首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Petroleum fuels are the primary energy basis for transportation and industry. They are almost always an important input to the economic and social activities of humanity. Emergy analyses require accurate estimates with specified uncertainty for the transformities of major energy and material inputs to economic and environmental systems. In this study, the oil refining processes in Italy and the United States were examined to estimate the transformity and specific emergy of petroleum derivatives. Based on our assumptions that petroleum derivatives are splits of a complex hydrocarbon mixture and that the emergy is split based on the fraction of energy in a product, we estimated that the transformity of petroleum derivatives is 65,826 sej/J ± 1.4% relative to the 9.26E+24 sej/year planetary baseline. Estimates of the specific emergies of the various liquid fuels from Italian and U.S. refineries are within 2% of one another and the relationship of particular values varies with the refinery design. Our average transformity is only 1.7% larger than the current estimate for petroleum fuels determined by back calculation, confirming the accuracy of this transformity in existing emergy analyses. The model uncertainty between using energy or mass to determine how emergy is split was less that 2% in the estimate of both the transformity and specific emergy of liquid fuels, but larger for solid and gaseous products. This study is a contribution to strengthen the emergy methodology, providing data that can be useful in the analysis of many human activities.  相似文献   

2.
Anil Baral 《Ecological modelling》2010,221(15):1807-1818
A commonly encountered challenge in emergy analysis is the lack of transformity data for many economic products and services. To overcome this challenge, emergy analysts approximate the emergy input from the economy via a single emergy/money ratio for the country and the monetary price of economic inputs. This amounts to assuming homogeneity in the entire economy, and can introduce serious uncertainties in the results. This paper proposes and demonstrates the use of a thermodynamically augmented economic input-output model of the US economy for obtaining sector-specific emergy to money ratios that can be used instead of a single ratio. These ratios at the economy scale are more accurate than a single economy-wide emergy/money ratio, and can be obtained quickly for hundreds of economic products and services. Comparing sector-specific emergy/money ratios with those from conventional emergy studies indicates that the input-output model can provide reasonable estimates of transformities at least as a stop-gap measure until more detailed analysis is completed. A hybrid approach to emergy analysis is introduced and compared with conventional emergy analysis using life cycles of corn ethanol and gasoline as examples. Emergy and transformity data from the hybrid approach are similar to those from conventional emergy analysis, indicating the usefulness of the proposed approach. In addition, this work proposes the metric of return on emergy investment for assessing product alternatives with the same utility such as transportation fuels. The proposed approach and data may be used easily via web-based software.  相似文献   

3.
《Ecological modelling》2005,186(2):212-220
This paper presents an emergy evaluation of the biogeochemical process of petroleum formation. Unlike the previous calculation, in which the transformity of crude oil was back calculated from the relative efficiency of electricity production and factors relating coal to transportation fuels and transportation fuels to crude oil, we analyzed the geochemical process of petroleum formation (naftogenesis) to determine the transformities of oil and natural gas. We assumed that the process of oil and gas production is a steady state process in which all the emergy required is captured in the initial input. For such a system, we can use the mass concentration of the initial input to determine the specific emergy and transformity of the products. We used the maximum photosynthetic yield in Joules of phytoplankton organic matter per Joule of sunlight as the starting point. From this initial assumption, we traced the energy transformations in the oil and gas formation process through photosynthesis, death and decay of the phytoplankton, and diagenesis to kerogen production and from kerogen through catagenesis to petroleum formation. Our results show that both methods converge to similar values for oil (∼54,200 solar emJoules per Joule (sej/J)) and petroleum natural gas (43,500 sej/J) increasing our confidence in the results of past emergy analyses and providing a firm basis for the calculation of transformities for oil and gas derivatives.  相似文献   

