoautotrophic-based system. The vent mussel Bathymodiolus taiwanensis forms a chemosynthetic component of this trophic system. Bacterial biofilm, surface plankton, and algae form the other dietary fractions of the upper bathyal fauna. The vent hermit crab Paragiopagurus ventilatus and the vent crab X. testudinatus are generalist omnivores. The vent-endemic tonguefish Symphurus multimaculatus occupies the top level of the trophic system. The adjacent non-vent upper bathyal region contains decapod crustaceans, which function as either predators or scavengers. The assemblages of X. testudinatus from sublittoral and upper bathyal vents exhibited distinct stable isotope values, suggesting that they feed on different food sources. The upper bathyal Xenograpsus assemblages displayed large variations in their stable isotope values and exhibited an ontogenetic shift in their δ13C and δ15N stable isotope signatures. Some individuals of Xenograpsus exhibited δ15N values close to those of non-vent species, suggesting that the highly mobile Xenograpsus may transfer energy between the upper bathyal hydrothermal vents and the adjacent non-vent upper bathyal environment.  相似文献   

6.
The abundance of trophic sources on the intertidal zone is discontinuous and their supply can vary both in a predictable or unpredictable way. The Mediterranean semi-terrestrial crab Pachygrapsus marmoratus, is known, as adult, to entirely rely on the intertidal trophic sources, and, consequently, it faces the fluctuations of nutritional sources and quality. To clarify the relationships between the feeding habits of an Italian population of P. marmoratus and the temporal variation of its food sources, we carried out a 2-year sampling protocol. Data on seasonal variation in composition of intertidal food item assemblages, on the average content in N and C of the commonest algae, on seasonal changes in crabs feeding habits were collected and compared using a suite of multivariate and univariate techniques. Results showed that P. marmoratus takes advantage of the recruitment phase of the most common invertebrates, affecting and controlling the abundance even of those species whose adults are out of its reach. It can act both as a herbivore, and as a carnivore that shifts between bivalves, more abundant in spring/summer, and the periwinkle Melaraphe neritoides, during winter. In conclusion, we provide evidences on the food choice of this common rocky shore species, which is very plastic and capable of relying on many trophic sources, possibly influencing the abundance and/or the population structure of a number of intertidal populations.  相似文献   

7.
J. E. Cartes 《Marine Biology》1993,117(3):449-457
This study examines the feeding habits of Paromola cuvieri (Risso, 1816) and Geryon longipes A. Milne Edwards, 1881, the only two common deep-sea brachyuran crabs inhabiting the bathyal mud assemblages in the Catalan Sea (Western Mediterranean). Samples were obtained by bottom trawls at depths between 360 and 1871 m during 1983 to 1992. Both species had highly diverse diets, but very low feeding activity, as reflected by the high proportion of empty stomachs. Both characteristics may be important factors enabling deepsea crabs to adapt to bathyal zones, where trophic resources are scarce. The most important food items found in P. cuvieri were fish remains (teleost, sharks) and benthic decapods (Monodaeus couchii, Munida tenuimana). Scavenging activity plays an important role in this species. The diet of G. longipes included a broad range of benthic invertebrates. In the upper middle slope, the bivalve Abra longicallus, decapods (Calocaris macandreae and Monodaeus couchii), echinoderms and polychaetes were the dominant prey, with epibenthic peracarids as a secondary resource. On the lower middle slope, the incidence of decapod crustaceans (C. macandreae, Pontiphilus norvegicus) and peracarids in the diet declined. Small macrobenthic prey (glycerids, cumaceans or amphipods) were rare in the diet of both species, in accordance with the large size of the crab specimens studied. The absence of preferred prey items and the lack of food items of an optimum size on the lower slope may contribute to the progressive decline in abundance of P. cuvieri and G. longipes with increasing depth.  相似文献   

