首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 849 毫秒
1.
Inflow and infiltration (I/I) are serious problems in hybrid sewerage systems. Limited sewerage information impedes the estimation accuracy of I/I for each catchment. A new method dealing with I/I of a large-scale hybrid sewerage system with limited infrastructure facility data is proposed in this study. The catchment of representative pump stations was adopted to demonstrate the homological catchments that have similar wastewater fluctuation characteristics. Homological catchments were clustered using the self-organizing map (SOM) analysis based on long-term daily flow records of 50 pumping stations. An assessment index was applied to describe the I/I and overflow risk in the catchment based on the hourly wastewater quality and quantity data of representative pump stations. The potential operational strategy of homological catchments was determined by the assessment index of representative pump stations. The simulation results of the potential operational strategy indicated that the optimized operation strategy could reduce surcharge events and significantly improve the quality of wastewater treatment plant effluent.
  相似文献   

2.
The spontaneous oxidation process of pristine silicon (Si) limits its application as photocatalyst or electrode in aqueous solution or moist air. Covering a protection layer on Si surface is an effective approach to overcome this disadvantage. In this paper, α-Fe2O3 is demonstrated to be an excellent alternative as a protection material. α-Fe2O3 layer was deposited around each p-type Si micropillar (SiMP) in well-ordered array by chemical bath deposition method. The diameter of SiMP was 5 mm and the thickness of α-Fe2O3 layer was about 20 nm. The photoeletrochemical stability of SiMP/α-Fe2O3 was proved by 10 circles cyclic voltammetry testing. Compared with SiMP, its optical absorption and photocurrent density improved 2 times and 4 times, respectively, and its onset potential for hydrogen evolution moved positively about 0.4 V. These improved performances could be ascribed to the enhanced photogenerated-charge-separation efficiency deriving from built-in electric field at the interface between Si and α-Fe2O3. The above results show an effective strategy to utilize Si material as photocatalyst or electrode in aqueous solution or moist air.
  相似文献   

3.
Dust and Sand Storms (DSS) originating in deserts in arid and semi-arid regions are events raising global public concern. An important component of atmospheric aerosols, dust aerosols play a key role in climatic and environmental changes at the regional and the global scale. Deserts and semi-deserts are the main source of dust and sand, but regions that undergo vegetation deterioration and desertification due to climate change and human activities also contribute significantly to DSS. Dust aerosols are mainly composed of dust particles with an average diameter of 2 mm, which can be transported over thousands of kilometers. Dust aerosols influence the radiation budget of the earthatmosphere system by scattering solar short-wave radiation and absorbing surface long-wave radiation. They can also change albedo and rainfall patterns because they can act as cloud condensation nuclei (CCN) or ice nuclei (IN). Dust deposition is an important source of both marine nutrients and contaminants. Dust aerosols that enter marine ecosystems after long-distance transport influence phytoplankton biomass in the oceans, and thus global climate by altering the amount of CO2 absorbed by phytoplankton. In addition, the carbonates carried by dust aerosols are an important source of carbon for the alkaline carbon pool, which can buffer atmospheric acidity and increase the alkalinity of seawater. DSS have both positive and negative impacts on human society: they can exert adverse impacts on human’s living environment, but can also contribute to the mitigation of global warming and the reduction of atmospheric acidity.
  相似文献   

4.
Arsenic (As) is a pervasive environmental toxin and carcinogenic metalloid. It ranks at the top of the US priority List of Hazardous Substances and causes worldwide human health problems. Wetlands, including natural and artificial ecosystems (i.e. paddy soils) are highly susceptible to As enrichment; acting not only as repositories for water but a host of other elemental/chemical moieties. While macroscale processes (physical and geological) supply As to wetlands, it is the micro-scale biogeochemistry that regulates the fluxes of As and other trace elements from the semi-terrestrial to neighboring plant/aquatic/atmospheric compartments. Among these fine-scale events, microbial mediated As biotransformations contribute most to the element’s changing forms, acting as the ‘switch’ in defining a wetland as either a source or sink of As. Much of our understanding of these important microbial catalyzed reactions follows relatively recent scientific discoveries. Here we document some of these key advances, with focuses on the implications that wetlands and their microbial mediated transformation pathways have on the global As cycle, the chemistries of microbial mediated As oxidation, reduction and methylation, and future research priorities areas.
  相似文献   