4.
Emergy algebra: Improving matrix methods for calculating transformities   总被引:1,自引:0,他引:1  
Transformity is one of the core concepts in Energy Systems Theory and it is fundamental to the calculation of emergy. Accurate evaluation of transformities and other emergy per unit values is essential for the broad acceptance, application and further development of emergy methods. Since the rules for the calculation of emergy are different from those for energy, particular calculation methods and models have been developed for use in the emergy analysis of networks, but double counting errors still occur because of errors in applying these rules when estimating the emergies of feedbacks and co-products. In this paper, configurations of network energy flows were classified into seven types based on commonly occurring combinations of feedbacks, splits, and co-products. A method of structuring the network equations for each type using the rules of emergy algebra, which we called “preconditioning” prior to calculating transformities, was developed to avoid double counting errors in determining the emergy basis for energy flows in the network. The results obtained from previous approaches, the Track Summing Method, the Minimum Eigenvalue Model and the Linear Optimization Model, were reviewed in detail by evaluating a hypothetical system, which included several types of interactions and two inputs. A Matrix Model was introduced to simplify the calculation of transformities and it was also tested using the same hypothetical system. In addition, the Matrix Model was applied to two real case studies, which previously had been analyzed using the existing method and models. Comparison of the three case studies showed that if the preconditioning step to structure the equations was missing, double counting would lead to large errors in the transformity estimates, up to 275 percent for complex flows with feedback and co-product interactions. After preconditioning, the same results were obtained from all methods and models. The Matrix Model reduces the complexity of the Track Summing Method for the analysis of complex systems, and offers a more direct and understandable link between the network diagram and the matrix algebra, compared with the Minimum Eigenvalue Model or the Linear Optimization Model.  相似文献   

5.
Crucial to the method of emergy synthesis are the main driving emergy flows of the geobiosphere to which all other flows are referenced. They form the baseline for the construction of tables of Unit Emergy Values (UEVs) to be used in emergy evaluations. We provide here an updated calculation of the geobiosphere emergy baseline and UEVs for tidal and geothermal flows. First, we recalculate the flows using more recent values that have resulted from satellite measurements and generally better measurement techniques. Second, we have recalculated these global flows according to their available energy content (exergy) in order to be consistent with Odum's (1996) definition of emergy. Finally, we have reinterpreted the interaction of geothermal energy with biosphere processes thus changing the relationship between geothermal energy and the emergy baseline. In this analysis we also acknowledge the significant uncertainties related to most estimates of global data. In all, these modifications to the methodology have resulted in changes in the transformities for tidal momentum and geothermal energy and a minor change in the emergy baseline from 15.8E24 seJ/J to 15.2E24 seJ/J. As in all fields of science basic constants and standards are not really constant but change according to new knowledge. This is especially true of earth and ecological sciences where a large uncertainty is also to be found. As a consequence, while these are the most updated values today, they may change as better understanding is gained and uncertainties are reduced.  相似文献   

6.
Emergy and emergy algebra explained by means of ingenuous set theory   总被引:1,自引:0,他引:1  
Emergy is an important concept that has originated several effects in ecology, systems ecology and sustainability science. Its communication, however, has always presented several problems, since it does not follow the same rules of conservation as other energy-based approaches. Attempts have been made to clarify emergy by means of more formal/mathematical approaches, but the problem persists. In this paper, we have introduced a view of emergy and of its algebra based on ingenuous set theory. By means of this simple tool, emergy can be defined as the set of solar exergy that is directly and indirectly necessary to make a product. The operation that correctly sums the emergy “carried” by the inputs to a process is the union. This definition and the operation of union are able to account for all the rules of emergy algebra.  相似文献   

7.
A generic input-state-output scheme has been used to represent ecosystem dynamics. Systemic approaches to ecosystems use functions that are based either on inputs, state or outputs of the system. Some examples of approaches that use a combination of functions have been recently proposed. For example the use of eco-exergy to emergy flow can be seen as a mixed input-state approach; more recently, to connect the state to the output of the ecosystem, the relation of eco-exergy and ecosystems services has been proposed. This paper studies the link between the useful output of an ecosystems and its input through the relation between ecosystem services and emergy flow, in a kind of grey/black box scheme (i.e., without considering the state and the structure of the ecosystem). No direct connection between the two concepts can be determined, but identifying and quantifying the emergy flows feeding an ecosystem and the services to humans coming from them facilitate the sustainable conservation of Nature and its functions. Furthermore, this input-output relation can be established in general by calculating the ratio of the value of the ecosystem services to the emergy flow that supports the system. In particular, the ratio of the world ecosystem services to the emergy flow supporting the entire biosphere has been calculated showing that, at least at the global level, Nature is more efficacious in producing “money” (in form of ecosystem services) than economic systems (e.g., national economies and their GDP).  相似文献   