8.
Clibanarius longitarsus (De Haan), a hermit crab, feeds by means of both micro- and macrofeeding. Microfeeding is of two types: filter feeding and deposit feeding. In macrofeeding, the animal depends mainly on green algae, barnacles and some worms, etc. In filter feeding, the hermit crab uses its paired antennules for trapping microorganisms drawn into the water current created by the second and third maxillipeds; the antennae do not play any role in filter feeding. In deposit feeding, the hermit crab uses its chelae as well as pereiopods for toughing and obtaining detritus food material. In macrofeeding, the organism employs sharp chelae to collect small pieces of muscle from barnacles and then transfer them to the inner mouth parts. In algal feeding, the chelae as well as maxillipeds help in collecting and moving food material towards the mouth. In this investigation functional organisation ofC. longitarsus mouth parts was studied in detail with reference to the various feeding mechanisms, in specimens collected from the intertidal region of Bheemunipatnam, Andra Pradesh, India, in 1988 and 1989.  相似文献   

9.
In contrast to specific large benthic invertebrates in chemosynthetic ecosystems such as hydrothermal vents, meiofaunal communities in such habitats have been reported to have strong taxonomic overlap with meiofauna in the adjacent “normal” environments. However, meiofauna have only recently been included in studies of those environments and detailed information on these communities is still rare. This is especially true in the Northwest Pacific Ocean, even though there are many seamounts with active vents in the calderas of the region. Nematode community composition at the genus level in sediments from a hydrothermal vent field in the caldera of Myojin Knoll (32°06′N, 139°52′E, depth 1,300 m), a seamount on the Izu-Ogasawara Arc, Japan, was investigated for the first time and was compared with adjacent non-vent areas inside and outside the caldera. Multivariate analyses showed that the composition of nematodes in the hydrothermal field was significantly different from that in the non-hydrothermal fields around the caldera. However, the common genera, such as Oxystomina, Pareudesmoscolex, Desmoscolex, and Microlaimus were found in two, or all three vent fields while their rank contributions differed among the three fields. When the data from Myojin Knoll were compared with those from other deep-sea vent environments in different regions (e.g., North Fiji Basin, East Pacific Rise, Mid-Atlantic Ridge), the nematode composition in the vent field of the Myojin caldera was more similar to that of the non-vent fields around the caldera than the composition in vent fields of other regions. These data from the Northwest Pacific Ocean also suggest the absence of long-range transport systems and local adaptations for meiofauna in hydrothermal vent fields.  相似文献   

10.
Mark V. Tran 《Marine Biology》2014,161(11):2589-2596
Generalist scavengers are perceived to exhibit broad feeding niches, and therefore, it is predicted that coexisting generalist scavengers should exhibit extensive food niche overlap. However, ecological theory suggests that no two species can coexist while using the same limited resources in the same manner because competitive differences between the species will result in one species being outcompeted. Thus, some differentiation of the diets of coexisting generalist scavengers must exist in order to avoid competitive exclusion. In this study, I analyzed the feeding niches of two species of coexisting generalist scavengers (hermit crabs; Clibanarius digueti and Paguristes perrieri) to determine whether the species overlap in their: (1) preferred food items and (2) past diets. Food choice experiments conducted in the field showed that the species’ preferences for the food items offered largely overlapped. However, gut content and stable isotope analyses of collected specimens revealed significant differences in the past diets of the species. These analyses suggest that C. digueti consumes more photosynthetic materials than P. perrieri. The results suggest that the species differentiate their diets despite both feeding opportunistically on carrion and detritus washed into the intertidal zone by the tides.  相似文献   

