首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Simple plankton models serve as useful platforms for testing our understanding of the mechanisms underlying ecosystem dynamics. A simple, one-dimensional plankton model was developed to describe the dynamics of nitrate, ammonium, two phytoplankton size-classes, meso-zooplankton, and detritus in the Oregon upwelling ecosystem. Computational simplicity was maintained by linking the biological model to a one-dimensional, cross-shelf physical model driven by the daily coastal upwelling index. The model sacrificed resolution of regional-scale and along-shore (north to south) processes and assumed that seasonal productivity is primarily driven by local cross-shelf Ekman transport of surface waters and upwelling of nutrient-rich water from depth.Our goals were to see how well a simple plankton model could capture the general temporal and spatial dynamics of the system, test system sensitivity to alternate parameter set values, and observe system response to the effective scale of potential retention mechanisms. Model performance across the central Oregon shelf was evaluated against two years (2000-2001) of chlorophyll and copepod time-series observations. While the modeled meso-zooplankton biomass was close in scale to the observed copepod biomass, phytoplankton was overestimated relative to that inferred from the observed surface chlorophyll concentration. Inshore, the system was most sensitive to the nutrient uptake kinetics of diatom-size phytoplankton and to the functional grazing response of meso-zooplankton. Meso-zooplankton was more sensitive to alternate parameter values than was phytoplankton. Reduction of meso-zooplankton cross-shelf advection rates (crudely representing behavioral retention mechanisms) reduced the scale of model error relative to the observed seasonal mean inshore copepod biomass but had little effect of the modeled meso-zooplankton biomass offshore nor upon phytoplankton biomass across the entire shelf.  相似文献   

2.
The storage of nitrate by phytoplankton cells during the early phases of upwelling was studied in coastal stations off northern Spain (southern Bay of Biscay) between 1990 and 1994. In this region, a persistent upwelling during summer is characterised by intermittent pulses of variable intensity, and increased nutrient concentrations in the surface layer. The main effect of an upwelling pulse on phytoplankton distribution is the shifting of the chlorophyll a and primary production maxima to near the surface. When the upwelling relaxes, thermal stratification of the water column occurs, and a distinct subsurface chlorophyll maximum develops below the production maximum. An accumulation of intracellular nitrate characterized the early phases of upwelling (mean = 2.73 μmol N m−3), maximum concentrations being attained at depths where biomass and production values were moderate. In contrast, phytoplankton cells from non-upwelling situations contained significantly lower concentrations of intracellular nitrate (mean = 0.17 μmol N m−3). The variations in the intracellular pool of nitrate may result from the differential allocation of resources within the cell as a result of variations in the energy available, since the uptake and assimilation of nitrate is a relatively expensive process involving several enzymatic systems. We hypothesize that nitrate storage by phytoplankton cells is characteristic of early phases of upwelling and is linked to patterns of carbon fixation. Average nitrogen budgets for upwelling and non-upwelling situations indicate that intracellular nitrate reserves are not responsible for maintaining high phytoplankton growth rates, since they only account for <2% of daily primary production during upwelling events. Received: 28 August 1996 / Accepted 3 December 1996  相似文献   

3.
In this paper, an integrated numerical and fuzzy cellular automata model was developed to predict possible algal blooms in Dutch coastal waters basing on the irradiance, nutrients and neighbourhood conditions. The numerical module used Delft3D-WAQ to compute the abiotic conditions, and fuzzy cellular automata approach was applied to predict the algal biomass that was indicated by chlorophyll a concentration. The simulated results of year 1995 were compared with that from BLOOM II model, and the advantages, disadvantages as well as future improvement were presented. In general, through this study, it is seen that the integrated modelling deserves more research inputs because: (1) the hydrodynamic processes and nutrients concentrations can be simulated in details by numerical method; (2) the irregular and sparse water quality and biological data, and the empirical knowledge from experts can be explored by the fuzzy logic technique; (3) the spatial heterogeneity, local interactions and the emerge of patchiness could be well captured through the cellular automata paradigm.  相似文献   

