首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Growth, reproduction and gross biochemical composition of the Manila clam Ruditapes philippinarum were studied for one oceanic and two inner stations in the Bay of Arcachon, France, from March 1989 to March 1991. During this period, sea-water temperature, salinity and chlorophyll a were also recorded. A marked increase in length occurred during the first year in all areas, after which growth rates decreased. In contrast, weight increased more steadily. The Manila clam exhibited best development in the oceanic area, but there was no difference in growth of clams between the two inner stations. Differences in growth between oceanic and inner stations may result from differences in fluctuations of environmental conditions such as temperature and salinity. Except for higher carbohydrate contents in clams recovered in autumn from the oceanic station Le Ferret, biochemical components differed little between stations. During the second winter, glycogen levels were relatively low, but no mortalities were recorded. On the other hand, sowing spat in autumn instead of spring or sowing larger-sized spat did not reduce the time required for culture of R. philippinarum.  相似文献   

2.
Harvesting of the invasive Manila clam, Tapes philippinarum, is the main exploitative activity in the Venice lagoon, but the mechanical dredges used in this free-access regime produce a considerable disturbance of the lagoon ecosystem. An ecosystem approach to study the complex effects of clam harvesting was implemented using a trophic mass-balance model. The trophic relations in the ecosystem were quantified with a mixed trophic impact analysis and further evaluated by considering different explanations for the " Tapes paradox", which consists of the apparent population enhancement of Manila clams by dredging and the apparent nutritional advantages that this species receives from re-suspended organic matter. The key-role played by this introduced species is highlighted by a network analysis that indicates a "wasp-waist control" of the system by Manila clams. The model constructed to characterise the present state of the Venice lagoon ecosystem is compared with models produced for a reconstructed past lagoon and a projected future lagoon. The future model was obtained by simulating the elimination of clam dredging in 10 years. The three different models were compared using thermodynamic and informational indices. Simulating the elimination of clam dredging produced a 33% increase in artisanal fishery catches, carried out by means of static gears, even with no change in fishing effort. These simulations also forecast an increase in the mean trophic level of the artisanal fishery catches as a positive effect of eliminating mechanical clam harvesting.  相似文献   

3.
We present a modelling framework that combines machine learning techniques and Geographic Information Systems to support the management of an important aquaculture species, Manila clam (Ruditapes philippinarum). We use the Venice lagoon (Italy), the first site in Europe for the production of R. philippinarum, to illustrate the potential of this modelling approach. To investigate the relationship between the yield of R. philippinarum and a set of environmental factors, we used a Random Forest (RF) algorithm. The RF model was tuned with a large data set (n = 1698) and validated by an independent data set (n = 841). Overall, the model provided good predictions of site-specific yields and the analysis of marginal effect of predictors showed substantial agreement among the modelled responses and available ecological knowledge for R. philippinarum. The most influent environmental factors for yield estimation were percentage of sand in the sediment, salinity, and water depth. Our results agree with findings from other North Adriatic lagoons. The application of the fitted RF model to continuous maps of all the environmental variables allowed estimates of the potential yield for the whole basin. Such a spatial representation enabled site-specific estimates of yield in different farming areas within the lagoon. We present a possible management application of our model by estimating the potential yield under the current farming distribution and comparing it to a proposed re-organization of the farming areas. Our analysis suggests a reduction of total yield is likely to result from the proposed re-organization.  相似文献   

4.
《Ecological modelling》2005,184(1):163-174
The Manila clam Tapes philippinarum is one of the most important commercial mollusc species in Europe. Intensive clam farming takes place in several coastal lagoons of the Northern Adriatic Sea, supporting local economy but raising the problem of the environmental sustainability of this activity. In this work, we propose a bioeconomic model that provides guidelines for an efficient management of intensive clam farming. Clam demography is described by a stochastic model of growth and survival, accounting for the effect of water temperature, seeding substratum and density dependence of vital rates. The model is calibrated on and applied to the case of Sacca di Goro, a lagoon located in the Po River Delta (Northern Italy). We consider two distinct management criteria: the optimisation of the marketable yield and the optimisation of monetary benefits, respectively. The use of a stochastic formulation allows us to reveal the existing trade-off between maximizing the median yield or profit and minimizing its variance. A Pareto analysis shows that seeding in spring or fall on sandy substrata and harvesting 18 months later provides the best compromise between these two contrasting objectives, maximizing profits while minimizing the associated uncertainty level. Finally, we show that seeding clams at high densities (more than 750 clams m−2 on muddy substrata and more than 1500 elsewhere) can have not only a potentially negative impact on the ecological sustainability of clam farming, but also a negative economic effect.  相似文献   