8.
Emergy studies have suffered criticism due to the lack of uncertainty analysis and this shortcoming may have directly hindered the wider application and acceptance of this methodology. Recently, to fill this gap, the sources of uncertainty in emergy analysis were described and analytical and stochastic methods were put forward to estimate the uncertainty in unit emergy values (UEVs). However, the most common method used to determine UEVs is the emergy table-form model, and only a stochastic method (i.e., the Monte Carlo method) was provided to estimate the uncertainty of values calculated in this way. To simplify the determination of uncertainties in emergy analysis using table-form calculations, we introduced two analytical methods provided by the Guide to the Expression of Uncertainty in Measurement (GUM), i.e., the Variance method and the Taylor method, to estimate the uncertainty of emergy table-form calculations for two different types of data, and compared them with the stochastic method in two case studies. The results showed that, when replicate data are available at the system level, i.e., the same data on inputs and output are measured repeatedly in several independent systems, the Variance method is the simplest and most reliable method for determining the uncertainty of the model output, since it considers the underlying covariance of the inputs and requires no assumptions about the probability distributions of the inputs. However, when replicate data are only available at the subsystem level, i.e., repeat samples are measured on subsystems without specific correspondence between an output and a certain suite of inputs, the Taylor method will be a better option for calculating uncertainty, since it requires less information and is easier to understand and perform than the Monte Carlo method.  相似文献   

9.
Uncertainty characterization for emergy values   总被引:1,自引:0,他引:1  
While statistical estimation of uncertainty has not typically accompanied published emergy values, as with any other quantitative model, uncertainty is embedded in these values, and lack of uncertainty characterization makes their accuracy not only opaque, it also prevents the use of emergy values in statistical tests of hypotheses. This paper first attempts to describe sources of uncertainty in unit emergy values (UEVs) and presents a framework for estimating this uncertainty with analytical and stochastic models, with model choices dependent upon on how the UEV is calculated and what kind of uncertainties are quantified. The analytical model can incorporate a broader spectrum of uncertainty types than the stochastic model, including model and scenario uncertainty, which may be significant in emergy models, but is only appropriate for the most basic of emergy calculations. Although less comprehensive in its incorporation of uncertainty, the proposed stochastic method is suitable for all types of UEVs. The distributions of unit emergy values approximate the lognormal distribution with variations depending on the types of uncertainty quantified as well as the way the UEVs are calculated. While both methods of estimating uncertainty in UEVs have their limitations in their presented stage of development, this paper provides methods for incorporating uncertainty into emergy, and demonstrates how this can be depicted and propagated so that it can be used in future emergy analyses and permit emergy to be more readily incorporated into other methods of environmental assessment, such as LCA.  相似文献   

10.
广东省农业现代化科技示范区的能值分析与评价指标研究   总被引:2,自引:0,他引:2  
为了从生态经济学角度揭示农业现代化示范区园区的生态经济运行质量,探索一条能更客观、更简单地评价农业科技园区的新途径,文章运用能值理论和方法,分析和评价了广东省农业现代化科技示范区的能值投资率、能值产出率、能值密度、人均能值用量、环境负载率、能值生产率、每万元产值消耗能值和基于能值分析的可持续发展指数等指标,并从中筛选出其能值评价的主要指标。主要结果如下,(1)从2000—2004年,广东省农业现代化科技示范区的总投入能值和总产出能值呈现快速增加的趋势,能值密度和环境负载率持续增加,人均能值使用量,能值投资率和能值生产率呈波动增加的趋势,而能值产出率,可持续发展指数和每万元产值消耗能值呈波动下降的趋势。这说明该示范区总体上呈现快速发展的趋势,经济实力和科技竞争力不断增加。(2)本研究运用主成分分析法、因子分析法和实证对比研究法提出评价农业现代化科技示范区的最佳指标是人均能值使用量和环境负载率。  相似文献   

