首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
According to estimates from the Danish Meteorological Institute global warming until 2080 may cause a relative sea-level rise in Danish waters of 33–46 cm. In the present paper the possible impact of a sea-level rise of this magnitude on coastal habitat types is discussed for three case studies, based on previous investigations of vegetation, topography and soil of localities at the Baltic coast of Denmark. The case studies include the following types of localities and habitats: (1) an off-shore barrier complex: sandy beach, sand dune, geolittoral, brackish, low-tidal meadow, reed bed; (2) a protected bay: geolittoral, brackish meadow, coastal grassland; (3) a dune area: mobile and fixed dune communities, and adjoining sea wall: coastal grassland. In the geolittoral meadow and coastal grassland habitats the sea-level rise is expected to cause a horizontal displacement of vegetation zones and a reduction in area, depending on accretion rate (sedimentation, peat formation), local topography and inland land-use. In the beach and sand dune habitats the sea-level rise is expected to cause a change in groundwater level, influencing slack vegetation, and a change in the erosion/accretion pattern, resulting in landward rebuilding of the mobile dune as well as in a more or less diffuse inland sand drift, causing destabilization of fixed dune vegetation.  相似文献   

2.
Greaver TL  Sternberg LL 《Ecology》2006,87(9):2389-2396
As evidence mounts that sea levels are rising, it becomes increasingly important to understand the role of ocean water within terrestrial ecosystem dynamics. Coastal sand dunes are ecosystems that occur on the interface of land and sea. They are classic ecotones characterized by zonal distribution of vegetation in response to strong gradients of environmental factors from the ocean to the inland. Despite the proximity of the dune ecosystem to the ocean, it is generally assumed that all vegetation utilizes only freshwater and that water sources do not change across the ecotone. Evidence of ocean water uptake by vegetation would redefine the traditional interpretation of plant-water relations in the dune ecosystem and offer new ideas for assessing maritime influences on function and spatial distribution of plants across the dune. The purpose of this study was to identify sources of water (ocean, ground, and rain) taken up by vegetation using isotopic analysis of stem water and to evaluate water uptake patterns at the community level based on the distribution and assemblage of species. Three coastal dune systems located in southern Florida, USA, and the Bahamian bank/platform system were investigated. Plant distributions across the dune were zonal for 61-94% of the 18 most abundant species at each site. Species with their highest frequency on the fore dune (nearest the ocean) indicate ocean water uptake as evidenced by delta 18O values of stem water. In contrast, species most frequent in the back dune show no evidence of ocean water uptake. Analysis of species not grouped by frequency, but instead sampled along a transect from the ocean toward the inland, indicates that individuals from the vegetation assemblage closest to the ocean had a mixed water-harvesting strategy characterized by plants that may utilize ocean, ground-, and/or rainwater. In contrast, the inland vegetation relies mostly on rainwater. Our results show evidence supporting ocean water use by dune vegetation and demonstrate an exciting relationship between seawater and ecotonal shifts in plant function of a terrestrial ecosystem.  相似文献   

3.
Coastal dune ecosystems are among the most dynamic habitats with high conservation value in Europe but are also under strong anthropogenic pressure regarding coastal protection and recreation. Hence, it is of high importance to know about long-term natural and anthropogenic changes and development of protected dune habitats for nature conservation, as well as for coastal management. This paper aims to identify the vegetation dynamics on the Łeba Bar/Poland over a period of 74 years by cartometric comparison using modern Geographical Information System (GIS). To quantify the rate of vegetation dynamics two aerial photographs dating from 1932 and 2006 were digitalized and analyzed with GIS to produce digital vegetation maps. Information about decrease, increase and stability of vegetation types of this area are discussed. The results show that there has been a clear reduction in the total area of bare sand and a considerable increase of woodlands and dense grass communities. Nevertheless, the remaining extensive drift sand areas and deflation hollows on the Łeba Bar offer one of the most important habitats for pioneer vegetation on bare sand of migrating dunes and dunes at the Southern Baltic coast. The present work proved the need to observe the future development of the vegetation communities and to implement management measures to maintain the dynamic of this unique dune landscape.  相似文献   

