首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Glycerol has been traditionally viewed as the main form of carbon translocated from zooxanthellae to the coelenterate host. Most of this glycerol was postulated to be used by the coelenterate host for lipid synthesis. Recent work suggests that large amounts of photosynthetically fixed carbon is synthesized into lipid in the algae, and then translocated as lipid droplets to the host. These two hypotheses of carbon translocation are not mutually exclusive, but to reconcile them the role of glycerol must be reevaluated. In this study the short term metabolic fate of uniformly labelled 14C-glycerol, 14C-bicarbonate, and 14C-acetate was examined in zooxanthellae and coelenterate host tissue isolated from Condylactis gigantea tentacles. When host and algal triglycerides, synthesized during 90-min light and dark incubations in 14C-bicarbonate and 14C-acetate, were deacylated, more than 80% of the activity was found in the fatty acid moiety. In contrast, triglycerides isolated from zooxanthellae and coelenterate host tissue incubated in 14C-glycerol in the dark for 90 min were found to have more than 95% of their radioactivity in the glycerol moiety. During the 90-min 14C-glycerol incubations in the light, the percentage of radioactivity in the fatty acid moiety of zooxanthellae triglycerides increased to 37%. The percentage of radioactivity in the host tissue triglycerides fatty acid moiety stayed below 5% during the 90-min 14C-glycerol incubations in the light. These results show that neither the zooxanthellae nor the host can rapidly convert glycerol to fatty acid. Radioactivity from 14C-glycerol, which does eventually appear in host lipid, may have been respired to 14CO2, then photosynthetically fixed by the zooxanthellae and synthesized into lipid fatty acid.  相似文献   

2.
Surface tissue of the reef coral Pocillopora capitata contained approximately 34% lipid on a dry weight basis. Of this, 75% was storage lipid (wax ester and triglyceride) and 25% structural (phospholipid, galactolipid, etc.). Based on chlorophyll a: lipid ratios of intact coral and isolated zooxanthellae, it was determined that over 90% of the storage lipid resided in the host tissue. One half of the structural lipids was found in the host and the other in the symbiotic algae. Gentle fractionation of coral tissue indicated that zooxanthellae possessed less than 14% of the total coral protein. Coral tips and isolated zooxanthellae were incubated with sodium acetate-1-14C in light and dark to obtain lipogenic rates and proportions of fatty acids and lipid classes synthesized. The rate of lipid synthesis from acetate-1-14C by intact coral was stimulated three-fold in the light (1200 lux), which indicated that the majority of coral lipogenesis occurred in the zooxanthellae. Intact coral triglycerides contained ca. 68% of the 14C-activity and wax esters ca. 21%. Zooxanthellae isolated by the Water Pik technique synthesized negligible amounts of wax ester, which implied that wax ester synthesis was a property of the animal tissue. Isolated zooxanthellae and intact coral synthesized identical triglyceride fatty acids from acetate-1-14C. This study provides evidence for a carbon cycle between host and symbiont whereby the zooxanthellae take up host-derived carbon (probably in the form of acetate), synthesize fatty acids using their photosynthetically derived energy, and return the lipid to the host where it appears as wax ester and triglyceride.  相似文献   

3.
Anthopleura elegantissima containing zooxanthellae, as well as isolated zooxanthellae, incubated with acetate-1-14C under both light and dark conditions readily incorporate radioactivity into their total lipid pools. In both cases, the specific activity was greatly increased in the light. Dark-incubated anemones and isolated zooxanthellae incorporate activity predominantly into polar lipid; the remainder being present principally in the triglyceride moiety. Light-incubated organisms, however, show a dramatic redistribution of isotope towards greatly increased triglyceride and was ester incorporation, with a concomitant drop in polar lipid. onder light conditions, 70 to 75% of the radioactivity found in the fatty acids of the total zooxanthellae lipid was present in hexadecanoic (16:0) and octadecenoic (18:1) fatty acids. These are also the two major fatty acids by mass. Octadecanoic acid (18:0) is less than 5% by mass. Isotope incorporation patterns suggest that octadecenoic acids arise by elongation of hexadecenoic acids and that this conversion is blocked in the dark. Isotope incorporation patterns for anemones suggest that fatty acids, primarily in the form of saturated or monoenoic fatty acids, are translocated from algal to animal cells. No activity was found in either octadecadienoic (18:2) or octadecatrienoic (18:3) acids. The significance of these data is discussed.  相似文献   