11.
This paper is a contribution to the emergy evaluation of systems involving recycling or reuse of waste. If waste exergy (its residual usefulness) is not negligible, wastes could serve as input to another process or be recycled. In cases of continuous waste recycle or reuse, what then is the role of emergy? Emergy is carried by matter and its value is shown to be the product of specific energy with mass flow rate and its transformity. This transformity (τ) given as the ratio of the total emergy input and the useful available energy in the product (exergy) is commonly calculated over a specific period of time (usually yearly) which makes transformity a time dependent factor. Assuming a process in which a part of the non-renewable input is an output (waste) from a previous system, for the waste to be reused, an emergy investment is needed. The transformity of the reused or recycled material should be calculated based on the pathway of the reused material at a certain time (T) which results in a specific transformity value (τ). In case of a second recycle of the same material that had undergone the previous recycle, the material pathway has a new time (T + T1) which results in a transformity value (τ1). Recycling flows as in the case of feedback is a dynamic process and as such the process introduces its own time period depending on its pathway which has to be considered in emergy evaluations. Through the inspiration of previous emergy studies, authors have tried to develop formulae which could be used in such cases of continuous recycling of material in this paper. The developed approach is then applied to a case study to give the reader a better understanding of the concept. As a result, a ‘factor’ is introduced which could be included on emergy evaluation tables to account for subsequent transformity changes in multiple recycling. This factor can be used to solve the difficulties in evaluating aggregated systems, serve as a correction factor to up-level such models keeping the correct evaluation and also solve problems of memory loss in emergy evaluation. The discussion deals with the questions; is it a pure mathematical paradox in the rules of emergy? Is it consistent with previous work? What were the previous solutions to avoid the cumulative problem in a reuse? What are the consequences?  相似文献   

12.
Emergy is a thermodynamics-based entity that enables the implementation of a holistic environmental accounting system. It contributes to identify and measure all the inputs (energy and matter) supporting a given system, expressed in a common unit, namely solar emergy joule (sej). The emergy per unit product (called unit emergy value, UEV), is a measure of the environmental cost of a given resource. It is specific of the system/process and gives information on the dynamics, components and functioning of it. This paper presents the emergy evaluation of water resources within the watershed of the river Sieve, located in the Province of Florence (Italy). Along the river, an artificial basin has been created by means of a dam to preserve water quantity and quality, and to protect the Florentine area from dangerous floods and inundations. Different UEVs of water can be identified along the course of the river, especially upstream and downstream of the dam. These values quantify both the environmental and human efforts made to ensure and regulate the presence of water at different points of the river. The UEV of water flowing in the river increases from 1.35 × 105 sej/g upstream, to 5.80 × 105 sej/g downstream of the dam, depending mainly on man-made infrastructure. Along the watershed, three different systems of extraction, purification and distribution of water have been chosen on the basis of their dimension, type and location. UEVs of water distributed and the emergy investment necessary to implement different water management strategies are presented. The value of water purified and distributed decreases from 2.00 × 106 sej/g for the smallest plant in the mountainous area, to 1.72 × 106 sej/g for the largest plant, in the city of Florence, depending on production efficiency.  相似文献   

13.
邢开成  龚宇  王璞 《生态环境》2007,16(2):592-597
从能值的角度出发,以华北平原代表区域——河北省沧州地区2003年统计数据和调查数据为基础,对该地区种植业生态经济系统的能值投入和产出进行首次分析。结果显示:该地区不可更新的工业辅助能占总能值投入的78.5%,可更新的能值投入仅占21.4%(可更新环境资源8.79%、可更新有机12.68%),说明农业生产过渡依赖于外源不可更新辅助能的投入;此外,高系统太阳能值转换率、低净能值产出率和高环境负荷率的特点,表明该地区种植业的科技发展水平比较高,对环境的压力相当大。综合结果说明种植业系统对环境资源的过度利用必然会引起生态环境的破坏。基于此,提出华北平原集约农区种植业生态经济系统可持续发展对策:以优化施肥为基础,合理减少化肥投入为代表,适当降低工业辅助能投入;调整农业增产投入战略,努力解决该地区以水资源短缺为主的作物增产限制因子;改变农业生产中有机能值与无机能值的投入比例,降低系统环境负荷率。  相似文献   

14.
Emergy analysis of the urban metabolism of Beijing   总被引:3,自引:0,他引:3  
Cities can be modeled as if they were superorganisms with a range of metabolic processes. Research on this urban metabolism can contribute to solving urban environmental problems by revealing details of the metabolic throughput of the system. A key issue is how to find a common basis for measuring the environmental and economic values. By providing a single unified unit, emergy theory integrates the natural and socioeconomic systems and thoroughly evaluates a system's metabolism. We analyzed Beijing's urban metabolic system using emergy synthesis to evaluate its environmental resources, economy, and environmental and economic relations with the regions outside the city during 14 years of development. We compared Beijing's emergy indices with those of five other Chinese cities and of China as a whole to assess Beijing's relative development status. These indices are the emergy self-support ratio (metabolic dependence), the environmental load ratio (metabolic loading), empower density (metabolic pressure), emergy used per person (metabolic intensity per capita), and the monetary equivalent of emergy (emdollars; metabolic intensity). Based on our emergy analysis, Beijing's socioeconomic system is not self-sufficient, and depends greatly on external environmental resources. Its GDP is supported by a high percentage of emergy purchased from outside the city. During the study period, Beijing's urban system showed an increasing dependence on external resources for its economic development. Beijing's loading and pressure on the ecological environment is continuously increasing, accompanied by continuously increasing human emergy consumption. In the future, it will become increasingly necessary to improve Beijing's metabolic efficiency.  相似文献   