5.
Bdellovibrio-and-like organisms (BALOs) are a group of ubiquitous and obligate predatory bacteria and commonly used as biocontrol agents. In this study, an efficient, environmental-friendly, and convenient BALOs encouraged municipal waste sludge biolysis pretreatment technique was developed and investigated for dewaterability enhancement of excess waste sludge. The indigenous predatory BALOs were successfully isolated from the sludge for biolysis treatment. Without any chemical addition or pH adjustment, the sludge specific resistance (SRF) and capillary suction time (CST) were significantly reduced by as high as 53.4% and 23.8%, respectively within 24 h’s treatment, which would further be lowered with the increase of BALOs input dosage. However, the continuous extension of reaction time would worsen the sludge dewaterability. The decreases of SRF and CST accompanied with the increases of sludge disintegration degree and soluble chemical oxygen demand, nitrogen, and phosphorus concentrations all emphasized the contributions of BALOs’ predation activities to sludge disturbance, cell lysis, and consequently the release of sludge intracellular water to finally effectively improve the sludge dewaterability and disposal efficiency.
  相似文献   

6.
In addition to maximizing economic benefits, reverse supply chains should further seek to maximize social benefits by increasing the quantity of waste electrical and electronic equipment (WEEE). The paper investigates cooperative models with different parties in a three-echelon reverse supply chain for WEEE consisting of a single collector, a single remanufacturer, and two retailers based on complete information. In addition, the optimal decisions of four cooperative models and the effect of the market demand of remanufactured WEEE products and the market share of two retailers on the optimal decisions are discussed. The results indicate that optimal total channel profit and recycle quantity in a reverse supply chain are maximized in a centralized model. The optimal total channel profit and recycle quantity increase with an increase in the market demand of remanufactured WEEE products. The three-echelon reverse supply chain consisting of duopolistic retailers maximizes total channel profit and recycle quantity in a reverse supply chain for WEEE.
  相似文献   

7.
Effect of different carbon sources on purification performance and change of microbial community structure in a novel A2N-MBR process were investigated. The results showed that when fed with acetate, propionate or acetate and propionate mixed (1:1) as carbon sources, the effluent COD, NH4 +-N, TN and TP were lower than 30, 5, 15 and 0.5 mg?L–1, respectively. However, taken glucose as carbon source, the TP concentration of effluent reached 2.6 mg?L–1. Process analysis found that the amount of anaerobic phosphorus release would be the key factor to determine the above effectiveness. The acetate was beneficial to the growth of Candidatus Accumulibacter associated with biological phosphorus removal, which was the main cause of high efficiency phosphorus removal in this system. In addition, it could eliminate the Candidatus Competibacter associated with glycogen-accumulating organisms and guarantee high efficiency phosphorus uptake of phosphorus accumulating organisms in the system with acetate as carbon source.
  相似文献   

8.
Recycling of waste electrical and electronic equipment (WEEE) is crucially important since it handles hazardous waste according to ever tightening laws and regulations and it adds benefits to economy and sustainable environment. Disassembly is one of the most important processes performed during the recovery of WEEE. The overall goal of disassembly is to maximize the retrieval of various metals and plastics contained in WEEE in order to reduce their negative effects on human health and environmental sustainability and to increase economic gains. This study aims to evaluate alternative layout configurations for WEEE disassembly systems (WDS). In this context, various configurations were compared in terms of pre-defined performance criteria, such as the total number of disassembled WEEE and the total revenue from sales, using simulation models. The results of this study show that the performance of a WDS was significantly affected by output transfer systems along with the specialization of operators on certain types of WEEE.
  相似文献   