4.
Amino acid synthesis in the symbiotic sea anemone Aiptasia pulchella   总被引:3,自引:0,他引:3  
Symbiotic Aiptasia pulchella and freshly isolated zooxanthellae were incubated in NaH14CO3 and NH4Cl for 1 to 240 min, and samples were analysed by reverse-phase high-performance liquid chromatography (HPLC) and an online radiochemical detector. NH4 + was first assimilated into 14C-glutamate and 14C-glutamine in the zooxanthellae residing in A. pulchella. The specific activities (dpm nmol−1) of 14C-glutamate and 14C-glutamine in vivo, were far greater in the zooxanthellae than in the host tissue, indicating that NH4 + was principally incorporated into the glutamate and glutamine pools of the zooxanthellae. 14C-α-ketoglutarate was taken up from the medium by intact A. pulchella and assimilated into a small amount of 14C-glutamate in the host tissue, but no 14C-glutamine was detected in the host fraction. The 14C-glutamate that was synthesized was most likely produced from transamination reactions as opposed to the direct assimilation of NH4 +. The free amino acid composition of the host tissue and zooxanthellae of A. pulchella was also measured. The results presented here demonstrate that NH4 + was initially assimilated by the zooxanthellae of A. pulchella. Received: 3 February 1997 / Accepted: 24 October 1997  相似文献   

5.
Studies were carried out to determine optimum conditions for the investigation of symbiotic zooxanthellae in vitro and to gain insight into factors influencing release of photosynthate by the symbionts. Zooxanthellae isolated from the reef coral Agaricia agaricites and incubated with an homogenate of host tissue release twice as much photosynthate as controls in seawater. The animal homogenate retained its stimulatory activity for 3 h at room temperature (ca. 26°C). Release of photosynthate was markedly influenced by time after isolation of algae from the host, variation in homogenate concentration, and prolonged exposure to homogenate. Release was not influenced by cell concentration, light intensity, or glycerol in the incubation medium. If zooxanthellae are labelled in vitro with glucose 14C, the principle product released is alanine 14C. The mechanism of action of homogenate on zooxanthellae in vitro is discussed in terms of its effect on algal cell membrane permeability. A preliminary fractionation of host homogenate is described.  相似文献   

6.
Desulfobacter sp. (Strain 3ac10), an acetate-utilizing sulphatereducing bacteria, was added to sterile marine pore water spiked with 14C-acetate, and changes in both the natural acetate pool and the added 14C-acetate were measured over time. Initially, both the added 14C-acetate and the chemically measured acetate were rapidly mineralized, but then the rate of removal decreased and a significant amount (approximately 20%) of both 14C-acetate and chemically measured acetate remained unmetabolised. In a replicate experiment, approximately 50% of the acetate was not metabolised. Kinetic analysis of the data indicated that there were two pools of acetate in the original pore water, a biologically available pool (which is rapidly metabolised) and a recalcitrant pool (which is only very slowly metabolised). Addition of 14C-acetate after the biologically available acetate had been removed resulted in rapid removal of the added acetate but no change in the recalcitrant acetate pool. The implications of this data to radiolabelled techniques of measuring in situ acetate turnover are discussed.  相似文献   

