首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The risks and benefits associated with efforts to control invasive alien species using classical biological control are being subjected to increasing scrutiny. A process-based population dynamics model was developed to explore the interactions between a folivorous biological control agent, Cleopus japonicus, and its plant host Buddleja davidii. The model revealed that climate could have a significant impact upon the interactions between B. davidii and C. japonicus. At the coolest sites, the impact of C. japonicus on B. davidii was slowed, but it was still eventually capable of controlling populations of B. davidii. At the warmer sites where both B. davidii and C. japonicus grew faster, B. davidii succumbed rapidly to weevil damage. We hypothesise that barring an encounter with a natural enemy, C. japonicus will eventually be able to provide sustained control B. davidii throughout the North Island of New Zealand. The model scenarios illustrate the potential for the C. japonicus population to attain high densities rapidly, and to defoliate patches of B. davidii, creating the potential for spill-over feeding on non-target plants. The potential magnitude of this threat will depend partly on the climate suitability for C. japonicus, the pattern by which it migrates in response to a reduction in the available leaf resource, and the suitability of non-target plants as hosts. In all migration scenarios considered, the pattern of population growth and resource consumption by C. japonicus was exponential, with a strong tendency toward complete utilisation of resource patches more quickly at the warmer compared to colder sites. In addition to providing some useful hypotheses about the effects of climate on the biological control system, and the non-target risks, it also provides some insight into the mechanisms by which climate affects the system.  相似文献   

2.
We describe and apply a method of using tree-ring data and an ecosystem model to reconstruct past annual rates of ecosystem production. Annual data on merchantable wood volume increment and mortality obtained by dendrochronological stand reconstruction were used as input to the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) to estimate net ecosystem production (NEP), net primary production (NPP), and heterotrophic respiration (Rh) annually from 1975 to 2004 at 10 boreal jack pine (Pinus banksiana Lamb.) stands in Saskatchewan and Manitoba, Canada. From 1975 (when sites aged 41-60 years) to 2004 (when they aged 70-89 years), all sites were moderate C sinks except during some warmer than average years where estimated Rh increased. Across all sites and years, estimated annual NEP averaged 57 g Cm−2 yr−1 (range −31 to 176 g Cm−2 yr−1), NPP 244 g Cm−2 yr−1 (147-376 g Cm−2 yr−1), and Rh 187 g Cm−2 yr−1 (124-270 g Cm−2 yr−1). Across all sites, NPP was related to stand age and density, which are proxies for successional changes in leaf area. Regionally, warm spring temperature increased NPP and defoliation by jack pine budworm 1 year previously reduced NPP. Our estimates of NPP, Rh, and NEP were plausible when compared to regional eddy covariance and carbon stock measurements. Inter-annual variability in ecosystem productivity contributes uncertainty to inventory-based assessments of regional forest C budgets that use yield curves predicting averaged growth over time. Our method could expand the spatial and temporal coverage of annual forest productivity estimates, providing additional data for the development of empirical models accounting for factors not presently considered by these models.  相似文献   

3.
The cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) is one of the most serious crop pests in northern China, calling for accurate prediction of pest outbreaks and strategies for pest control. A computer model is developed to simulate the population dynamics of H. armigera over a wide area in northern China. The area considered covers 12 provinces where serious outbreaks of H. armigera have been observed. In this model, pest development is driven by local ambient temperature, and adults migrate long distances between regions and select preferred hosts for oviposition within a region. Six types of host including cotton, wheat, corn, peanut, soybean and a single category composed of all other minor hosts are considered in this model. Survival rates of eggs and larvae are based on life-table data, and simulated as a function of host type, host phenology and temperature. The incidence of diapause depends on temperature and photoperiod experienced during the larval stage. Survival rate of non-diapause pupae is a nonlinear function of rainfall, and overwinter survival rate is a nonlinear function of temperature. Insecticide is applied when population density exceeds the economic threshold on a host crop within a region. Comparisons of model output with light-trap data indicate that our model reflects the pest population dynamics over a wide area, and could potentially be used for testing novel pest control strategies in northern China.  相似文献   