4.
A temporal and spatial marine upwelling system model is developed for analysis of prominent biological and physical system interactions which result in obserbed nutrient distribution patterns in the northwest African coastal upwelling system near 21° N. The model is composed of a physical submodel describing a two-dimensional circulation pattern, and a series of biological submodels describing nutrient regeneration.Model results were qualitatively consistent with nutrient distributions observed during an upwelling event in the 1974 JOINT-I study area. Simulated silicate distribution patterns suggest that silica dissolution parameter estimates reported for the northwest African region may represent local conditions, but are likely overestimates at a system level of resolution. Sensitivity analysis results identify grazing threshold level as the primary regulator of model grazing stress. Paucity of herbivorous nekton grazing suggests that primarily phytophagous grazing habit for clupeoid fishes is unlikely in the northwest African upwelling area.  相似文献   

5.
This work investigates the capability of an oceanic numerical model dynamic and thermodynamically coupled to a three-dimensional mesoscale atmospheric numerical model to simulate the basic features of the air–sea interaction in the coastal upwelling area of Cabo Frio (RJ, Brazil). The upwelling/downwelling regime is an important feature in the oceanic circulation of Cabo Frio and determines the sustainability of local ecosystems. This regime is predominantly driven by the atmospheric circulation and is well documented, being suitable to be used as test reference for atmospheric and oceanic coupled and uncoupled models. The oceanic boundary conditions, coastline shape and coupling effect have been tested. The uncoupled oceanic model forced by a NE (SW) wind field generates a realistic upwelling (downwelling) phenomenon regardless of the proximity of the lateral boundary and how realistic is the shape of the coastline. The atmospheric-oceanic coupled model generates an upwelling location and intensity similar to the uncoupled simulation, but the upwelling is gradually enhanced by the sea-breeze circulation. It also generates vertical profiles of mixing ratio that compare better to the observations than the uncoupled simulation and air potential temperature and wind vertical profiles that represent particular features of the atmospheric circulation at Cabo Frio.  相似文献   

6.
Primary productivity was measured by the radio-carbon method, its relation to the distribution of inorganic phosphate and dissolved oxygen off the south-west coast of India is discussed. The study was conducted during the post-monsson season which is associated with coastal upwelling. Productivity rates were generally high (807 mgC/m2/day), and so was the nutrient level in the euphotic zone. Inorganic phosphate was measured and taken as representative index of nutrients in general. Carbon assimilation rates were correlated with chlorophyll a, as well as with chlorophylls a, b plus c. Plant carotenoids were also measured but their role is not clear. Standing crop estimations failed to show any good agreement with carbon assimilation. Dark bottle correction at lower levels of the euphotic zone in coastal waters is discussed. The various results are interpreted from the point of view of light ecology. Fluctuations in productivity are mainly due to variations in incident solar radiation.  相似文献   

7.
Vargas CA  Escribano R  Poulet S 《Ecology》2006,87(12):2992-2999
Recruitment success at the early life stages is a critical process for zooplankton demography. Copepods often dominate the zooplankton in marine coastal zones and are prey of the majority of fish larvae. Hypotheses interpreting variations of copepod recruitment are based on the concepts of "naupliar predation," "nutritional deficiency," and "toxic effect" of diatom diets. Contradictory laboratory and field studies have reached opposite conclusions on the effects of diatoms on copepod reproductive success, blurring our view of marine food-web energy flow from diatoms to higher consumers by means of copepods. Here we report estimates of copepod feeding selectivity and reproduction in response to seasonally changing phytoplankton characteristics measured in a highly productive coastal upwelling area off the coast of central Chile. The variable phytoplankton diversity and changing food quality had a strong and highly significant impact on the feeding selectivity, reproduction, and larval survival of three indigenous copepod species. Seasonal changes in copepod feeding behavior were related to the alternating protozoan-diatom diets, mostly based on dinoflagellates and ciliates during winter and autumn (low highly unsaturated fatty acids [HUFA]/polyunsaturated fatty acids [PUFA] availability), but switched to a diet of centric and chain-forming diatoms (high HUFA/PUFA availability) during the spring/summer upwelling period. Ingestion of diatom cells induced a positive effect on egg production. However, a negative relationship was found between egg hatching success, naupliar survival, and diatom ingestion. Depending on the phytoplankton species, diets had different effects on copepod reproduction and recruitment. In consequence, it seems that the classical marine food web model does not apply to some coastal upwelling systems.  相似文献   