4.
Sand dunes are complex systems that contain several habitats, often as mosaics or transitions between types. Several of these habitats are afforded protection under European Legislation and in the UK nationally within Special Areas of Conservation (SAC) and Sites of Special Scientific Interest (SSSI). Natural England has a statutory duty to report to Europe on the conservation status and condition of sand dunes; and is required to report to the UK Government on designated sites. To achieve this we have sought ways of capturing, analysing and interpreting data on the extent and location of sand dune habitats. This requires an ability to be able to obtain data over large areas of coastline in an efficient way. Natural England and Environment Agency Geomatics have worked collaboratively for over 16 years, sharing data and ecological knowledge. In 2012 work started to evaluate the use of remote sensing to map UK BAP and Annex I sand dune habitats. A methodology has now been developed and tested to map sand dune habitats. The key objective was to provide an operational tool that will help to map these habitats and understand change on sites around England. This has been achieved through analysis of LIDAR and Compact Airborne Spectrographic Imager (CASI) data using Object Orientated Image Analysis. Quality Control (QC) and accuracy assessments have shown this approach to be successful and 11 sites have been mapped to date. These techniques are providing a new approach to monitoring change in coastal vegetation communities and informing management of protected sites.  相似文献   

5.
Although most UK sand dune systems are now fossilized, with little mobility and reducing amounts of bare sand, they support important populations and assemblages of terrestrial invertebrates. Offering open conditions, warm substrates and a range of habitats and habitat structures, they have become increasingly significant as other coastal habitats have been lost. In Wales, 680 Red Data Book and Nationally Scarce species have been recorded from dunes. 109 species in the UK are restricted to dunes, and in Wales there are an additional 145 species confined to dunes and 208 species strongly associated with dunes. Of these, 172 species are dependent upon bare and sparsely-vegetated sand, in grey dunes and early-successional dune grassland, at some stage of their life cycle, rising to 292 species if those associated with the strandline, foredunes, yellow dunes and pioneer dune slacks are included, equating to 63% of the 462 dune species. Bees and wasps are particularly well represented, with 278 species (68% of the Welsh fauna) recorded on Welsh dunes, including 17 obligates and 44 species with a strong dependence, 52 of which are associated with bare and sparsely-vegetated sand. Key to maintaining invertebrate populations on UK dunes is the provision of bare sand but in Wales, bare sand accounts for only 1.7% of the total sand dune resource. As a more appropriate bare sand threshold is likely to range between 10 and 30%, radical action is required to re-mobilize at least the key sand dune systems.  相似文献   

6.
The negative impact of grass and moss encroachment on the botanical diversity of West European coastal dunes attracted increasing attention in the 1990s. This paper focuses on moss encroachment during primary succession in the xeroseries. Until the mid-1970s, vegetation types rich in species of the lichen generaCladonia andCladina were found on the fixed,Corynephorus canescens-dominated, so-called grey dunes all over the island of Terschelling, The Netherlands. In addition, species ofHypogymnia, Parmelia andUsnea, which usually grow on trees, occurred here terrestrially on moss carpets or bare sand. These vegetation types are still present on the Noordsvaarder, a nature reserve in the western part of the island. They occur on parts of seven dune ridges parallel to the coast and form a chronosequence in which age increases with distance from the sea. Our study found the highest lichen diversity on the second and third dune ridges in a stage of primary succession that can be assigned to theViolo-Corynephoretum. The changes from lichen-rich to moss-dominated stadia were significantly related to soil development and acidification in connection with the ageing of the dune soil. The superficial cutting of sods in moss-encroached vegetation appeared to be unsuccessful as a management technique for restoring the biodiversity of cryptogams. Our findings suggest that the best option for maintaining lichen vegetation in theViolo-Corynephoretum is the blow-in of sand with a subneutral or neutral pH from reactivated and natural blowouts or from foredunes, with increasing lime content respectively.  相似文献   