4.
The northeastern Atlantic and the Mediterranean Sea share geological histories and display great faunal affinities. The majority of the Mediterranean species have Atlantic origins, with a few species with tropical affinities. These include the parrotfish Sparisoma cretense and the wrasse Thalassoma pavo that are restricted to the subtropical northeastern Atlantic, the Macaronesian archipelagos (Azores, Madeira, and Canaries) and the southern Mediterranean. The Pleistocene glaciations have been described as having different effects on the fauna of the two regions. During glacial peaks, Mediterranean waters remained warmer than those of the adjacent Atlantic. Within the eastern Atlantic, the effects of Pleistocene glaciations were differentiated. Here, we perform a comparative analysis focusing on T. pavo and S. cretense populations from the northeastern Atlantic and the Mediterranean to assess the effects of Pleistocene glaciations in these two species. Sequences from the mitochondrial control region were obtained and analyzed combining phylogeographic and demographic approaches. Gene flow between Atlantic and Mediterranean populations was shown to be very high. The Mediterranean populations of T. pavo and S. cretense showed high levels of genetic diversity, even in the eastern basin, pointing to an ancient colonization event. This suggests that both species must have been able to persist in the Mediterranean during the cold Pleistocene periods. Historical migration estimates revealed a Mediterranean towards Atlantic trend in the case of T. pavo, which may reflect the re-colonization of areas in the Atlantic by fish that survived the cold phases in relatively warmer Mediterranean refugia. Our data also showed that within the Macaronesian Archipelagos, migrations occurred from Madeira towards the Azores, for both T. pavo and S. cretense, thus supporting a post-glacial colonization of the Azores by fish that persisted in the warmer region of Madeira. Similar geographic distributions, thermal affinities, and means of dispersion for T. pavo and S. cretense resulted in a similar response to the effects of Pleistocene glaciations, as evidenced by identical phylogeographic patterns.  相似文献   

5.
Projection matrix models are intensely used in ecology to model the dynamics of structured populations. When dealing with size-structured populations, there is no satisfactory algorithm to partition size into discrete classes. We show that the Vandermeer-Moloney algorithm for choosing classes is inconsistent with the Usher model, and systematically selects the finest classes. Considering that the matrix model is a discrete approximation of a continuous model, we define an approximation error as the sum of a distribution error (the difference between the discrete distribution and its continuous counterpart), and a sample error. The optimal partition of size into classes is the one that minimizes the approximation error. This method for choosing classes also shows that the choice of the class width cannot be disconnected from the choice of the time step. When applied to 520 trees of Dicorynia guianensis in French Guiana, this algorithm identified 8 classes of 11.4 cm in width, which is in agreement with the empirical choice of foresters.  相似文献   

6.
Nitrogen fertilization and winter pruning are commonly used to control crop production in peach [Prunus persica (L.) Batsch] orchards. They are also known to affect the dynamics of Myzus persicae (Sulzer) (Homoptera: Aphididae) aphid populations via bottom-up regulation processes. Interactions between crops and pests can cause complex system behaviour in response to management practices. An integrated approach will therefore improve the understanding of the effects of these two cultural practices on aphid and peach performances.We developed a simulation model that describes the cultural control of interacting peach tree and aphid population dynamics. It uses the principles of common trophic models while gathering available knowledge and explicit assumptions on peach and aphid functioning and the effects of cultural practices.The model was able to qualitatively reproduce the system behaviour observed in the field. It accounted for actions and feedback such as stimulation of foliar growth by winter pruning, consecutive aphid population increase, subsequent damage to foliage, and partial compensatory growth of foliage. The model also reproduced low losses in fruit production due to aphid infestations. However, it called for further integration of ‘long-term’ effects. Analysis of the model showed the complexity of peach tree and aphid responses to leaf N × winter pruning interactions. Simulations indicated that fruit production losses remained low within a range of realistic values of leaf N and pruning intensity, whereas manipulating peach and aphid dynamics, their interactions and their relationships to practices could result in higher losses.The model is useful to evaluate the relevance of cultural practices for a bottom-up regulation of aphid dynamics in crop-pest management. After considering other control methods and fruit quality, it can be used to find a combination of practices that optimises trade-offs between fruit production and environmental conservation goals. A modelling approach that links crop growth and pest population dynamics and integrates management practice effects has strong potential for improving crop-pest management in an integrated crop production context.  相似文献   