11.
The present study demonstrates the potential hydrolytic activities in the symbiont-containing tissues of the vent invertebrates Riftia pachyptila, Bathymodiolus thermophilus (collected in 1991 at the East Pacific Rise) and the shallow-water bivalve Lucinoma aequizonata (collected in 1991 from the Santa Barbara Basin). Activities of phosphatases, esterases, -glucuronidase and leucineaminopeptidase were comparable to those of digestive tract tissues of other marine invertebrates. A lack in most glycosidases as well as in trypsin and chymotrypsin was observed. Activities of lysozyme and chitobiase were rather high. In all vent invertebrates with symbionts and in L. aequizonata, the symbiont-containing tissues and the symbiont-free tissues had similar levels of enzymatic activities, indicating that polymeric nutrients could be hydrolysed after release from the symbionts and cellular uptake. The high activities of -fucosidase in all vent invertebrates as well as in the shallow-water bivalve L. aequizonata could point to the existence of a yet undescribed substrate available to hydrolysation. The ectosymbionts-carrying polychaete Alvinella pompejana (collected in 1991 at the East Pacific Rise, EPR) shows high lysozyme activities in its gut, consistent with the proposed food source of bacteria. For the vent crab Bythogrea thermydron (also collected in 1991 at the EPR) hydrolytic activities were highest in the gut, dominated by esterase and peptidase activities which support their proposed carnivorous food source. A snail and a limpet collected from R. pachyptila tubes showed high levels of chitobiase suggesting a food source of grazed bacteria or ingested R. pachyptila tube.  相似文献   

12.
Carbon, sulfur, and nitrogen stable isotope ratio techniques were used in 1989 and 1990 to evaluate the relative importance of algae and of mangrove detritus in the nutrition of two penaeid prawn species on the west coast of Peninsular Malaysia. Mangrove detritus was found to contribute to the nutrition of juvenile Penaeus merguiensis de Man living within tidal creeks, but not to adult P. merguiensis and juvenile and adult Parapenaeopsis sculptilis (Heller) captured offshore. Results from radiotracer feeding studies, with refractory 14C mangrove lignocellulose as the food source, indicated that juvenile P. merguiensis from tidal creeks assimilated mangrove carbon with an efficiency of 13.4%. This did not differ significantly (P=0.05) from the assimilation efficiencies of juvenile and adult P. sculptilis living offshore (10.0 and 10.9%, respectively); these values were significantly higher (P<0.001) than for adult P. merguiensis (2.1%). Thus, the differential contribution of mangrove material to the nutrition of prawns in the tidal creeks and offshore was not related to differences in the prawn's ability to utilize detritus. Instead, our analysis of C stable isotopes in sediments indicated that mangrove detritus was generally more abundant within the tidal creeks than offshore. Juvenile prawns in the tidal creeks may also utilize mangrove material indirectly by feeding on small detritivorous invertebrates. Stable isotope analyses suggest that benthic microalgae constitute the other major dietary component for prawns living in tidal creeks. Prawns offshore were utilizing mainly phytoplankton-based material.  相似文献   

13.
In-situ measurement of chemolithotrophic and some heterotrophic microbial activities were made in the immediate vicinity of actively discharging hydrothermal vents of the Galápagos Rift region at depths of 2 500 to 2 600 m. The CO2-assimilation or chemosynthesis productivity in the emitted vent waters, freshly mixed with oxygenated ambient seawater of 2°C, was minor compared to the bacterial biomass produced within the subsurface vent system prior to emission. Uptake of acetate and glucose indicated the presence of mixotrophic or facultatively chemolithotrophic bacteria in the emitted vent waters in agreement with isolations. Demonstration of ribulose bisphosphate carboxylase and phosphoenol pyruvate carboxylase in cultures of thiobacilli isolated from these vent water supports the notion that chemoautotrophic sulfur-oxidizing bacteria are one of the sources of primary production in the form of particulate organic carbon for filtering organisms in the deep sea hydrothermal environment. The rates of bacterial metabolic activities in emitted vent water are too low for the amount of invertebrate biomass and the rate of its growth and maintenance. Therefore, the larger portion of chemosynthetic sustenance of deep sea vent ecosystems appears to be based on symbiotic associations between bacteria and invertebrates and on surface attached bacteria.  相似文献   