7.
The rates of photosynthesis and dark respiration for 7 marine algae and 1 fresh-water alga were measured and compared. The dinoflagellates Glenodinium sp. and zooxanthellae have high dark respiration rates relative to photosynthetic rates, which may decrease their net growth rates. Photorespiration in the 8 algal species was studied by examining the effects of the concentration of oxygen on the rates of photosynthesis, on the incorporation of 14CO2 into the photorespiratory pathway intermediates glycine and serine, and on the postillumination burst of carbon dioxide production and oxygen consumption. A combination of these results indicates that all the algae tested can photorespire, but that Glenodinium sp., Thalassiosira pseudonana, and zooxanthellae either have a photorespiratory pathway different from that proposed for freshwater algae (Tolbert, 1974), or an additional pathway for glycolate metabolism.  相似文献   

8.
The association of the alcyonarian Heteroxenia fuscescens (Ehrb.) with its cytosymbiotic algae shows structural and physiological adaptations optimizing the living together of the two partners as one functional unit. To enhance the energetic contribution of the autotrophic partner, the organization of the heterotrophic partner bears typical plant-like imprints. Up to 20% of the inorganic C photosynthetically fixed was translocated to the host (=2 mg C mg d.w.-1 d-1). This net C gain by the host is used for anabolic purposes including the deposition of storage material. Especially the wax-esters and triglycerides of the host-in contrast to those of the symbionts-were intensively labelled. The in-vivo 14C-fixation of zooxanthellae is more than double the in-vitro fixation. In both symbionts and host, the lipids show the highest relative 14C-incorporation. In particular the polyol component was strongly labelled. After 120 min of continuous incubation, approximately 40 labelled intracellular metabolites were detectable in the ethanol/water soluble fractions of zooxanthellae. Glycerol is the main low-molecular weight carbohydrate being transferred. This is corroborated by the deacylation of lipids of the host.  相似文献   

9.
There is a relationship between host feeding, nitrogen status and mitotic activity of zooxanthellae symbiotic with the marine hydroid Myrionema amboinense. Decreases in the mitotic index of zooxanthellae in starved M. amboinense, and in internal pool sizes of glutamine and glutamate, amino acids involved in ammonium assimilation via the glutamine synthetase-glutamate synthase (GS/GOGAT) pathway, were partially restored by addition of ammonium chloride to seawater in which hydroids were incubated. Levels of glutamine were more sensitive to host starvation than levels of glutamate, resulting in a decrease in the glutamine: glutamate molar ratio to that found in zooxanthellae cultured on nitrate. Hydroids starved for 5 d and then incubated in different concentrations of ammonium chloride showed a positive correlation between ammonium concentration and mitotic index of their symbiotic zooxanthellae. Host starvation caused a decrease in perturbation of levels of glutamine and glutamate during ammonium assimilation, as well as decreases in rates of assimilation of [14C]-leucine into TCA-insoluble protein, and in photosynthetic incorporation of [14C]-bicarbonate. These observations suggest that host starvation reduces nitrogen supply to the zooxanthellae, causing nitrogen stress to the symbionts and reduction in metabolic processes associated with nitrogen assimilation and photosynthesis as well as with cell division.  相似文献   

10.
Sodium cyanide (NaCN) was used to partially uncouple respiration and photosynthesis in the symbiotic sea anemone Condylactis gigantea. NaCN significantly increased the ratio of gross photosynthesis to respiration in both intact tentacles and isolated zooxanthellae (Symbiodinium microadriaticum), increased carbon translocation from 17.7±3.5% of total fixed in controls to 43.5±5.8%, and doubled the amount of photosynthetically fixed carbon accumulating in the coelenterate host over that in controls. Only 2% of the non-particulate radioactivity recovered in the host tissue was 14C-glycerol when uninhibited symbiotic tentacles were incubated in 14C-bicarbonate for 1 h. At 10-5 M NaCN, approximately 25% of the host nonparticulate radioactivity was recovered as 14C-glycerol, the absolute concentration of glycerol in the host tissue was three times higher than in controls, and 14C-glycerol was found in the medium. While glycerol has been proposed to play a major role in the translocation of photosynthetically fixed carbon from zooxanthellae to their coelenterate hosts, its concentration has never been measured in the animal and algal components of the symbiosis. The isolated zooxanthellae contained 3.62±0.33 mM glycerol, 26x the 0.141±0.02 mM found in the anemone. Aposymbiotic anemone tissue contained 0.169±0.06 mM glycerol. The rate of glycerol mineralization was not saturated even when exogenous glycerol levels were 70x internal concentrations. These data show that respiration and photosynthesis in symbiotic associations may be partially uncoupled by NaCN, and that this uncoupling allows the verification of the translocation and rapid catabolism of glycerol within the host.  相似文献   