7.
The forest vegetation simulator (FVS) model was calibrated for use in Ontario, Canada, to predict the growth of forest stands. Using data from permanent sample plots originating from different regions of Ontario, new models were derived for dbh growth rate, survival rate, stem height and species group density index for large trees and height and dbh growth rate for small trees. The dataset included black spruce (Picea mariana (Mill.) B.S.P.) and jack pine (Pinus banksiana Lamb.) for the boreal region, sugar maple (Acer saccharum Marsh.), white pine (Pinus strobus L.), red pine (Pinus resinosa Ait.) and yellow birch (Betula alleghaniensis Britton) for the Great Lakes-St. Lawrence region, and balsam fir (Abies balsamea (L.) Mill.) and trembling aspen (Populus tremuloides Michx.) for both regions. These new models were validated against an independent dataset that consisted of permanent sample plots located in Quebec. The new models predicted biologically consistent growth patterns whereas some of the original models from the Lake States version of FVS occasionally did not. The new models also fitted the calibration (Ontario) data better than the original FVS models. The validation against independent data from Quebec showed that the new models generally had a lower prediction error than the original FVS models.  相似文献   

8.
The forest tent caterpillar (Malacosoma disstria Hübner) (FTC) has an outbreak cycle of approximately 10 years; however, smaller spatial scale analyses show some regions have longer or more frequent periods of high defoliation. This may be a result of local forest fragmentation, pollution or other sources of stress that may affect FTC directly or indirectly through stress on their hosts or parasitoids. Population dynamics of FTC were examined to investigate how stress may alter the severity and frequency of defoliation. We developed a spatially explicit agent-based model to simulate the host-parasitoid dynamics of FTC. Theoretical and empirically derived parameters were established using past literature and over 50 years of population data of FTC from Ontario, Canada. We find that increasing FTC fecundity, FTC dispersal or parasitoid mortality resulted in more severe outbreaks while a decrease in parasitoid fecundity or searching efficiency resulted in an overall elevation of defoliation. Parasitoid efficiency was the most effective parameter for altering the FTC defoliation. Since plant stress has been shown to alter several of these parameters in nature due to changes in food quality, habitat suitability, and chemical cue interference, our results suggest that forests affected by stressors such as climate change and pollution will have more severe and frequent defoliation from these insects than surrounding unaffected forests. As stressors such as drought and pollution emissions are predicted to increase in frequency or intensity over the next few decades, understanding how they may affect the outbreak cycle of a forest defoliator can aid in planning strategies to reduce the detrimental effects of this insect.  相似文献   

9.
Changes in the size of animal populations over time are mainly determined by demographic and environmental factors. Livestock population dynamics are additionally influenced by harvesting decisions taken by herders. In Bolivia, not much is known about current llama husbandry and the main influencing factors determining population sizes. We collected data on demography, environmental factors and market values affecting the current and future llama population in three different regions in Bolivia. We generated a population model and assessed the future development of the llama population including environmental factors (rangeland carrying capacity, disturbance phenomena), herd structure and dynamics, and economic market demands. We calibrated and validated the llama model on the basis of 20-year data sets of the regions of Oruro, Potosi and La Paz, respectively. Model calibration by means of the Gauss-Marquardt-Levenberg algorithm yielded a model efficiency of 0.94. For model validation, however, the simulation slightly overestimated the observed llama population yielding model efficiencies of 0.91 and 0.87 for Potosi and La Paz, respectively. Model outcomes were most sensitive to death and birth rates of juveniles and death rate of females compared to environmental or other demographic factors. Population trajectories approached an overall carrying capacity for Oruro, Potosi and La Paz of 8.8 × 105, 9.1 × 105, and 9.0 × 105 llama individuals after 100 years of simulation. Hence, detailed monitoring of demographic, environmental, and economic factors can improve predictions of llama population development over time. Further management should focus on improving birth rates and lowering female mortality through providing supplemental food and shelters against the harsh environmental conditions of the Andean highlands.  相似文献   