14.
Although there is a great deal of evidence to show that supplementary feeding by humans in terrestrial environments causes pronounced changes in the distribution and behaviour of wild animals, at present very little is known about the potential for such effects on marine fish. This study evaluated the consequences of feeding by snorkellers on fish assemblages in the no-take area of the Ustica Island marine protected area (MPA; western Mediterranean) by (1) determining if reef fish assemblage structure is affected in space and time by tourists feeding the fish; (2) assessing the effects of feeding on the abundance of the most common fish species; and (3) assessing the effects of feeding on the size structure of the two most numerically dominant ones. In particular, we hypothesised that both the abundance and the size structure of some fish species would increase at the study site following supplementary feeding, since the additional food provided by humans would make the site more appealing to them. Fish feeding influenced the fish assemblages within the Ustica MPA, and significant spatio-temporal changes occurred. While fish feeding appeared to have no effect on the ornate wrasse Thalassoma pavo, there was a noticeable increase in the number of Oblada melanura and Epinephelus marginatus in the impacted location after feeding. It is very likely that aggregations of fishes that evolve as a result of fish feeding by the public may have negative effects on local populations of fishes and invertebrates that make up their prey. Recreational use of coastal areas and MPAs is increasing elsewhere, making fish feeding a generalised human activity. Accurate information about its effect on the fish assemblage is essential to make responsible management decisions.Communicated by R. Cattaneo-Vietti, Genova  相似文献   

15.
S. Vizzini  A. Mazzola 《Marine Biology》2003,142(5):1009-1018
Stable carbon and nitrogen isotope ratios (13C/12C and 15N/14N) of primary producers and consumers were investigated seasonally throughout 1999, in order to describe the food web in a western Mediterranean coastal lagoon (Lake of Sabaudia, central Italy). Particulate organic matter and algal material (seagrass epiphytes and macroalgae) seem to constitute the main food sources for primary consumers (zooplankton and small benthic invertebrates, respectively) throughout the sampling year, while the seagrass Cymodocea nodosa appears to play a negligible trophic role. As regards the ichthyofauna, carbon stable isotopes differentiated between planktivore and benthivore fish species. However, a benthic-pelagic coupling seems to occur, with some fish of higher trophic levels feeding both on benthic and pelagic materials. Analysis of variance showed that the interaction between the three main factors (species2size2season) significantly affects the isotopic composition of fish, suggesting the presence of intra- and inter-specific resource partitioning. Wide seasonal variations in the isotopic composition were observed in organic matter sources, invertebrates and fish, with a general trend towards depleted values in winter and enriched values in summer. The winter depletion of organic matter sources may be due to several environmental factors and seems to be mirrored in the upper trophic levels. Primary producers and invertebrates are known to have shorter time-integrated isotopic signatures than vertebrates, yet fish also exhibited seasonal isotopic differences. We concluded that the examined fish species can assume a new muscle isotopic signature relatively quickly in response to changes in the isotopic composition of their diet and/or diet shifts.  相似文献   

16.
The identity of food sources and feeding preferences of specialist herbivores have been commonly inferred from spatial associations between consumer and food items. However, such basic information for well-known marine herbivores, sacoglossans (sea slugs), and their algal diets remains disappointingly lacking, especially from field studies. The sacoglossan, Elysia clarki (Pierce et al. in Molluscan Res 26:23–38, 2006), is kleptoplastic and sequesters chloroplasts from algal food to photosynthesize, so DNA identification of sequestered chloroplasts was employed to verify the algal species fed upon by the slug across its geographic range. The molecular information on the algae consumed by E. clarki was combined with field surveys of slugs and algae in slug habitats in the Florida Keys in July and August of 2008 in order to evaluate whether the diet of this herbivore could be predicted based on its spatial association with algae in the field. A considerable mismatch between food availability and kleptoplast identity was recorded. E. clarki commonly occupied areas devoid of potential food and often contained symbiotic plastids from algal species different from those most frequently found in the surveyed habitats. In three of the four study sites, algal species present were poor predictors of slug diet. These findings suggest that the photosynthetic capability of E. clarki may release the slug from the constraint of requiring proximity to its food sources and may allow for the potential lack of spatial coupling between this herbivore and its algal food. This combination of field surveys and DNA barcoding provided critical and previously unavailable information on herbivore feeding in this marine system.  相似文献   