8.
Depth profiles of particulate protein-nitrogen at 4 oceanic and 2 upwelling stations in the North Atlantic Ocean were measured by a new fluorometric method. The protein-nitrogen in the upper 20 m ranged from 0.19 to 1.61 μg-at N/1 at the oceanic stations and from 0.43 to 3.54 μg-at/1 at the upwelling stations. The mean values in the euphotic zone were 0.54 μg-at N/1 for the oceanic stations and 1.70 μg-at N/1 for the upwelling stations. The ratio of protein-nitrogen to chlorophyll at the two sets of stations was 2.83 and 0.54 μg-at N/μg chlorophyll, respectively. Regression analysis of the pooled data yielded a detritus and zooplankton-free ratio of 0.38 μg-at N:μg chlorophyll. Calculations of the phytoplankton protein-nitrogen, based on this ratio, suggest that in the oceanic water only 20% of the sestonic protein-nitrogen is associated with the phytoplankton. In the upwelling waters, the phytoplankton may account for 65% of the sestonic proteinnitrogen.  相似文献   

9.
Kenfig NNR (National Nature Reserve) is a coastal sand dune system in south Wales, UK. The site is an important location for the conservation of the fen orchidLiparis loeselii, a significant proportion of the UK population is found solely on the site. Approaches to the mapping and monitoring of the habitats at Kenfig NNR using EO (Earth Observation) methods are investigated. Typical airborne EO missions over such sites produce more than a single source of EO data; these may include various optical imaging sensors with different spectral ranges, film cameras and ranging devices to measure topography. Conservation managers are thus presented with the problem of which sources of data to use when producing a land cover map of the site of interest. Using a data set gathered over the Kenfig NNR site, we investigate land cover mapping methods for conservation. The land cover types of interest typically cover small areas within a much larger site so they present a hard problem for the EO data and associated classification methods to solve. Land cover classifications produced from the data sets provide a set of competing hypotheses of land cover type for the site. Methods we use to resolve this competition between the data sets include voting methods, data fusion methods and a method utilising fuzzy logic to aggregate information. This paper is intended to act as an introduction to some of the issues involved in using EO data for habitat mapping in highly heterogeneous coastal dune environments and to present some preliminary results of the performance of each method.  相似文献   

10.
This study reports the vertical distribution of fish larvae during the 1999 summer upwelling season in the Canaries-African Coastal Transition Zone (the Canaries-ACTZ). The transition between the African coastal upwelling and the typical subtropical offshore conditions is a region of intense mesoscale activity that supports a larval fish population dominated by African neritic species. During the study, the thermal stratification extended almost to the surface everywhere, and the surface mixed layer was typically shallow or non-existent. Upwelling occurred on the African shelf in a limited coastal sub-area of our sampling. The vertical distributions of the entire larval fish population, as well as of individual species, were independent of the seasonal thermocline. Fish larvae and mesozooplankton were concentrated at intermediate depths regardless of the thermocline position, probably because of its weak signature and spatial and temporal variability. Day/night vertical distributions suggest that some species did not perform diel vertical migration (DVM), whereas others showed either type I DVM or type II DVM. The opposing DVM patterns of different species compensate for each other resulting in no net DVM for the larval fish population as a whole.  相似文献   

11.
12.
Phytoplankton biomass and production in the upwelling region of NW Africa and relationships with hydrographic parameters were studied. During the cruise of Atlor VII carried out in November 1975 in the upwelling region of NW Africa, measurements of chlorophyll a and primary production as derived from 14C uptake experiments were made at a total of 40 stations. Biomass and production showed the higher values on the shelf in the area of Banc d'Arguin and north of Cap Blanc. Production estimates in this area ranged between 1.4 and 3.2 g C m-2 d-1. There was a marked minimum in biomass and production at Lat. 21 ° N, in the zone of maximum upwelling intensity. With the exception of this minimum, the productive area coincided with the zone where surface temperature was lower than 18 ° C (indicating dominance of upwelled Central Waters) and nutrients were detectable in the upper layers. In the poorer offshore area there was a distinct subsurface chlorophyll maximum. The results are compared with those of previous cruises and some features of the seasonal cycle in the studied area are discussed.  相似文献   

13.
In this paper, we present the hierarchical variable dependencies that were obtained from raw data with the use of two machine learning techniques on an ecological data set. The data set contains features of field margins and the corresponding number of spider species inhabiting them. This data set was used before by domain experts to construct a fuzzy qualitative model with hierarchical variable dependencies, which we use for comparison with our results. One of the machine learning methods constructs a hierarchical structure similar to the one in the experts’ model, while revealing some additional interesting relations of environmental features with respect to the number of spider species. The other method constructs a different hierarchy from the one proposed by the experts, which, according to our classification performance experiments, might be even more appropriate.  相似文献   