10.
Most fish farming waste output models provide gross waste rates as a function of stocked or produced biomass for a year or total culture cycle, but without contemplating the temporality of the discharges. This work aims to ascertain the temporal pattern of waste loads by coupling available growth and waste production models and developing simulation under real production rearing conditions, considering the overlapping of batches and management of stocks for three widely cultured species in the Mediterranean Sea: gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax) and Atlantic bluefin tuna (Thunnus thynnus). For a similar annual biomass production, the simulations showed that waste output and temporal dumping patterns differ between the three species as a result of the disparities in growth velocity, nutrient digestibility, maintenance metabolic budget and husbandry. The simulations allowed the temporal patterns including the periods of maximum discharge and the dissolved and particulate nitrogen and phosphorus content in the wastes released to be determined, both of which were seen to be species-specific.  相似文献   

11.
Several studies have proven the importance of field margins in sustaining biodiversity and other work has been done on the effect of field management on field margin flora. However few models have been built to predict the effects of field management on the flora. Our project addresses this need for a model capable of predicting the effect of cropping techniques and their timing on the flora of field margins. Primula vulgaris is a biodiversity indicator, characteristic of undisturbed flora and found in field margins and woodlands: its population has been declining for several years. We created a temporal matrix model of P. vulgaris populations on field margins, taking into account the effects of field, field margin and roadside management based on literature and expert knowledge. We then analysed its sensitivity to demographic parameters by comparing lambda (growth rate) sensitivity and elasticity. We compared the management parameter effect using the relative growth rate of the population after 6 years of simulation. Sensitivity analysis to biological parameters showed the importance of adult survival and seed production and germination. Results show that P. vulgaris is particularly sensitive to broad-spectrum herbicides and that other management techniques like early mowing, scything and scrub-killer (diluted broad-spectrum herbicide or specific herbicide) are less aggressive. Our simulations show that management of cash crops in Brittany is too aggressive for P. vulgaris populations and that 4-5 years of grassland in the adjacent field are necessary to maintain populations.  相似文献   

12.
The greatest concentration of oak species in the world is believed to be found in Mexico. These species are potentially useful for reforestation because of their capacity to adapt to diverse environments. Knowledge of their geographic distribution and of species–environment relations is essential for decision-making in the management and conservation of natural resources. The objectives of this study were to develop a model of the distribution of Quercus emoryi Torr. in Mexico, using geographic information systems and data layers of climatic and other variables, and to determine the variables that significantly influence the distribution of the species. The study consisted of the following steps: (A) selection of the target species from a botanical scientific collection, (B) characterization of the collecting sites using images with values or categories of the variables, (C) model building with the overlay of images that meet the habitat conditions determined from the characterization of sites, (D) model validation with independent data in order to determine the precision of the model, (E) model calibration through adjustment of the intervals of some variables, and (F) sensitivity analysis using precision and concordance non-parametric statistics applied to pairs of images. Results show that the intervals of the variables that best describe the species’ habitat are the following: altitude from 1650 to 2750 amsl, slope from 0 to 66°; average minimum temperature of January from −12 to −3 °C; mean temperature of June from 11 to 25 °C; mean annual precipitation from 218 to 1225 mm; soil units: lithosol, eutric cambisol, haplic phaeozem, chromic luvisol, rendzina, luvic xerosol, mollic planosol, pellic vertisol, eutric regosol; type of vegetation: oak forest, oak–pine forest, pine forest, pine–oak forest, juniperus forest, low open forest, natural grassland and chaparral. The resulting model of the geographic distribution of Quercus emoryi in Mexico had the following values for non-parametric statistics of precision and agreement: Kappa index of 0.613 and 0.788, overall accuracy of 0.806 and 0.894, sensitivity of 0.650 and 0.825, specificity of 0.963, positive predictive value of 0.945 and 0.957 and negative predictive value of 0.733 and 0.846. Results indicate that the variable average minimum temperature of January, with a maximum value of −3 °C, is an important factor in limiting the species’ distribution.  相似文献   