5.
The Manila clam Ruditapes philippinarum, an intertidal bivalve, was exposed to different salinity regimes (from 31.0–31.7‰ down to 20‰, 15‰, 10‰, 5‰), and the endogenous rhythm in its oxygen consumption was studied using an automatic intermittent-flow respirometer. When exposed to salinities reduced from 31.5‰ to 20‰ and 15‰ under otherwise constant conditions, the clams recovered a clear endogenous circatidal rhythm in their oxygen-consumption rate after having dampened periods of 12 h and 48 h, respectively. At salinities less than 10‰, however, the oxygen-consumption rate was depressed greatly at the beginning of the experiment for about 36 h and then increased to a level higher than normal, but the rhythm of oxygen consumption was not recovered. The results of this study indicate that the Manila clam, a euryhaline organism, cannot maintain a normal metabolic activity at a salinity lower than 15‰. All clams were dead after exposure at a salinity of 5‰ for 7 days. Received: 28 February 2000 / Accepted: 26 August 2000  相似文献   

6.
Dwarf eelgrass (duckgrass; Zostera japonica) and Manila clams (Ruditapes philippinarum) are two introduced species that co-occur on intertidal flats of the northeast Pacific. Through factorial manipulation of clam (0, 62.5, 125 clams m−2) and eelgrass density (present, removed by hand, harrowed), we examined intra- and interspecific effects on performance, as well as modification of the physical environment. The presence of eelgrass reduced water flow by up to 40% and was also observed to retain water at low tide, which may ameliorate desiccation and explain why eelgrass grew faster in the presence of conspecifics (positive feedback). Although shell growth of small (20–50 mm) clams was not consistently affected by either treatment in this 2-month experiment, clam condition improved when eelgrass was removed. Reciprocally, clams at aquaculture densities had no effect on eelgrass growth, clam growth and condition, or porewater nutrients. Overall, only Z. japonica demonstrated strong population-level interactions. Interspecific results support an emerging paradigm that invasive marine ecosystem engineers often negatively affect infauna. Positive feedbacks for Z. japonica may characterize its intraspecific effects particularly at the stressful intertidal elevation of this study (+1 m above mean lower low water).  相似文献   

7.
The Manila clam Ruditapes philippinarum was introduced to Poole Harbour (lat 50°N) on the south coast of England in 1988 as a novel species for aquaculture. Contrary to expectations, this species naturalised. We report on individual growth patterns, recruitment, mortality and production within this population. On the intertidal mudflats the abundance of clams (>5 mm in length) varied seasonally between 18 and 56 individuals m−2. There appear to be two recruitment events per year and there were 6 year classes in the population. A mid-summer decline in abundance was partly due to increased mortality but probably also a result of down-shore migration in response to high water temperatures and the development of anoxic conditions. A winter fishery removes c 75% of clams of fishable size (maximum shell length ≥40 mm) and c 20% of the annual production. The fishery depresses the maximum age and size attained by the clams but appears to be sustainable. Clam mortality due to factors other than fishing is highest in late-winter to early spring. The growth of the clams is intermediate in comparison with many published studies but remarkably good given their intertidal position. As on the coasts of the Adriatic Sea, where the clam is also non-native, the Manila clam has thrived in a shallow, eutrophic, lagoon-like system on the English coast. While the Poole Harbour population is currently Europe’s most northerly reported self-sustaining, naturalised population, given forecasts of increasing air and sea temperatures it might be expected that this species will eventually spread to more sites around the coasts of Northern Europe with associated economic and ecological consequences.  相似文献   

8.
Predator–prey interaction in aquatic ecosystem is one of the simplest drivers affecting the species population dynamics. Predation controls are recognized as important aspects of ecosystem husbandry and management. In this paper we investigated how predation control cause an increase in host growth in the abundance of hard clam (Meretrix lusoria) populations subject to mercury (Hg)-stressed birnavirus. Here we linked predator–prey relationships with a bioenergetic matrix population model (MPM) associated with a susceptible–infectious–mortality (SIM) model based on a host–pathogen–predator framework to quantify the predator effects on population dynamics of disease in hard clam populations. Our results indicated that relative high predation rates could promote the hard clam abundances in relation to predators that selectively captured the infected hard clam, by which the disease transmission was suppressed. The results also demonstrated that predator-induced modifications in host behavior could have potential negative or positive effects on host growth depending on relative species density and resource dynamics. The most immediate implication of this study for the management of aquatic ecosystem is that, beyond the potential for causing a growth in abundance, predation might provoke greater predictability in aquatic ecosystem species populations and thereby increase the safety of ecosystem production from stochastic environmental events.  相似文献   