14.
This study deals with fuzzy rule based modelling of nitrogen (N)-leaching from arable land. Main purpose is the elaboration of a method, which allows dynamical regionalisation of results from process-based models for large regions and can be efficiently included in metamodels or decision support systems for rapid integrated assessment of water resources. The paper is the second part of a two-part paper. In the first paper the distributed ecohydrological model SWIM had been applied to calculate and analyse nitrogen dynamics in arable soils for a set of representative natural and management conditions in the Saale River basin (Ecol. Model. (in press)). Here, in the second paper the results from those simulation experiments are used to define, train and validate fuzzy rule systems for the estimation of N-leaching. Nine fuzzy rule systems, specific for nine soil classes, were created from the simulation experiments, representing the conditions for the whole Saale River basin. The fuzzy rule systems operate on monthly time steps and consist of 15 rules and seven input variables each, which are compiled from time series of precipitation, percolation and evapotranspiration as well as from information about fertilizer and crop specific nitrogen uptake. Simulated annealing as a non-linear discrete optimisation method is used for automatic rule assessment. Validation of the fuzzy rule systems, carried out by split sampling of 30-year simulation period, shows satisfactory performance on an annual basis and good performance on the long-term basis with average correlation between SWIM-simulated and fuzzy rule-estimated N-leaching values of 0.78 and 0.94, respectively.  相似文献   

15.
An experiment under laboratory conditions was conducted to test the hypothesis that development and growth of copepodite stages in Calanus chilensis are temperature-dependent and not subject to food shortage in the upwelling area of the Humboldt Current, northern Chile. Field data obtained from June 1994 to May 1995 in Bahía Mejillones (23°S) were used to define four combinations of temperature and food under which copepodites were reared from Stage CIII to adulthood. The high temperature was 18.1 °C and the low temperature 13.1 °C, whereas the high food level was in the range of 6.8 to 24.8 μg l−1 chlorophyll a and the low level 1.0 to 6.8 μg l−1 chlorophyll a. As food a mixture of three unknown species of phytoflagellates and the diatom Navicula cryptocephala was used. This phytoplankton was initially obtained from the same sampling sites as copepods and kept in f/2 media at stable levels and composition throughout the experiment. The development rate (1/t), estimated from the time (t) elapsing between Stage CIV and adult, was significantly affected by both temperature and food, although low-food effects were much more remarkable. Low-food conditions also significantly reduced body length and “structural” (lipid-discounted) body mass at adulthood, while temperature only affected body length. The weight-specific growth rate was also affected by food and temperature, but again food effects were much more drastic. The results indicate that C. chilensis is a highly sensitive species to lack of food, and is possibly subject to food shortage during its annual cycle in the coastal upwelling area of northern Chile. Food limitation may help explain the seasonal pattern of adult size reported by previous studies in the area and the lack of consistence between the number of generations predictable from a temperature-dependent model and that observed in the field during the annual cycle. Received: 10 September 1996 / Accepted: 29 October 1996  相似文献   

16.
M. J. Gibbons 《Marine Biology》1993,116(2):257-268
Diel vertical migration of Euphausia lucens was studied over 72 h at an inshore and at a midshelf station in the southern Benguela upwelling region during February 1991, using stratified net tows and by employing gut contents (chlorophyll/copepods) as tracers of historic position. Soon after population arrival in the surface layers of the inshore station (abundant chlorophyll), E. lucens became dispersed and redistributed over depth. This was accompanied by a rapid downward transfer of surface-collected chlorophyll. A continuous exchange of individuals between deep and shallow water was subsequently inferred, prior to population descent at around dawn. These data are in agreement with the hunger-satiation hypothesis and were shared by individuals at the midshelf station (low chlorophyll). Interestingly, the major part of the E. lucens population at the midshelf station was confined to deep water throughout 24 h. While this conflicts with the hunger-satiation hypothesis, such behaviour is required to both ensure population maintenance and avoid surface predation within the Benguela region. Although the examination of some recent literature suggests that asynchronous, hunger-satiation behaviours may be common amongst euphausiids in single-species assemblages, responses to the food environment may be constrained by other factors.  相似文献   