11.
The usefulness of Fluorinert for the extraction of Acropora formosa polyp tissue and zooxanthellae was demonstrated. The latter remain intact, with no leakage of metabolites, and the polyp tissue can be extracted in a minimal volume. Intact A. formosa and its isolated zooxanthellae were incubated in the light with sodium [14C]bicarbonate for 5 s to 15 min and the kinetics of carbon-14 fixation was determined. The isolated zooxanthellae showed a linear response for carbon fixation, whilst the zooxanthellae in the intact association showed a lag period of 1 to 2 min, containing only 12% of the total fixed carbon in the first 1 min. After 10 min, the distribution of fixed carbon between the symbiotic partners was approximately even and the total carbon fixed was in a range similar to that fixed by the isolated zooxanthellae. A pulse-chase experiment showed rapid movement of fixed carbon from the polyp tissue to the zooxanthellae after the 30 s pulse. The paper discusses two possible explanations for the observed results.  相似文献   

12.
Sea anemones (Aiptasia pulchella) containing zooxanthellae (Symbiodinium microadriaticum) were maintained in a long-term laboratory culture on a 12 h light (100 E m-2 s-1):12 h dark cycle. Photosynthetic oxygen production was measured for the symbiotic association and for freshlyisolated zooxanthellae. Light utilization efficiencies () were similar for both sets of zooxanthellae, suggesting negligible shading of zooxanthellae by animal tissue in this association. Whereas freshly-isolated zooxanthellae were photoinhibited at high irradiances (800 to 1 800 E m-2 s-1), zooxanthellae in the host continued to function at photosynthetic capacity. Time of day may influence photosynthetic measurements in symbiotic organisms, as it was found that photosynthesis in A. pulchella followed a diel periodicity at both light-saturating (1 200 E m-2 s-1) and subsaturating (150 E m-2 s-1) irradiances. There was a peak period of photosynthesis between 12.00 and 14.00 hrs. Light stimulated dark respiration rates of A. pulchella. Dark respiration of sea anemones increased somewhat towards the end of the light cycle and was always greater after exposure to high irradiances.  相似文献   