9.
Rearing benthic bivalves that are contaminated by persistent organic pollutants (POPs) in areas with low pollution levels permits their natural detoxification. Here, we present the results of novel detoxification experiments conducted with the Manila clam (Tapes philippinarum) in the Venice Lagoon; these experiments were conducted both in summer and winter. Measurements of dioxins (PCDD), furans (PCDF), polychlorinated biphenyl (PCB) and hexachlorobenzene (HCB) concentrations in clam flesh over time after their resettlement in cleaner areas allowed for determining the minimum time required to reach safe toxicity levels. Moreover, dioxin fingerprint dynamics demonstrated successful detoxification from industrial contaminants. A simple bioaccumulation/detoxification model applied to the collected data provided for the first time estimation of detoxification rates and half-lives for POP congeners in clam flesh. This work provides a basis for considering natural detoxification as a viable solution for safely exploiting resources otherwise restricted from human consumption due to associated health risks.  相似文献   

10.
The most studied and commonly applied model of fish growth is the von Bertalanffy model. However, this model does not take water temperature into account, which is one of the most important environmental factors affecting the life cycle of fish, as many physiological processes that determine growth, e.g. metabolic rate and oxygen supply, are directly influenced by temperature. In the present study we propose a version of the von Bertalanffy growth model that includes mean annual water temperatures by correlating the growth coefficient, k, explicitly and the asymptotic length, L, implicitly to water temperature. All relationships include parameters with an obvious biological relevance that makes them easier to identify. The model is used to fit growth data of bullhead (Cottus gobio) at different locations in the Bez River network (Drme, France). We show that temperature explains much of the growth variability at the different sampling sites of the network.  相似文献   

11.
The behaviour of giant clams (Bivalvia: Cardiidae: Tridacninae)   总被引:2,自引:0,他引:2  
Pamela Soo  Peter A. Todd 《Marine Biology》2014,161(12):2699-2717
Giant clams, the largest living bivalves, live in close association with coral reefs throughout the Indo-Pacific. These iconic invertebrates perform numerous important ecological roles as well as serve as flagship species—drawing attention to the ongoing destruction of coral reefs and their associated biodiversity. To date, no review of giant clams has focussed on their behaviour, yet this component of their autecology is critical to their life history and hence conservation. Almost 100 articles published between 1865 and 2014 include behavioural observations, and these have been collated and synthesised into five sections: spawning, locomotion, feeding, anti-predation, and stress responses. Even though the exact cues for spawning in the wild have yet to be elucidated, giant clams appear to display diel and lunar periodicities in reproduction, and for some species, peak breeding seasons have been established. Perhaps surprisingly, giant clams have considerable mobility, ranging from swimming and gliding as larvae to crawling in juveniles and adults. Chemotaxis and geotaxis have been established, but giant clams are not phototactic. At least one species exhibits clumping behaviour, which may enhance physical stabilisation, facilitate reproduction, or provide protection from predators. Giant clams undergo several shifts in their mode of acquiring nutrition; starting with a lecithotrophic and planktotrophic diet as larvae, switching to pedal feeding after metamorphosis followed by the transition to a dual mode of filter feeding and phototrophy once symbiosis with zooxanthellae (Symbiodinium spp.) is established. Because of their shell weight and/or byssal attachment, adult giant clams are unable to escape rapidly from threats using locomotion. Instead, they exhibit a suite of visually mediated anti-predation behaviours that include sudden contraction of the mantle, valve adduction, and squirting of water. Knowledge on the behaviour of giant clams will benefit conservation and restocking efforts and help fine-tune mariculture techniques. Understanding the repertoire of giant clam behaviours will also facilitate the prediction of threshold levels for sustainable exploitation as well as recovery rates of depleted clam populations.  相似文献   