15.
In this paper, emergy accounting (EA) and life cycle assessment (LCA) methods are employed to investigate a typical urban wetland park, the Green Lake Urban Wetland Park (GLUWP) of Beijing, in terms of its environmental and capital inputs, ecosystem services and organic matter yields, environmental support, and sustainability. The LCA method is also used to obtain a quantitative estimation of the environmental impact of discharges during the entire life cycle of the GLUWP. Various emergy-based indices, such as emergy yield ratio (EYR), environmental load ratio (ELR), emergy sustainability index (ESI), net economic benefit (Np), and environmental impacts of process-based LCA, including global warming potential (GWP), eutrophication (EU), nonrenewable resource depletion (RU), energy consumption (EN), acidification potential (AP), photochemical oxidant creation potential (POCP), particulate matter (PM) and wastes (W), are calculated. The results show that the GLUWP has higher proportions of renewable resource input, less pressure on the environment, more environmental support and better ecological and economic benefits, which can be considered as an environment-friendly and long-term sustainable ecological practice, compared with another constructed wetland in Beijing. Meanwhile, the dominant environmental impact is induced by POCP with the construction phase contributing the most on the entire life cycle. It is expected that increasing green area, extensively using environment-friendly materials, optimizing construction techniques and reducing power consumption can promote the sustainability of the GLUWP.  相似文献   

16.
An emergy evaluation was carried out to assess the carrying capacity of a small, uninhabited island (Woosedo) off the southwestern coast of Korea. The sea area within 1 km from the high tide level of the island was included in the evaluation. The total environmental emergy input to Woosedo was 1.66E19 sej/yr, with the most emergy contribution from the tidal energy. The land and marine ecosystems of Woosedo contributed 4.97 million Em$ (7600 Em$/ha/yr) to the Korean economy annually. If Woosedo was developed to the national average at the emergy investment ratio of 2.86, its carrying capacity was estimated at 1034 people at the current living standard of Korea. With this population, the island system would not be sustainable with a very low emergy sustainability index of 0.36. At the same living standard used in the developed scenario, the carrying capacity of the island would be 370 people for a sustainable development scenario and 270 people if the renewable emergy were the only source to support the population. The emergy contribution of the marine ecosystem of the island was the major source of support in determining the level of carrying capacity of the island.  相似文献   

17.
Abstract: Habitat overlap can increase the risks of anthroponotic and zoonotic pathogen transmission between humans, livestock, and wild apes. We collected Escherichia coli bacteria from humans, livestock, and mountain gorillas (Gorilla gorilla beringei) in Bwindi Impenetrable National Park, Uganda, from May to August 2005 to examine whether habitat overlap influences rates and patterns of pathogen transmission between humans and apes and whether livestock might facilitate transmission. We genotyped 496 E. coli isolates with repetitive extragenic palindromic polymerase chain reaction fingerprinting and measured susceptibility to 11 antibiotics with the disc‐diffusion method. We conducted population genetic analyses to examine genetic differences among populations of bacteria from different hosts and locations. Gorilla populations that overlapped in their use of habitat at high rates with people and livestock harbored E. coli that were genetically similar to E. coli from those people and livestock, whereas E. coli from gorillas that did not overlap in their use of habitats with people and livestock were more distantly related to human or livestock bacteria. Thirty‐five percent of isolates from humans, 27% of isolates from livestock, and 17% of isolates from gorillas were clinically resistant to at least one antibiotic used by local people, and the proportion of individual gorillas harboring resistant isolates declined across populations in proportion to decreasing degrees of habitat overlap with humans. These patterns of genetic similarity and antibiotic resistance among E. coli from populations of apes, humans, and livestock indicate that habitat overlap between species affects the dynamics of gastrointestinal bacterial transmission, perhaps through domestic animal intermediates and the physical environment. Limiting such transmission would benefit human and domestic animal health and ape conservation.  相似文献   