13.
The giant clam Tridacna crocea harbors in the mantle tissue symbiotic microalgae commonly called zooxanthellae. Isolated zooxanthellae release glycerol into the medium in the presence of mantle tissue homogenate (MH), but it is not clear whether the cells do so in situ. In order to determine the photosynthetic products released by zooxanthellae in the mantle of the giant clam we traced photosynthetic fixation products from 13C- and 14C-bicarbonate both in the clam and in isolated zooxanthellae (IZ) in the presence or absence of MH. After 15 min incubation in the absence of MH the IZ released less than 0.6% of the fixed labeled carbon, mainly as glucose. The major intracellular photosynthates were neutral lipids, which constituted 20 to 40% of the total extractable 14C. In the presence of MH, the IZ released up to 5.6% of the total fixed 14C, mostly as glycerol, and the major intracellular photosynthate was glucose. In an intact clam incubated in sea water containing 14C-bicarbonate, 46 to 80% of the fixed 14C was translocated from the zooxanthellae to the host tissues. Most of the 14C in the hemolymph, in the isolated zooxanthellae and in intact mantle tissue (containing zooxanthellae) was recovered as glucose. No 14C-glycerol was detected in the mantle after 1 to 30 min incubation, and, even after 60 min, far less 14C-glycerol was synthesized than by IZ in the presence of MH. The possibility that in clam tissue glycerol is converted to glucose was examined by tracing the labeled carbon from 14C-glycerol injected into the adductor muscle. After 5 min incubation, no labeled glucose was found in the hemolymph, but after 60 min, some 20% was found as glucose. Thin slices containing zooxanthellae, cut from the surface of the mantle, fixed inorganic carbon supplied as NaH14CO3 in the medium and mainly released 14C-glucose. The addition of MH to the surrounding medium did not affect the release rate or form of release product. When the slices were cut into smaller pieces, however, the ratio of glycerol to glucose in the release product increased. These results indicate that in the presence of MH the metabolism of isolated zooxan- thellae was different from that of zooxanthellae in the mantle. In the presence of MH, isolated zooxanthellae release mostly glycerol, whereas in the mantle they release glucose. Received: 18 February 1998 / Accepted: 4 December 1998  相似文献   

14.
UV-absorbing substances in zooxanthellate and azooxanthellate clams   总被引:2,自引:0,他引:2  
The effects of UV-A and UV-B radiation on photosynthesis of zooxanthellae within the siphonal mantle of the giant clam, Tridacna crocea, and in isolation were studied. While UV-B irradiation (2.4 W m−2, 20 min) completely suppressed photosynthesis of the isolated zooxanthellae, it had little effect on their photosynthetic ability if they were irradiated while within the siphonal mantle of the host tissue. Chemical analysis of the siphonal mantle of T. crocea showed the presence of significant amounts of mycosporine-like amino acids (MAAs), which absorb UV-A and -B light. However, no MAA was detected in the isolated zooxanthellae. MAAs were concentrated in the siphonal mantle and kidney tissues in comparison with other tissues. In the siphonal mantle, MAA concentrations were the highest in the outermost surface layer where most of the zooxanthella cells resided. This indicates that the zooxanthellae are protected from UV radiation by a screen of concentrated MAAs in the host clam. Aside from T. crocea, significant amounts of MAAs were found not only in other zooxanthellate clams, such as T. derasa, Hippopus hippopus, Colculum cardissa and Fragum unedo, but also in a closely related azooxanthellate clam, Vasticardium subrugosum. On the other hand, no MAA was detected in any of the zooxanthellae from these zooxanthellate clams. No MAA was detected in the tissues of a deep-sea bivalve, Calyptogena soyoae. Although MAAs seem to block strong UV radiation in the shallow-water clam, they are probably not essential for the clam's life in the dark. MAAs in shallow-water clams may be derived from food and accumulated in their tissues, especially in the siphonal mantle and kidney. Received: 29 November 1996 / Accepted: 13 January 1997  相似文献   

15.
Scyphopolyps and scyphomedusae of Cassiopea andromeda Forskål (Cnidaria, Scyphozoa) containing dinoflagellate endosymbionts (zooxanthellae) were investigated for rates and pathways of carbon fixation. Photosynthesis by the algae, accounting for 80 and 15 mol C h-1 on a dry weight basis in medusae and polyps, respectively, by far exceeds dark incorporation of inorganic carbon by the intact association. Photosynthetic carbon fixation is operated via C3 pathway of carbon reduction. DCMU-treatment (1×10-6 M and 1×10-5 M) completely inhibits light-dependent carbon assimilation. Major photosynthates presumably involved in a metabolite flow from algal symbionts to animal tissue are glycerol and glucose. A total of 5–10% net algal photosynthate appears to be seleased in vivo to the host. This is probably less than the energy supply ultimately required for the nutrition of the polyps and medusae. The presence of zooxanthellae proved to be indispensable for strobilation in the scyphopolyps. However, photosynthesis by algal symbionts as well as photosynthate release is obviously not essential for the initiation of ephyrae as is shown by DCMU-treatment, culture in continous darkness, and aposymbiotic controls. It is therefore concluded that strobilation is supported, but not triggered by algal photosynthetic activity. The induction of strobilation thus seems to depend on a more complex system of regulation.  相似文献   