7.
Newborough Warren is a large calcareous west coast UK dune system, which has experienced rapid vegetation spread in the last 70 years. Information from two high resolution chronosequences for dry and wet dune habitats, 0–145 years, was used to answer the following questions: Does climate influence colonisation of vegetation on bare sand? What are the timescales and sequences of successional change in the vegetation? Analysis of aerial photographs showed that stabilisation of the dune system since 1945 has occurred in three main phases. The onset of stabilisation predated myxomatosis by 10 years; while stabilisation virtually halted during the period 1964–1978. Periods of rapid stabilisation were coincident with higher values of Talbot’s Mobility index (M)?>?0.3. Successional development was apparent in both dry and wet habitats. Fixed dune grassland started to replace earlier successional communities at around 40 years, and could persist to 145 years. Linear succession in dune slacks was less apparent, but a separation between communities typically regarded as ‘younger’ and ‘older’ occurred at around 40 years. Species richness in dry dune habitats increased with age to a maximum on soils around 60 years old, then declined again. Species richness was unrelated to age or soil development in wet dune slacks. The influence of climate suggests that conservation managers can only operate within the constraints imposed by natural climatic conditions. Vegetation growth and soil development are closely linked and maintaining some open areas is key to preventing soil development and over-stabilisation.  相似文献   

8.
Abstract: Individual species may be useful as indicators of biodiversity if an association exists between the presence of a species and another component of biodiversity. We evaluated 40 species of birds and small mammals, including 11 species of conservation concern, as potential indicators of species richness and species composition in southern California coastal sage scrub habitats. This habitat, which is the target of large-scale conservation planning, has been greatly reduced by human development and supports many plants and animals of conservation concern. We asked whether there is an association between the presence of a potential indicator species and the species richness and composition of the bird or small-mammal community in which it is found. We used point counts and live-trapping to quantify the distribution of birds and small mammals, respectively, at 155 points in 16 sites located in three counties. Of the few species we found associated with species richness, some were associated with higher species richness and others with lower richness, and species of conservation concern were not more frequently associated with species richness than were common species. Ordination analysis revealed a geographic gradient in coastal sage scrub bird and small-mammal species composition across southern California, and 18 of the species we evaluated were associated with the composition of the bird and small-mammal community in which they were found. Our results suggest that efforts to conserve bird and small-mammal biodiversity in coastal sage scrub should not focus exclusively on rare species or on locations with the highest species richness, but instead should focus on a diverse suite of species that are representative of the range of variation in communities found in coastal sage scrub habitats.  相似文献   

9.
Shore bugs (Heteroptera: Saldidae) were collected during summer 1973 along the Pacific Coast of North America between the arctic and the subtropical regions. The field studies were aimed at determining the species-specific upper and lower limits of distribution in the littoral, and the distribution range of these species in estuaries. The saldids inhabiting the littoral zones can be divided into two groups: those species which live mainly along the coast (coastal species), and those which live mainly inland (inland species). Species found in the supralittoral occur at inland localities as well, and thus can either tolerate limnetic-oligohaline conditions (Salda littoralis, S. provancheri, Saldula coxalis) or are confined to habitats along salt lakes (Pentacora signoreti). Inhabitants of the eulittoral can either occur in the supralittoral and inland localities as well and are holeuryhaline (Saldula palustris, S. pallipes), or have disconnected inland populations (S. nigrita), or they live exclusively in the intertidal zones. In the subarctic, coastal species are distributed from the intertidal zones to inland limnetic habitats. The increasing aridity of southern climatic zones may act as a limiting factor confining the distribution of coastal species to the coast. On the other hand, the distribution of inland species may be influenced by competition with the coastal forms.