13.
The gap model ZELIG was validated for red spruce–balsam fir–yellow birch and yellow birch–sugar maple–balsam fir forest types in southern Quebec, Canada. Long-term historical data originating from the Lake Edward Experimental Forest, La Mauricie National Park, were used. The effect of the variation in plot size, representing the space within which trees uptake site resources, was also examined. Several species were included in both forest types: red spruce (Picea rubens Sarg.), balsam fir (Abies balsamea (L.) Mill.), yellow birch (Betula alleghaniensis Britton), white birch (Betula papyrifera Marsh.), red maple (Acer rubrum L.), sugar maple (Acer saccharum Marsh.), American beech (Fagus grandifolia Ehrh.), eastern hemlock (Tsuga canadensis (L.) Carr.) and northern white cedar (Thuja occidentalis L.). The pattern of change in basal area growth varied among species, ranging from a steady increase to a more or less rapid decline. There was a good agreement between observations and predictions for yellow birch, red spruce, red maple, sugar maple, balsam fir and northern white cedar. Plot size had a significant impact on the dynamics of the different species. Depending on the species, the decline was accelerated, the amplitude of the fluctuations varied, or the maximum basal area reached changed. Predicted regeneration varied among species and the number of seedlings generally increased with increase in plot size. The pattern of development for most species was related to their life characteristics. The results highlighted the fact that there is a critical lack of knowledge and data on the dynamics of regeneration from the seedling to the sapling stages for the two forest types studied, which resulted in poor predictions for some species. As the life characteristics varied among species, the use of only one plot size for all species may not be realistic.  相似文献   

14.
Proliferation of macroalgal mats is a frequent consequence of nutrient-driven eutrophication in shallow, photic coastal marine ecosystems. These macroalgae have the potential to significantly modify water quality, plankton productivity, nutrient cycling, and dissolved oxygen dynamics. We developed a model for Ulva lactuca and Gracilaria tikvahiae in Greenwich Bay, RI (USA), a shallow sub-estuary of Narragansett Bay, as part of a larger estuarine ecosystem model. The model predicts the biomass of both species in units of carbon, nitrogen, and phosphorus as a function of primary production, respiration, grazing, decay, and physical exchange, with particular attention to the effects of biomass layering on light attenuation and suppression of metabolic rates. The model successfully reproduced the magnitude and seasonal cycle of area-weighted and peak biomass in Greenwich Bay along with tissue C:N ratios, and highlighted the importance of grazing and inclusion of self-limitation primarily in the form of self-shading to overcome an order of magnitude difference in rates of production and respiration. Inclusion of luxury nutrient uptake demonstrated the importance of internal nutrient storage in fueling production when nutrients are limiting. Macroalgae were predicted to contribute a small fraction of total system primary production and their removal had little effect on predicted water quality. Despite a lack of data for calibration and a fair amount of sensitivity to individual parameter values, which highlights the need for further autecological studies to constrain formulations, the model successfully predicted macroalgal biomass dynamics and their role in ecosystem functioning. Our formulations should be exportable to other temperate systems where macroalgae occur in abundance.  相似文献   

15.
A model is presented to predict sanitary felling of Norway spruce (Picea abies) due to spruce bark beetles (Ips typographus, Pityogenes chalcographus) in Slovenia according to different climate change scenarios. The model incorporates 21 variables that are directly or indirectly related to the dependent variable, and that can be arranged into five groups: climate, forest, landscape, topography, and soil. The soil properties are represented by 8 variables, 4 variables define the topography, 4 describe the climate, 4 define the landscape, and one additional variable provides the quantity of Norway spruce present in the model cell. The model was developed using the M5′ model tree. The basic spatial unit of the model is 1 km2, and the time resolution is 1 year. The model evaluation was performed by three different measures: (1) the correlation coefficient (51.9%), (2) the Theil's inequality coefficient (0.49) and (3) the modelling efficiency (0.32). Validation of the model was carried out by 10-fold cross-validation. The model tree consists of 28 linear models, and model was calculated for three different climate change scenarios extending over a period until 2100, in 10-year intervals. The model is valid for the entire area of Slovenia; however, climate change projections were made only for the Maribor region (596 km2). The model assumes that relationships among the incorporated factors will remain unchanged under climate change, and the influence of humans was not taken into account. The structure of the model reveals the great importance of landscape variables, which proved to be positively correlated with the dependent variable. Variables that describe the water regime in the model cell were also highly correlated with the dependent variable, with evapotranspiration and parent material being of particular importance. The results of the model support the hypothesis that bark beetles do greater damage to Norway spruce artificially planted out of its native range in Slovenia, i.e., lowlands and soils rich in N, P, and K. The model calculation for climate change scenarios in the Maribor region shows an increase in sanitary felling of Norway spruce due to spruce bark beetles, for all scenarios. The model provides a path towards better understanding of the complex ecological interactions involved in bark beetle outbreaks. Potential application of the results in forest management and planning is discussed.  相似文献   