9.
Sulfamethoxzole (SMX) and trimethoprim (TMP), two combined-using sulfonamide antibiotics, have gained increasing attention in the surface water, groundwater and the drinking water because of the ecological risk. The removal of TMP and SMX by artificial composite soil treatment system (ACST) with different infiltration rates was systematically investigated using K+, Na+, Ca2+, Mg2+ hydrogeochemical indexes. Batch experiments showed that the sorption onto the low-cost and commercially available clay ceramsites was effective for the removal of SMX and TMP from water. The column with more silty clay at high infiltration rate (1.394 m·d–1) had removal rates of 80% to 90% for TMP and 60% to 70% for SMX. High SMX and TMP removal rates had a higher effluent concentration of K+, Ca2+ and Mg2+ and had a lower effluent Na+ concentration. Removal was strongly related to sorption. The results showed that the removal of SMX and TMP was related to hydrogeochemical processes. In this study, ACST is determined to be applicable to the drinking water plants.
  相似文献   

10.
The effect of microwave pretreatment on the anaerobic degradation of hyacinth was investigated using response surface methodology (RSM). The components of lignin and the other constituents of hyacinth were altered by microwave pretreatment. Comparison of the near-infrared spectra of hyacinth pretreated by microwave irradiation and water-heating pretreatment revealed that no new compounds were generated during hyacinth pretreatment by microwave irradiation. Atomic force microscopy observations indicated that the physical structures of hyacinth were disrupted by microwave pretreatment. The yield of methane per gram of the microwave-irradiated substrate increased by 38.3% as compared to that of the substrate pretreated via water-heating. A maximum methane yield of 221 mL?g-sub–1 was obtained under the optimum pretreatment conditions (substrate concentration (PSC) = 20.1 g?L–1 and pretreatment time (PT) = 14.6 min) using RSM analysis. A maximum methane production rate of 0.76 mL?h–1?g-sub–1 was obtained by applying PSC = 9.5 g?L–1 and PT = 11 min. Interactive item coefficient analysis showed that methane production was dependent on the PSC and PT, separately, whereas the interactive effect of the PSC and PT on methane production was not significant. The same trend was also observed for the methane production rate.
  相似文献   

11.
When microalgae are simultaneously applied for wastewater treatment and lipid production, soluble algal products (SAP) should be paid much attention, as they are important precursors for formation of disinfection byproducts (DBPs), which have potential risks for human health. Chlorella sp. HQ is an oleaginous microalga that can generate SAP during growth, especially in the exponential phase. This study investigated the contribution of SAP from Chlorella sp. HQ to DBP formation after chlorination. The predominant DBP precursors from SAP were identified with the 3D excitation-emission matrix fluorescence. After chlorination, a significant reduction was observed in the fluorescence intensity of five specific fluorescence regions, particularly aromatic proteins and soluble microbial by-product-like regions, accompanied with slight shifting of the peak. The produced DBPs were demonstrated to include trihalomethanes and haloacetic acids. As the algal cultivation time was extended in wastewater, the accumulated SAP strengthened the formation of DBPs. The trend for DBP formation was as follows: chloroform>dichloroacetic acid>trichloroacetic acid.
  相似文献   

12.
This work investigates the effect of adding pentanol with biodiesel derived from cashew nut shell on its emissions characteristics is conducted in stationery diesel engine. The main purpose of this work is intended to reduce the emissions by fuelling biodiesel derived from cashew nut shell and the pentanol blends. Cashew nut shell biodiesel is prepared by transesterification process. Oxygenated additive used in the work is Pentanol. The experiment is conducted using four test fuels such as, biodiesel derived from cashew nut shell (CNSBD), a fuel containing 90% cashew nut shell biodiesel and 10% pentanol (CNSBD90P10), a fuel containing 80% cashew nut shell biodiesel and 20% pentanol (CNSBD80P20) and neat diesel. Experimental work concluded that by adding 10% of pentanol to cashew nut shell biodiesel 10.1%, 2.6%, 5.1%and 2.1%reduction in CO, HC, NO x and Smoke emissions were observed respectively. Further by fueling with these blends, no modifications in engines were required.
  相似文献   