12.
In soft sediment marine communities, fishes frequently bite off extended siphons of buried clams; the consequential shortening of the siphon is known to reduce burial depth of the clams, secondarily increasing their vulnerability to lethal excavating predators. In this study, siphon nipping on the yellow clam, Mesodesma mactroides, was simulated by removing the top 6.6–30% of siphons. This caused a burrow reduction in 25–75%, respectively, compared to control individuals with intact siphons, in field and laboratory trials. To examine subsequent consequences of reduced burial depth, we exposed nipped and intact clams to potential predators in the laboratory simulating the observed natural clam abundance. Artificially nipped clams were consumed twice as much as control clams. The present results suggest that sympatric croppers contribute to the stock recovery failure by facilitation of lethal predation and that re-seeding to increase the local abundance of M. mactroides should be an essential aspect of conservation efforts in South America.  相似文献   

13.
The known negative effects of shellfish toxin-producing dinoflagellates on feeding, burrowing and survival of some bivalve mollusks has prompted questions concerning whether they might also impair the internal defense system of affected bivalves and make them more susceptible to disease agents. The primary components of the cellular defense system are hemocytes. Many toxic dinoflagellates are too large to be ingested whole by hemocytes and would most likely be exposed to intracellular toxins only after the algae are consumed, broken down, and the water-soluble toxins, released. Therefore, we conducted a series of experiments in which hemocytes from two suspension-feeding bivalves—the Manila clam, Ruditapes philippinarum, and the softshell clam, Mya arenaria—were exposed in vitro to filtered extracts of one highly toxic paralytic shellfish toxin (PST)-producing and one nonPST-producing strain of Alexandrium tamarense (isolates PR18b, 76 ± 6 STXeq cell−1 and CCMP115, with undetectable PST, respectively). We measured adherence and phagocytosis, two hemocyte attributes known to be inhibited by bacterial pathogens and other stressors. We found no measurable effect of a cell-free extract from a highly concentrated suspension of the PST-producing strain on hemocytes of either bivalve species. Instead, extract from the nonPST-producing strain had a consistent negative effect on both clams, resulting in significantly lower adherence and phagocytosis compared to strain PR18b and filtered seawater controls. The bioactive compound produced by strain CCMP115, which has yet to be characterized, may be similar to the PST-independent allelopathic compounds described for Alexandrium spp., which act on other plankters. These compounds and those produced by other harmful algae are known to cause immobilization, cellular deformation and lysis of co-occurring target organisms. Thus, nonPST producing Alexandrium spp., which do not cause paralysis and burrowing incapacitation of clams, may still produce a compound(s) that has negative effects not only on hemocytes, but on other molluscan cell types and their functions, as well.  相似文献   

14.
The bioaccumulation and bioavailability of polycyclic aromatic hydrocarbons (PAHs) were characterized in sediment and Paphia undulata (short-neck clam) from six mudflat areas in the west coasts of Peninsular Malaysia. The concentrations of total PAHs varied from 357.1 to 6257.1 and 179.9 ± 7.6 to 1657.5 ± 53.9 ng g ?1 dry weight in sediment and short-neck clam samples, respectively. PAHs can be classified as moderate to very high level of pollution in sediments and moderate to high level of pollution in short-neck clams. The diagnostic ratios of individual PAHs and principal component analysis indicate both petrogenic and pyrogenic sources with significant dominance of pyrogenic source. The first PAHs biota-sediment accumulation factors and relative biota-sediment accumulation factors data for short-neck clam were obtained in this study, indicating a preferential accumulation of lower molecular weight PAHs. Evaluation of PAH levels in sediments and short-neck clams indicates that short-neck clam could be introduced as a good biomonitor in mudflats. The results also demonstrated that under environmental conditions, the sedimentary load of hydrocarbons appears to be one of the factors controlling their bioavailability to biota.  相似文献   

15.
16.
Proliferation of macroalgal mats is a frequent consequence of nutrient-driven eutrophication in shallow, photic coastal marine ecosystems. These macroalgae have the potential to significantly modify water quality, plankton productivity, nutrient cycling, and dissolved oxygen dynamics. We developed a model for Ulva lactuca and Gracilaria tikvahiae in Greenwich Bay, RI (USA), a shallow sub-estuary of Narragansett Bay, as part of a larger estuarine ecosystem model. The model predicts the biomass of both species in units of carbon, nitrogen, and phosphorus as a function of primary production, respiration, grazing, decay, and physical exchange, with particular attention to the effects of biomass layering on light attenuation and suppression of metabolic rates. The model successfully reproduced the magnitude and seasonal cycle of area-weighted and peak biomass in Greenwich Bay along with tissue C:N ratios, and highlighted the importance of grazing and inclusion of self-limitation primarily in the form of self-shading to overcome an order of magnitude difference in rates of production and respiration. Inclusion of luxury nutrient uptake demonstrated the importance of internal nutrient storage in fueling production when nutrients are limiting. Macroalgae were predicted to contribute a small fraction of total system primary production and their removal had little effect on predicted water quality. Despite a lack of data for calibration and a fair amount of sensitivity to individual parameter values, which highlights the need for further autecological studies to constrain formulations, the model successfully predicted macroalgal biomass dynamics and their role in ecosystem functioning. Our formulations should be exportable to other temperate systems where macroalgae occur in abundance.  相似文献   