17.
18.
On detritus as a food source for pelagic filter-feeders   总被引:2,自引:0,他引:2  
J. Lenz 《Marine Biology》1977,41(1):39-48
Data on the amount of organic detritus within the particle size fraction 1 to 150 are presented for the Western Kiel Bight. Grouped into a mixed surface layer and a stratified lower layer in accordance with the main hydrographic features of the Western Baltic Sea, the rounded-off values show a seasonal variation between 100 and 600 mg m-3 expressed as dry weight of organic matter. The overall average for both layers is about 200 mg m-3. Organic detritus thus comprises more than 40% of total organic matter in the above size class, which is the class most easily accessible to the relatively small filter-feeders in this area. Attempting to trace the origin of organic detritus, a positive correlation to phytoplankton standing stock was found in some cases, suggesting the predominance of autochthonous detritus. Proceeding from the assumption that pelagic filter-feeders select their food mainly by size and not by taste, it is concluded that organic detritus plays an important role as a supplementary food source, being ingested together with phytoplankton and small nonmotile heterotrophs. The nutritive value of detritus is increased by the adsorption of dissolved organic matter and above all through the subsequent colonization by bacteria, which utilize the dissolved substances. Detritus particles serving as a substratum for bacteria thus form a means whereby dissolved organic substances reenter the food chain. The ingestion of detritus by filter-feeders is, therefore, thought to be instrumental in increasing the effectivity of energy transfer from the primary to the secondary food-chain level.  相似文献   

19.
线虫是土壤中最为丰富的无脊椎动物,在土壤生态系统腐屑食物网中占有重要地位.由于线虫具有形态特殊、分离鉴定相对简单,以及对环境变化敏感等特点,现已被作为模式生物用于生态毒理学研究,为环境污染评价提供有价值的信息.论文系统阐述了土壤线虫在物种和群落水平的生态毒理学研究现状,指出了目前线虫毒理学研究存在的薄弱环节,并对今后的研究趋势进行了展望.  相似文献   

20.
Invasive cordgrass modifies wetland trophic function   总被引:18,自引:0,他引:18  
Levin LA  Neira C  Grosholz ED 《Ecology》2006,87(2):419-432
Vascular plants strongly control belowground environments in most ecosystems. Invasion by vascular plants in coastal wetlands, and by cordgrasses (Spartina spp.) in particular, are increasing in incidence globally, with dramatic ecosystem-level consequences. We examined the trophic consequences of invasion by a Spartina hybrid (S. alterniflora x S. foliosa) in San Francisco Bay (USA) by documenting differences in biomass and trophic structure of benthic communities between sediments invaded by Spartina and uninvaded sediments. We found the invaded system shifted from an algae-based to a detritus-based food web. We then tested for a relationship between diet and tolerance to invasion, hypothesizing that species that consume Spartina detritus are more likely to inhabit invaded sediments than those that consume surface algae. Infaunal diets were initially examined with natural abundance stable isotope analyses and application of mixing models, but these yielded an ambiguous picture of food sources. Therefore, we conducted isotopic enrichment experiments by providing 15N-labeled Spartina detritus both on and below the sediment surface in areas that either contained Spartina or were unvegetated. Capitellid and nereid polychaetes, and oligochaetes, groups shown to persist following Spartina invasion of San Francisco Bay tidal flats, took up 15N from labeled native and invasive Spartina detritus. In contrast, we found that amphipods, bivalves, and other taxa less tolerant to invasion consumed primarily surficial algae, based on 13C enrichment experiments. Habitat (Spartina vs. unvegetated patches) and location of detritus (on or within sediments) did not affect 15N uptake from detritus. Our investigations support a "trophic shift" model for ecosystem response to wetland plant invasion and preview loss of key trophic support for fishes and migratory birds by shifting dominance to species not widely consumed by species at higher trophic levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号