13.
Biological synthesis of quantum dots (QDs) as an environmental-friendly and facile preparation method has attracted increasing interests. However, it is difficult to distinguish the roles of bio-thiols in QDs synthesis process because of the complex nature in organisms. In this work, the CdSe QDs synthesis conditions in organisms were reconstructed by using a simplified in vitro approach to uncover the roles of two small bio-thiols in the QDs formation. CdSe QDs were synthesized with glutathione (GSH) and L-cysteine (Cys) respectively. Compared with Cys at the same molar concentration, the CdSe QDs synthesized by GSH had a larger and broader particle size distribution with improved optical properties and crystal structure. Furthermore, quantum chemical calculations indicate that the stronger Cd2+ binding capacity of GSH contributed a lot to the CdSe QDs formation despite of the greater capability Cys for selenite reduction. This work clearly demonstrates the different roles of small thiols in the Cd2+ stabilization in the environment and biomimetic QDs synthesis process.
  相似文献   

14.
Intrusion of synthetic textile dyes in the ecosystem has been recognized as a serious issue worldwide. The effluents generated from textiles contain large amount of recalcitrant unfixed dyes which are regarded as emerging contaminants in the field of waste water study. Removal of various toxic dyes often includes diverse and complex set of physico-chemical, biological and advanced oxidation processes adopted for treatment. Adsorption in itself is a well-known technique utilized for treatment of textile effluents using a variety of adsorbents. In addition, ozonation deals with effective removal of dyes using high oxidising power of ozone. The review summarizes dye removal study by a combination of ozonation and adsorption methods. Also, to acquire an effective interpretation of this combined approach of treating wastewater, a thorough study has been made which is deliberated here. Results assert that, with the combined ability of ozone and a catalyst/adsorbent, there is high possibility of total elimination of dyes from waste water. Several synthetically prepared materials have been used along with few natural materials during the combined treatment. However, considering practical applicability, some areas were identified during the study where work needs to be done for effective implementation of the combined treatment.
  相似文献   

15.
The diffusion of municipal wastewater treatment technology is vital for urban environment in developing countries. China has built more than 3000 municipal wastewater treatment plants in the past three decades, which is a good chance to understand how technologies diffused in reality.We used a data-driven approach to explore the relationship between the diffusion of wastewater treatment technologies and collaborations between organizations. A database of 3136 municipal wastewater treatment plants and 4634 collaborating organizations was built and transformed into networks for analysis. We have found that: 1) the diffusion networks are assortative, and the patterns of diffusion vary across technologies; while the collaboration networks are fragmented, and have an assortativity around zero since the 2000s. 2) Important projects in technology diffusion usually involve central organizations in collaboration networks, but organizations become more central in collaboration by doing circumstantial projects in diffusion. 3) The importance of projects in diffusion can be predicted with a Random Forest model at a good accuracy and precision level. Our findings provide a quantitative understanding of the technology diffusion processes, which could be used for waterrelevant policy-making and business decisions.
  相似文献   

16.
Characterization of the molecular properties of soluble microbial products (SMP) is critical for understanding the membrane filtration and fouling mechanisms in anaerobic and aerobic membrane bioreactors (AnMBR & MBR). In this study, the distributions of the absolute molecular weight and intrinsic viscosity of SMP polysaccharides from an AnMBR were effectively determined by a high performance size exclusion chromatography (HPSEC) that was coupled with the refractive index (RI), diode array UV (DAUV), right and low angle light scattering (LS), and viscometer (Vis) detectors. Based on the tetra-detector HPSEC determined absolute molecular weights and intrinsic viscosity, a universal calibration relationship for the SMP polysaccharides was developed and the molecular conformations, average molecular weights, and hydrodynamic sizes of the SMP polysaccharides were also explored. Two factors which can be derived from the tetra-detector HPSEC analysis were proposed for the characterization of the viscous and osmotic pressure properties of the SMP polysaccharides. In addition, it was also extrapolated how to analyze the resistance characteristics of the concentration polarization layers formed in membrane filtration based on the molecular properties determined by the tetra-detector HPSEC analysis.
  相似文献   