17.
Most fish farming waste output models provide gross waste rates as a function of stocked or produced biomass for a year or total culture cycle, but without contemplating the temporality of the discharges. This work aims to ascertain the temporal pattern of waste loads by coupling available growth and waste production models and developing simulation under real production rearing conditions, considering the overlapping of batches and management of stocks for three widely cultured species in the Mediterranean Sea: gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax) and Atlantic bluefin tuna (Thunnus thynnus). For a similar annual biomass production, the simulations showed that waste output and temporal dumping patterns differ between the three species as a result of the disparities in growth velocity, nutrient digestibility, maintenance metabolic budget and husbandry. The simulations allowed the temporal patterns including the periods of maximum discharge and the dissolved and particulate nitrogen and phosphorus content in the wastes released to be determined, both of which were seen to be species-specific.  相似文献   

18.
Polder lakes in Flanders are stagnant waters that were flooded by the sea in the past. Several of these systems are colonized by exotic species, but have hardly been studied until present. The aim of the present study was: (1) to assess the influence of exotic macrobenthic species on the outcome of the Multimetric Macroinvertebrate Index Flanders (MMIF) and (2) to use classification trees for evaluating to what extent physical-chemical characteristics affect the presence of exotic species.In total, 27 mollusc and 10 macro-crustacean species were present in the monitored lakes of which respectively five and four were exotic. The exclusion of the exotic species from the MMIF resulted in a significant decline of this ecological index (−0.03 ± 0.04; p = 0.00). This elimination often resulted into a lower ecological water quality class and more samples were classified into the bad and poor ecological water quality classes.Single-target classification trees for Gammarus tigrinus and Potamopyrgus antipodarum were constructed, relating environmental parameters and ecological status (MMIF) to the occurrence of both exotic invasive species. The major advantages of using single-target classification trees are the transparency of the rule sets and the possibility to use relatively small datasets. However, this classification technique only predicts a single-target attribute and the trees of the different species are often hard to integrate and use for water managers. As a solution, a multi-target approach was used in the present study. Exotic molluscs and crustaceans communities were modelled based on environmental parameters and the ecological status (MMIF) using multi-target classification trees. Multi-target classification trees can be used in management planning and investment decisions as they can lead to integrated decisions for the whole set of exotic species and avoid the construction of many models for each individual species. These trees provide general insights concerning the occurrence patterns of individual crustaceans and molluscs in an integrated way.  相似文献   

19.
The 96-h lethal tolerance limits of the hard clam Mercenaria mercenaria (Linné) and the oyster Crassostrea virginica (Gmelin) to ammonia, nitrite ion, nitrate ion, and orthophosphate were defined. Sublethal effects of the chemicals upon the rates at which the shellfish removed algal cells from suspension were also studied. In comparison with other marine and aquatic species which have been studied, hard clams and oysters are extremely tolerant.  相似文献   

20.
The surf diatom Chaetoceros armatum T. West, collected from its natural habitat along the Washington coast (USA), had a large inorganic component in the form of a clay coat (consisting of clay minerals, illite and montmorillonite) surrounding the cell chains: 63% of the dry weight of the natural material collected in November was inorganic. The organic fraction was composed of 67.6% lipid, 29.7% protein, and 1.3% carbohydrate. Culture cells were likewise high in protein and lipid and low in carbohydrate. Traces of chitin found in field samples were probably a contaminant, since chitin was absent from cultured cells. This diatom species serves as a major food source throughout the year for the Pacific razor clam Siliqua patula Dixon, which inhabits these same beaches. Protein constituted 47% and lipid 42% of the dry weight of razor clam tissue. The fatty acid distribution in the diatom lipid resembled that previously reported for other diatom species; similarly, the fatty acid distribution of the clam lipid was similar to that previously reported for other bivalve molluscs. The clam fatty acids differed in chain length and degree of saturation from those extracted from its food source, indicating an active fatty acid metabolism in the clam.Contribution No. 995 from the Department of Oceanography, University of Washington, Seattle, Washington 98195, USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号