Mit dankenswerter Unterstützung der Deutschen Forschungsgemeinschaft.  相似文献   

10.
Dune slacks are important coastal sand dune habitats and seasonal changes in water levels within dune aquifers control both their formation and the specific hydrological conditions which then govern the floristic composition of their characteristic plant communities. Kenfig Dunes National Nature Reserve is one of the largest dune sites in South Wales and Southern Britain. It supports an exceptional range of dune slack communities, including most of those recognised in the British National Vegetation Classification scheme. Detailed studies of the vegetation ecology and hydrology of dune slacks reveal the important influence of hydrological variables in controlling the composition of dune slack vegetation and also valuable information on water table profile and the key factors governing the annual hydrological budget of the dune system aquifer.  相似文献   

11.
The position of alien plant species in the Dutch coastal dune vegetation is evaluated considering 12 archaeophytes and 20 neophytes (including one moss), all of widespread occurrence in the coastal area of the Netherlands. Almost all archaeophytes have become part of natural vegetation types. Open scrub communities, in particular Hippophae rhamnoides-Sambucus nigra scrub at the leeside of the outer dunes, and calciphilous moss-dominated pioneer vegetation are relatively rich in archaeophytes. Among neophyte vascular species a contrast is apparent between herbaceous and woody species. The majority of herbaceous neophytes are characteristic of man-disturbed habitats and are only infrequently observed in natural vegetation types. However, woody species (as well as the moss Campylopus introflexus) have entered into natural vegetation on a large scale and behave in an invasive way.  相似文献   

12.
A short outline is given of the floristic composition, structure and distribution of coastal dune vegetation found at Malindi Bay, Kenya. The area was studied by air photo interpretation and field sampling to determine the relationship of plants to aeolian features. TWINSPAN classification was used to distinguish geomorphological units on the basis of their species composition. In this paper, an inventory and first quantitative analysis of vegetation distribution is presented. We identified 174 plant species from 62 families in the sand dunes and several plant communities are distinguished based on the species content and the connection with morphological units.Papilionaceae with 18 species andPoaceae with 17 species were the most represented families. A distinct zonal distribution of the plant communities was found. The most important plant species are the pioneer vegetation consisting ofHalopyrum mucronatum, Ipomoea pescaprae andScaevola plumieri. The woody shrub species which have colonized the established primary dunes and hummock dunes areCordia somaliensis, Pluchea discoridis, Tephrosia purpurea (dunensis). Succulent herbs were identified in the dune slacks and salt marsh that are moist and damp environments.  相似文献   

13.
Data on flora and vegetation of 14 off-shore islands representing different habitat types were studied for investigating floristic composition, vegetation types and correlation with their habitats and ecosystem. The results demonstrate considerable plant distribution and diversity among the islands within the limited spectrum of species; encompassing a total of 47 species, belonging to 43 genera under 24 families. The most representative families were Amaranthaceae (9 species), Fabaceae (4 species), Poaceae (4 species) and Asteraceae and Aizoaceae (3 species each). Fourteen families are represented by only one species. The mangrove species, Avicennia marina, occurs throughout the coast of Abu Dhabi in discontinuous patches and in different water salinities. The studies also seek to underline that dominant species that constitutes the flora of Abu Dhabi are salt tolerant in nature. Compared to other Arabian Peninsula ecosystems, UAE perhaps has a higher coastal: mainland area ratio, which has contributed to a natural dominance of salt tolerant species among the community. The studies show 40% similarity among islands with respect to the species diversity. The floristic composition of the off-shore islands also indicates a need to consider these sites as protected sites.  相似文献   

14.
沙地退化植被恢复过程中植被的空间异质性   总被引:1,自引:0,他引:1  
通过野外取样和室内分析,应用地统计学分析方法研究了科尔沁沙地退化植被恢复过程中不同封育年限(0、11和20年)的流动沙丘的植被盖度和丰富度特征及其空间异质性规律。结果表明,随着流动沙丘的固定和封育年限的增加,植被盖度和丰富度逐渐增加。在流动沙丘植被恢复过程中,植被盖度和丰富度具有明显的空间自相关性,其空间自相关范围从封育0年的流动沙丘(46.05m和33.63m)、封育11的流动沙丘(21.63m和17.25m)到封育20年的流动沙丘(26.12m和24.18m)先减小后增加,但均未超出我们的研究尺度50m,表现出不同大小的斑块形式分布的小尺度分布格局。由半方差函数及其参数和空间分布格局图分析得出,随着沙丘植被的恢复,植被特征的空间异质性在所研究的尺度上表现出先增大(封育0年到封育11年)后减小(封育11年到封育20年)的变化特点。  相似文献   