16.
Invertebrates containing endosymbiotic dinoflagellate algae (zooxanthellae) retain excretory nitrogen, and many are able to take up ammonium from the surrounding seawater. However, the site of assimilation and role of nitrogen recycling between symbiont and host remains unclear. In the present study, ammonium uptake by the symbiotic sea anemone Anemonia viridis (Forskål) was examined by following the pathway of assimilation using 15N-enriched ammonium. Since zooxanthellae became enriched with 15N from ammonium at up to 17 times the rate of the host, they appear to be the primary site of assimilation. In the light, the rate of zooxanthellae enrichment at 20?M was twice that at 10?M, whereas the rate of host enrichment was not significantly affected by ammonium concentration. When anemones were incubated with [15N]ammonium in the dark, after 12?h without light the rate of enrichment was lowered in both zooxanthellae and host. However, while the enrichment of the host was significantly reduced when the light level was lowered from 300 to 150?μmol photons m?2?s?1, zooxanthellae enrichment was unchanged. Low molecular weight material from the zooxanthellae became enriched at 20 times the rate of that from the host, and enrichment was detected in the amino acids glutamate, glutamine, aspartate, alanine, glycine, phenylalanine, threonine, valine, tyrosine, and leucine from zooxanthellae. In the zooxanthellae, amino acids accounted for 65% of the total enrichment of low molecular weight material. Of the amino acids detected in zooxanthellae, over 90% of the enrichment was accounted for by glutamate, glutamine and aspartate. The enrichment of the amide group of glutamine was greater than that of the amine group of glutamate or glutamine, consistent with the glutamine synthetase/glutamine 2-oxoglutarate amidotransferase cycle as the mechanism of ammonium assimilation. To examine the flux of 15N from zooxanthellae to host, anemones were pulse-labelled with [15N]ammonium and then transferred to an unlabelled chase. Over a 2?h period there was no evidence for a flux of nitrogen from zooxanthellae to host. However, during the chase period, the enrichment of low molecular weight material declined and that of high molecular weight material increased in both zooxanthellae and host, indicating that protein was synthesized using 15N from ammonium in both components of the symbiosis. Again by using a pulse-chase system, it was found that glutamate was metabolised most rapidly by zooxanthellae, followed by (in order of decreasing rate of turnover) aspartate, alanine, glycine and valine (no data are available for glutamine). Unlike these amino acids, nitrogen was transferred to the essential amino acids phenylalanine and threonine, increasing their enrichment during the chase period. While recycled nitrogen is clearly important to this symbiosis, the mechanism by which it is cycled remains to be resolved.  相似文献   

17.
The ability of endosymbioses between anthozoans and dinoflagellate algae (zooxanthellae) to retain excretory nitrogen and take up ammonium from seawater has been well documented. However, the quantitative importance of these processes to the nitrogen budget of such symbioses is poorly understood. When starved symbiotic Anemonia viridis were incubated in a flow-through system in seawater supplemented with 20 μM ammonium for 91 d under a light regime of 12 h light at 150 μmol photons m−2 s−1 and 12 h darkness, they showed a mean net growth of 0.197% of their initial weight per day. Control anemones in unsupplemented seawater with an ammonium concentration of <1 μM lost weight by a mean of 0.263% of their initial weight per day. Attempts to construct a nitrogen budget showed that, over a 14 d period, ≃40% of the ammonium taken up could be accounted for by growth of zooxanthellae. It was assumed that the remainder was translocated from zooxanthellae to host. However, since the budget does not balance, only 60% of the growth of host tissue was accounted for by this translocation. The value for host excretory nitrogen which was recycled to the symbionts equalled that taken in by ammonium uptake from the supplemented seawater, indicating the importance of nitrogen retention to the symbiotic association. Received: 23 December 1997 / Accepted: 12 September 1998  相似文献   