18.
国际能值研究热点和前沿的可视化分析   总被引:1,自引:0,他引:1  
李春发  曹莹莹 《生态环境》2014,(6):1084-1092
能值用以表征一种流动或储存的能量所包含另一类别能量的数量,即产品或者劳务形成过程中消耗的总能量,常以太阳能为度量标准。能值作为生态经济学中的新概念,它的提出实现了物质流、能量流、经济流、人口流和信息流等的统一量化,架设了“环境与经济间的桥梁”,能值理论和应用目前已成为生态经济学研究的热点领域,能值分析方法正日益发展成为生态经济系统评价的基本工具。文章首先以Web of Science数据库中1998─2013年间收录主题为“emergy”的文献为基础数据,对能值研究的学科、时间、区域和机构等分布情况进行了统计分析,发现能值研究文献数量呈逐年上升趋势,主要分布在生态、环境及能源相关学科,中、美、意大利3国及锡耶纳大学、北京师范大学、北京大学、中国科学院和佛罗里达大学等研究机构表现出较强的研究实力。其次,利用CiteSpace软件绘制了能值研究文献的共被引知识图谱,对其知识基础及核心作者的影响力进行了探讨。图谱研究显示,Odum H T、Brown M T、Hau J L、Ulgiati S等学者及其代表作品对能值理论知识基础的构建及相关研究的推进奠定了坚实的基础。最后,通过对能值研究领域出现关键词及膨胀词的共词分析与词频分析,绘制出能值领域的研究热点演进脉络,并探测环境可持续性、可持续发展、生态系统服务、电力生产、能值核算、生命周期研究法等前沿命题,可见系统可持续发展及能值与其它理论方法的结合应用将成为能值研究的新热点。目前能值研究文献数量持续增长,但其理论研究速度落后于应用范围及领域的延伸速度,能值转换率及评价指标体系已无法满足小区域、微观小系统的研究需求,核心作者及代表作品较少,且欠缺与动态模型及仿真技术的结合应用。因此,未来能值研究  相似文献   

19.
The steady-state assumption is a mainstay for the analysis of ecological systems with more than three or four states. However, it is well accepted in ecology that inputs to large systems come in pulses assumed to have a reasonably constant magnitude and frequency. Steady pulse inputs and the use of electro-chemical–mechanical control systems methodology enables limited short term dynamic responses of ecological systems of a scale often occurring in systems of potential engineering importance to be analyzed. This paper explores and presents a survey of multi-input–multi-output (MIMO) control systems analysis of ecosystem network models to better understand pulse frequency issues and further develop experimentally verifiable approaches to testing the MIMO concept. The analysis process is demonstrated using two network model exemplars. Two aspects of MIMO analyses appear relevant to understanding ecological systems: (1) Eigenvalue invariant analyses and singular value decomposition (SVD) analyses enable assessment of stability and relative strength of states. Eigenvalues reflect time constants and provide a check on experimentally determined system matrices. (2) Analysis of SVD versus frequency for each output indicates maximum pulse frequencies that allow system components to benefit from pulsing. As a group, MIMO analyses complement other analytical methods and provide a theoretical systems focus convenient for analyzing ecosystems from an engineering perspective.  相似文献   

20.
A modified method of ecological footprint calculation and its application   总被引:1,自引:0,他引:1  
《Ecological modelling》2005,185(1):65-75
As economic and ecological support systems become more interdependent, new disciplines are needed to “bridge the gap” between human and nature. “Emergy” created by H.T. Odum is a new method for evaluating natural capital and ecosystem services. The “ecological footprint” created by Wackernagel and Rees has been promoted as a policy and planning tool for sustainability. The aim of this paper is to show a modified form of ecological footprint calculation by combining emergy analysis with conventional ecological footprint form of calculations. Our new method starts from the energy flows of a system in calculating ecological footprint and carrying capacity. Through a study of the energy flows, and using the method of emergy analysis, the energy flows of a system are translated into corresponding biological productive units. To demonstrate the mechanics of this new method, we compared our calculations with that of an original calculation of ecological footprint of a regional case. We select Gansu province in western China, as an example for application of our study. In this case the same conclusions were drawn using both methods: that Gansu province runs an ecological deficit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号