15.
Variation in the endospermal protein patterns of seeds amongst and between inland and coastal populations of the dune building grassLeymus arenarius was examined in Iceland. Seeds were collected from six coastal populations and five inland populations in Iceland. Endospermal proteins (prolamins) of seeds were extracted with Tris-buffered 2-propanol (50%) and β-mercaptoethanol (0.5% v/v). We used 8% and 12% sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) to separate the prolamin protein bands, which were stained with Coomassie Brilliant Blue R. Coastal populations were differentiated from inland populations on the basis of high frequency of high molar weight (HMW) (110–150 kg mol−1) prolamins. Coastal populations had significantly higher proportions of their seed with more than two HMW prolamins, than those of inland populations. Subtle differences were found among the HMW prolamins of coastal and inland populations indicating limited intrapopulation variation. The dynamic environment of sand dunes probably influences the genetic composition of these populations. The results suggest that seeds of the inland and coastal populations should be treated separately in sand dune reclamation and restoration works  相似文献   

16.
Welsh coastal dune systems have become increasingly vegetated in recent decades. Several rare species of plants and invertebrates have declined dramatically in abundance, and in some areas lost entirely. Of the ten dune habitats and species recognized as being features of European importance within the Welsh Natura 2000 sites, nine are currently in Unfavourable condition on at least one site. The decline in active aeolian processes has also reduced the geomorphological interest of the sites, several of which were designated as Geological Conservation Review sites principally on the basis of their physical processes and landforms. The decline in bare sand area between the 1940-50s and 2009 has been quantified at twelve Welsh dune sites using aerial photography and GIS. The decline ranged from 41 % at Gronant Dunes and Talacre Warren to 97 % at Kenfig Burrows, with an average of 81 %. Morfa Dyffryn had the highest remaining percentage of bare sand in 2009 (20 %), with 30–40 % coverage of mobile dune and pioneer communities, while seven sites had < 5 % bare sand. Dune stabilization over the past 60 years has been favoured by a number of factors, including less windy conditions, higher temperatures and longer growing season, increased atmospheric nitrogen deposition, a reduction in grazing intensity, and dune management policies aimed at controlling mobile sand. Climate change projections suggest that, in the next 50 to 100 years, Wales and adjoining areas are likely to experience higher temperatures and higher rainfall, especially in winter, and a further slight reduction in wind speeds. Without intervention, dune and dune slack habitats are likely to be increasingly replaced by fixed dune grassland and scrub, resulting in the extinction of rare plants, invertebrates and other species which require open, mobile conditions. Several intervention options exist, ranging in scale and potential impact. Increased livestock grazing, re-introduction of rabbits, scrub clearance, turf stripping and the creation of shallow ‘scrapes’ can be beneficial but will not by themselves create self-sustaining mobile dunes. In order to have any chance of achieving any significant impact, larger-scale intervention measures, involving large-scale vegetation removal and sand-re-profiling, will be required. At least in the short-term, maintenance measures will be required to prevent vegetation re-growth, and the challenge will be to encourage the development of mobile dune features which will be naturally mobile in the medium to longer term.  相似文献   

17.
The aims of this study are to review the current situation of the Israeli Mediterranean coastal sand dunes, to examine the causes for this situation, and to propose options for future conservation and management of the protected dune areas based on ecological, environmental, landscape and recreational demands and interests. The coastal dunes of Israel are characterized by diverse plant communities, with 173 plant species occurring on sand (8.2% of the total flora of Israel) including many endemic species (26% of all endemic species in Israel). Most of the species are annuals. The importance of the coastal strip as a centre of floral and faunal speciation is also manifested in the existing sand-bound animals. However, many species are rare. This is mainly due to the extensive industrial and urban development along the coastal plain and the direct and indirect destruction of the remaining open dune areas by tourism, recreation and sand mining. Only ca. 17% of the Israeli coastal dunes are still of good or reasonable ecological value, while < 5% of this area has been designated as protected area. Management policies differ from place to place and depend on local objectives. These objectives derive mainly from the knowledge and data that exist for each location, and its statutory status. Since 1995 several projects, which aim to develop integrated management tools for nature conservation and recreation uses for all coastal sand dunes in Israel have been conducted. These projects are summarized in the present paper.  相似文献   