16.
Based on numerical experiments with a new physiologically structured population model we demonstrate that predator physiology under low food and under starving conditions can have substantial implications for population dynamics in predator-prey interactions. We focused on Daphnia-algae interactions as model system and developed a new dynamic energy budget (DEB) model for individual daphnids. This model integrates the κ-rule approach common to net assimilation models into a net-production model, but uses a fixed allocation of net-productive energy in juveniles. The new DEB-model agrees well with the results of life history experiments with Daphnia. Compared to a pure κ-rule model the new allocation scheme leads to significant earlier maturation at low food levels and thus is in better agreement with the data. Incorporation of the new DEB-model into a physiologically structured population model using a box-car elevator technique revealed that the dynamics of Daphnia-algae interactions are highly sensitive to the assumptions on the energy allocation of juveniles under low food conditions. Additionally we show that also other energy allocation rules of our DEB-model concerning decreasing food levels and starving conditions at the individual level have strong implications for Daphnia-algae interactions at the population level. With increasing carrying capacity of algae a stable equilibrium with coexistence of Daphnia occurs and algae shifts to limit cycles. The amplitudes of the limit cycles increase with increasing percentage of sustainable weight loss. If a κ-rule energy allocation is applied to juveniles, the stable equilibrium occurs for a much narrower range of algal carrying capacities, the algal concentration at equilibrium is about 2 times larger, and the range of algae carrying capacities at which daphnids become extinct extends to higher carrying capacities than in the new DEB-model. Because predator-prey dynamics are very sensitive to predator physiology under low food and starving conditions, empirical constraints of predator physiology under these conditions are essential when comparing model results with observations in laboratory experiments or in the field.  相似文献   

17.
Summary. Ponderosa pine, Pinus ponderosa Laws. (Pinaceae), forests in Arizona have suffered from a nine-year period of drought and bark beetle, Ips lecontei Swaine (Coleoptera: Scolytidae), outbreaks. Abiotic and biotic stress in ponderosa pine results in the induced synthesis of certain monoterpenes that may in turn affect bark beetle behavior and survival. In this study, we investigate whether induced monoterpene production could result in a different monoterpene composition that remains stored in the needles or the trunk resin of the tree. Needle and resin samples in addition to trunk cores were collected from ponderosa pines at three locations in Arizona. Ungulate browsing induced a significant increase in limonene (P=0.010) and in chemodiversity (P=0.009), a measure of the evenness of distribution among the monoterpenes present in needles. We compared the level of ‘stress’ of the trees by measuring the thickness of annual rings in living trees and those that were killed by bark beetles. Where drought occurred, the spacing of annual rings from the last 10 years of trees killed by bark beetles was significantly smaller (P=0.020) compared to living trees. There was no difference in the monoterpene composition between the core sections of closest spacing of annual rings (stressed years) compared to the sections of widest spacing, which indicates that monoterpenes are distributed evenly throughout the extended resin system. In the area where the degree of drought was less overall, none of the individual monoterpenes present in the resin was related to bark beetle killed trees. However, about half the living pines had resin in which one of the major monoterpenes (α-pinene, Δ3-carene, and limonene) was absent, and these trees had a lower monoterpene chemodiversity compared to trees killed by bark beetles. Trees with these three major monoterpenes, corresponding to the average relative proportion in living pines at that location, may sustain higher selection and colonization by bark beetles.  相似文献   