18.
W. Admiraal 《Marine Biology》1977,41(4):307-315
A carbon-14 assimilation method was used to determine action spectra and photosynthesis versus irradiance (P versus I) curves of natural populations of phytoplankton and zooxanthellae from a coral reef fringing Lizard Island in the Australian Barrier Reef. The action spectra were related to the phytoplankton species composition. The curves showed shade adaptation in phytoplankton from deeper waters and in the zooxanthellae. Rates of photosynthesis of zooxanthellae were shown to be highly but variably dependent on their host organisms. Photosynthetic production by zooxanthellae was about 0.9 gC m-2 day-1, which is about three times higher than phytoplankton production in the waters close to the reef.  相似文献   

19.
Growth of zooxanthellae in culture with two nitrogen sources   总被引:2,自引:0,他引:2  
Physiological characteristics of zooxanthellae were examined under nutrient-saturated conditions created by mixing ammonium (15NH4) with nitrate (15NO3) to give 0.88 mM total nitrogen. Growth rate varied with the form of nitrogen provided. Ammonium alone resulted in the lowest C:N and C:chl-a ratios. Although zooxanthellae took up nitrate in the absence of ammonium, ammonium assimilation was 1.3 times higher than nitrate assimilation. Ammonium strongly inhibited nitrate assimilation. While high-ammonium treatments resulted in the highest 14C incorporation into intermediate compounds, high nitrate levels resulted in the highest 14C incorporation into protein, suggesting that the intermediate compounds are produced prior to the subsequent production of protein when ammonium is the dominant N source. The enhanced production of intermediate compounds at the expense of carbon directed to protein synthesis in the presence of ammonium might be analogous to the “host factor” observed in zooxanthellae–host symbioses, since growth rate is depressed due to low production of protein. Received: 16 March 2000 / Accepted: 26 August 2000  相似文献   

20.
A method for the determination of volatile fatty acids (VFA) in coastal marine sediments is presented. Acidified porewater was vacuum distilled to extract the VFA and the distillate was analysed by gas chromatography (Porapak QS column and flame ionization detection). The limit of detection was 2 M in the samples, but was increased tenfold by lyophilization. In the upper 10 cm of the sediments 2–70 nmol acetate cm-3 sediment was found. Uniformly labelled 14C-acetate (0.02 nmol, 10-3 ci) was injected at 1- to 2-cm intervals through silicone-stoppered holes in the tubing of undisturbed sediment cores. Turnover rate constants were determined from semilogrithmic plots of the 14C-acetate radioactivity versus the incubation time. The 14C-acetate was shown to be distributed in at least three sediment pools: a porewater pool, an adsorbed pool which was displaced by excess acetate, and an adsorbed pool which was not displaced by excess acetate. The rate constants ranged from 1.5–13 h-1 in the investigated sediments. The turnover rates of acetate were calculated from the turnover rate constants and the acetate concentrations in the porewater. The rate of acetate turnover calculated from the NH 4 * turnover and the N:C ratio of the sediment organic matter was only 16% of the measured rate of acetate turnover. The apparent overstimation of the acetate turnover was most likely due to an overestimation of the degradable acetate pool. A gel filtration of 14C-acetate-containing porewater showed that the fractions which contained the tracer had only 25% of the total acetate. This implied that a large fraction of the acetate in the porewater was unavailable to the microbes. This was also indicated by the fact that the measured acetate pool in porewater incubated with 14C-acetate did not decrease, when the added 14C-acetate was oxidized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号