18.
Summary This contribution presents an attempt to measure the path of habitat and vegetation succession in a coastal dune system (Kenfig Burrows, South Wales) using remote sensing and GIS. The loss of slack habitats associated with the continuing stabilization of this dune system is a major cause for concern. These habitats support a range of plant species, including the rare fen orchid,Liparis loeselii, as well as other hydrophytes. A decrease in their areal extent implies a reduction in biodiversity. To quantify the overall rate and spatial dimension of these changes, a series of aerial photographs dating from 1962 to 1994 were digitized and analysed in an image processing system. The resultant maps. transferred to a vector-based GIS, were used to derive a transition matrix for the dune system over this period of time. The results indicate that there has been a marked reduction in the total area of bare sand (19.6% of the dune system in 1962, but only 1.5% in 1994) and a decline in both the areal extent and the number of dune slacks. Over the same period of time, there has been an increase inSalix repens dominated habitats, at the expense of pioneer species. Analysis of the habitat maps, together with hydrological data, within the GIS suggests that even the dry slacks have the potential for further greening and to support invasive species. In terms of habitat management however, there is still scope to restore many of the slacks to their original state. It is estimated that at least 24% of the area occupied by partially and moderately vegetated slacks could be rehabilitated.  相似文献   

19.
Topography and vegetation of restored dunes on a developed barrier island were examined after a large-scale beach nourishment project. Restoration began in 1993 using sand-trapping fences andAmmophila breviligulata Fern. plantings. Subsequent growth of dunes was favored by installing new fences and suspending beach raking to accommodate nesting birds. Plant species richness, percent cover of vegetation, and height ofA. breviligulata were sampled in 1999 on seven shore perpendicular transects in six dune microhabitats (backdune, primary crest, mid-foredune, swale, seaward-most fenced ridge, incipient dune on the backbeach). A total of 26 plant taxa were found at all seven sites. Richness and percent cover were greatest in the backdune and crest, especially in locations that predated the 1992 nourishment. Richness was greater where fences enhanced stabilization. Fences initially compensate for time and space and allow vegetation to develop rapidly, but maintenance nourishment is required to protect against wave erosion and ensure long-term viability of habitat. An expanded environmental gradient is an option, where beach nourishment provides space for a species-rich crest and backdune to develop, while the incipient dune remains dynamic. Options where space is restricted include a dynamic, full-sized seaward section of a naturally functioning dune (truncated gradient) or a spatially restricted sampler of a wider natural dune (compressed gradient) maintained using fences. Expanded and truncated gradients may become self-sustaining and provide examples of natural cycles of change. Compressed gradients provide greater species richness and flood protection for the available space, but habitats are vulnerable to erosion, and resident views may be impaired.  相似文献   

20.
Aquaculture offers a major opportunity for the economic development of Baja California Sur (BCS), Mexico. The severely limited freshwater supply and the geographic isolation of the state place limits on other productive activities. Despite the aridity, the natural vegetation of BCS is diverse and structurally complex with a high percentage (20%) of endemic species. In this work we compare the environmental impacts produced by two kinds of aquaculture systems: coastal ponds vs. inland ponds. Construction and operation of coastal ponds does not require destruction of the natural vegetation and, as is true for inland ponds. Coastal ponds are also compatible with conservation of mangroves, sea grasses and sensitive habitats for fish and mollusks. To reduce the negative impacts of aquaculture and to protect the vegetation of Baja California Sur, we recommend the use of coastal ponds for shrimp production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号