17.
Benzotriazole (BTA) is an emerging contaminant that also is a recalcitrant compound. Sequential and intimate coupling of UV-photolysis with biodegradation were investigated for their impacts on BTA removal and mineralization in aerobic batch experiments. Special attention was given to the role of its main photolytic products, which were aminophenol (AP), formic acid (FA), maleic acid (MA), and phenazine (PHZ). Experiments with sequential coupling showed that BTA biodegradation was accelerated by photolytic pretreatment up to 9 min, but BTA biodegradation was slowed with longer photolysis. FA and MA accelerated BTA biodegradation by being labile electron-donor substrates, but AP and PHZ slowed the rate because of inhibition due to their competition for intracellular electron donor. Because more AP and PHZ accumulated with increasing photolysis time, their inhibitory effects began to dominate with longer photolysis time. Intimately coupling photolysis with biodegradation relieved the inhibition effect, because AP and PHZ were quickly biodegraded and did not accumulate, which accentuated the beneficial effect of FA and MA.
  相似文献   

18.
The objective of this study was to provide insight into human exposure to trace contaminants bearing red mud, derived precipitates and geopolymeric blocks due to inhalation contact and/or hand-to-mouth ingestion. The in vitro bioaccessibility behavior of trace contaminants was investigated with the PBET (physiologically based extraction test), ALF (artificial lysosomal fluid) and MGS (modified Gamble’ solution) methods. The results showed that total contents of trace contaminants and operation parameters, such as pH and chelating properties of simulated gastrointestinal phases (PBET), played a joint role in controlling the bioaccessibility efficacy for size-fractionated red mud particles. As for airborne particles (<38 μm size fractions), trace contaminants concentrations extracted by MGS was significantly higher than those by ALF. Additionally, higher bioaccessibility (PBET) values of Cu, Pb, Zn, As, V and U were obtained from red mud derived precipitates compared with those of red mud itself. Even though short-term and long-term leaching values of trace contaminants were relatively lower in the prepared geopolymeric blocks, the health risk could be significantly higher due to the more pronounced bioaccessibility characteristics.
  相似文献   

19.
This paper presents an investigation of the feasibility of recycling silicon carbide waste (SCW) as a source of mixture materials in the production of cement mortar. Mortars with SCW were prepared by replacing different amounts of cement with SCW, and the properties of the resulting mortars, such as the fluidity, strength and shrinkage, were studied in this work. Thermogravimetry-differential scanning calorimetry and scanning electron microscopy were employed to understand the reasons for the property changes of the mortars. The results indicate that SCW decreases the initial and 1-h fluidity of fresh mortar but improves the loss of fluidity. The mortar with SCWexhibits a lower strength at 3 d and 7 d but a higher strength at 28 d and 56 d compared to the control. The shrinkage rate of cement mortar with SCW shows an obvious decrease as the replacement ratio increases. In addition, the content of calcium hydroxide in hardened paste also shows that SCW has some impact on the hydration of the cement-SCW system. The microstructures of the hardened paste also show evidence for a later strength change of mortar containing SCW. This work provides a strategic reference for possibly applying SCW as a mixture material in the production of cement mortar.
  相似文献   

20.
With the increasing concern about the serious global energy crisis and high energy consumption during high content solid wastes (HCSWs) treatment, microbial fuel cell (MFC) has been recognized as a promising resource utilization approach for HCSW stabilization with simultaneous electrical energy recovery. In contrast to the conventional HCSW stabilization processes, MFC has its unique advantages such as direct bio-energy conversion in a single step and mild reaction conditions (viz., ambient temperature, normal pressure, and neutral pH). This review mainly introduces some important aspects of electricity generation from HCSWand its stabilization in MFC, focusing on: (1) MFCs with different fundamentals and configurations designed and constructed to produce electricity from HCSW; (2) performance of wastes degradation and electricity generation; (3) prospect and deficiency posed by MFCs with HCSWas substrates. To date, the major drawback of MFCs fueled by HCSW is the lower power output than those using simple substrates. HCSW hydrolysis and decomposition would be a major tool to improve the performance of MFCs. The optimization of parameters is needed to push the progress of MFCs with HCSW as fuel.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号