18.
Summary. Host selection in tree-killing bark beetles (Coleoptera: Scolytidae) is mediated by a complex of semiochemical cues. Using gas chromatographic-electroantennographic detection (GC-EAD) and GC-mass spectrometric analyses, we conducted a comparative study of the electrophysiological responses of four species of tree-killing bark beetles, the Douglas-fir beetle, Dendroctonus pseudotsugae, Hopkins, the mountain pine beetle, D. ponderosae Hopkins, the spruce beetle, D. rufipennis Kirby, and the western balsam bark beetle, Dryocoetes confusus Swaine, to volatiles captured by aeration of 1) bole and foliage of four sympatric species of conifers, Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco, lodgepole pine, Pinus contorta var. latifolia Engelm., interior spruce, Picea engelmannii x glauca, and interior fir, Abies lasiocarpa x bifolia, and 2) con- and heterospecific beetles at three stages of attack. We identified 13 monoterpenes in the conifers and nine compounds in the volatiles of beetles that elicited antennal responses. There was no qualitative difference in the terpene constitution of the four species of conifers and very little difference across beetle species in their antennal response to compounds from conifers or beetles. The lack of species-specific major or minor components in conifers suggests that beetles would need to detect differences in the ratios of different compounds in conifers to discriminate among them. Attraction to hosts and avoidance of nonhost conifers may be accentuated by perception of compounds emitted by con- and heterospecific beetles, respectively. The 22 compounds identified are candidate semiochemicals with potential behavioural roles in host location and discrimination.  相似文献   

19.
The benefits of genetically modified herbicide-tolerant (GMHT) sugar beet (Beta vulgaris) varieties stem from their presumed ability to improve weed control and reduce its cost, particularly targeting weed beet, a harmful annual weedy form of the genus Beta (i.e. B. vulgaris ssp. vulgaris) frequent in sugar beet fields. As weed beet is totally interfertile with sugar beet, it is thus likely to inherit the herbicide-tolerance transgene through pollen-mediated gene flow. Hence, the foreseeable advent of HT weed beet populations is a serious threat to the sustainability of GM sugar beet cropping systems. For studying and quantifying the long-term effects of cropping system components (crop succession and cultivation techniques) on weed beet population dynamics and gene flow, we developed a biophysical process-based model called GeneSys-Beet in a previous study. In the present paper, the model was employed to identify and rank the weed life-traits as function of their effect on weed beet densities and genotypes, using a global sensitivity analysis to model parameters. Monte Carlo simulations with simultaneous randomization of all life-trait parameters were carried out in three cropping systems contrasting for their risk for infestation by HT weed beets. Simulated weed plants and bolters (i.e. beet plants with flowering and seed-producing stems) were then analysed with regression models as a function of model parameters to rank processes and life-traits and quantify their effects. Key parameters were those determining the timing and success of growth, development, seed maturation and the physiological end of seed production. Timing parameters were usually more important than success parameters, showing for instance that optimal timing of weed management operations is more important than its exact efficacy. The ranking of life-traits though depended on the cropping system and, to a lesser extent, on the target variable (i.e. GM weeds vs. total weed population). For instance, post-emergence parameters were crucial in rotations with frequent sugar beet crops whereas pre-emergence parameters were most important when sugar beet was rare. In the rotations with frequent sugar beet and insufficient weed control, interactions between traits were small, indicating diverse populations with contrasted traits could prosper. Conversely, when sugar beet was rare and weed control optimal, traits had little impact individually, indicating that a small number of optimal combinations of traits would be successful. Based on the analysis of sugar beet parameters and genetic traits, advice for the future selection of sugar beet varieties was also given. In climatic conditions similar to those used here, the priority should be given to limiting the presence of hybrid seeds in seed lots rather than decreasing varietal sensitivity to vernalization.  相似文献   

20.
Cyclic population dynamics of forest insects with periods of more than two generations have been discussed in relation to a variety of extrinsic and intrinsic forces. In the present study, we employed the selection pressure of density dependent competitive interactions according to Witting's equations (Witting, 2000) as driver for a discrete spatiotemporal model of the green oak leaf roller (Tortrix viridana). The model was successfully parameterised to rebuild the cyclic population dynamics of an empirical data set of a 30-year leaf roller monitoring in Russia. Our analysis focussed on the role of herbivore mortality and host plant food quality, which have a significant effect on T. viridana population dynamics. An additional egg or larvae mortality lowers population density and can lead to selection pressures that favour individuals with higher growth rate. This increased population growth rate can not only compensate the additional mortality, but also can lead to higher average moth abundances in subsequent generations. Furthermore, we analysed the effect of inter- and intraspecific variation in host plant quality on herbivore population dynamics and the spatial distribution of abundance and defoliation patterns. We found significant effects of the qualitative composition of a trees neighbourhood on the herbivore population of the respective tree. Also, the patchy damage patterns observable in reality have been reproduced by the present model. The applicability of the model approach and the putative genetic processes underlying Witting's model are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号