17.
Monitoring and managing small coastal ecosystems requires a considerable understanding of the temporal dynamics of biophysical factors describing the coastal water systems. For this reason, daily observation from space could be a very efficient tool. The objective of the work described in this paper is to evaluate the contribution of remote sensing to the continuous monitoring of coastal areas. It is well known that in coastal areas, the presence of inorganic suspended sediments and coloured dissolved organic matter can make chlorophyll-concentration measurements from remote sensing difficult. To overcome these difficulties, an alternative approach to the SeaWiFS standard chlorophyll algorithm is presented, based on a semi-analytic model for sea water and on the use of MODIS data as input in a model for atmospheric effects removal. Moreover, land contamination (mixed sea–land pixels) can introduce ambiguities in sea-surface temperature measurements from remote sensing. This paper proposes the use of a hydrodynamic model as a time–space interpolator of in situ campaign data, to extensively validate the temperature values extracted from AVHRR sensor. We validated the proposed approach, using experimental field data collected over a two-year campaign in the Taranto Gulf. The results seem to indicate a good agreement between remote-sensed and in situ data.  相似文献   

18.
In a study that spanned from March 2007 through November 2009, we report high fungal biomass and over 90% of extracellular enzymatic activity occurring in the size classes dominated by fungi during periods of high autotrophic biomass in surface waters of the upwelling ecosystem off central-southern Chile (36°30.80′S–73°07.70′W). Fungal biomass in the water column was determined by the abundance of hyphae and was positively correlated with the concentration of the fungal biomarker 18:2ω6. High fungal biomass during active upwelling periods was comparable to that of prokaryotes (bacteria plus archaea) and was associated with an increase in phytoplankton biomass and in extracellular enzymatic hydrolysis in waters from the depth of maximum fluorescence. We show fungi as a new microbial component in the coastal upwelling ecosystem of the Humboldt Current System off central Chile. Our results suggest that the temporal pattern in fungal biomass in the water column during a year cycle is a reflection of their capacity to hydrolyze organic polymers and, in consequence, fungal biomass and activity respond to a seasonal cycle of upwelling in this ecosystem.  相似文献   

19.
The Gulf of Aqaba exhibits a strong seasonality due to convective mixing during winter and stratification during summer. The present study provides a detailed appraisal of summer and winter sea-water characteristics at the northern coast of the Gulf of Aqaba, that is witnessing rapid development and increasing changes in its geomorphological characteristics. Sea-water temperature, salinity, nutrients, and chlorophyll a concentrations were measured biweekly at five coastal and four cross-sectional stations during the periods February to April and July to September 2004. Meteorological conditions were continuously recorded at the Marine Science Station. The coastal study sites included four open coastal stations and a marina with one-way exchange with the open water. The effect of convective mixing was clearly apparent on the sea-water characteristics. Natural seasonal characteristics of higher nutrients and chlorophyll a concentrations were recorded during winter at most of the open coastal stations. In the cross-sectional stations, the concentrations of nutrients and chlorophyll a were not different between the surface and the bottom during winter, but the bottom waters had generally higher concentrations during summer. Some deviations from the natural seasonal cycle were recorded at the marina and other coastal stations. Here, higher nutrient and chlorophyll a concentrations were recorded in summer than in winter. These deviations that are most likely due to anthropogenic effects are discussed.  相似文献   

20.
Eucalanus inermis is an abundant species in the eastern tropical and subtropical South Pacific, including the oceanic and coastal waters off Chile and Peru. Its annual life cycle was studied through a time-series sampling (weekly intervals) during 2002, at a fixed coastal station at an upwelling site (Mejillones Bay, 23°S) off northern Chile. The more-or-less continuous occurrence and abundance of naupliar and copepodid stages indicated that the species reproduces during most of the year, with two peaks: one during the austral spring and the other during the summer. Thereafter, an abrupt decline in the population was observed during winter. The abundances of E. inermis copepodids and nauplii were positively correlated with sea surface temperature, suggesting temperature-dependent development and growth during the spring–summer period. Three cohorts could be distinguished during one annual cycle, with generation times >30 days. The estimate of mean weight-specific daily growth (0.12 day–1) is lower than that of other species in the area, but it is consistent with a slower development rate. The distribution of this copepod is associated with the equatorial subsurface waters characterized by low-oxygen content (<0.5 ml l–1). The ascent of this water mass to the near-surface during coastal upwelling in the spring–summer period and the presence of E. inermis adults favor their reproduction and the development of cohorts in the food-rich upwelling environment. The wintertime disappearance of E. inermis from shallow waters is, thus, interpreted as a movement to deep waters (>200 m depth), probably in a lethargic mode, within the oxygen minimum zone in the adjacent oceanic area.Communicated by P.W. Sammarco, Chauvin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号