首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the absence of predators, pollinators can often maximize their foraging success by visiting the most rewarding flowers. However, if predators use those highly rewarding flowers to locate their prey, pollinators may benefit from changing their foraging preferences to accept less rewarding flowers. Previous studies have shown that some predators, such as crab spiders, indeed hunt preferentially on the most pollinator-attractive flowers. In order to determine whether predation risk can alter pollinator preferences, we conducted laboratory experiments on the foraging behavior of bumble bees (Bombus impatiens) when predation risk was associated with a particular reward level (measured here as sugar concentration). Bees foraged in arenas containing a choice of a high-reward and a low-reward artificial flower. On a bee’s first foraging trip, it was either lightly squeezed with forceps, to simulate a crab spider attack, or was allowed to forage safely. The foragers’ subsequent visits were recorded for between 1 and 4 h without any further simulated attacks. Compared to bees that foraged safely, bees that experienced a simulated attack on a low-reward artificial flower had reduced foraging activity. However, bees attacked on a high-reward artificial flower were more likely to visit low-reward artificial flowers on subsequent foraging trips. Forager body size, which is thought to affect vulnerability to capture by predators, did not have an effect on response to an attack. Predation risk can thus alter pollinator foraging behavior in ways that influence the number and reward level of flowers that are visited.  相似文献   

2.
Despite a long-standing belief that insect pollinators can select for certain flower colors, there are few experimental demonstrations that free-flying insects choose between natural flowers based on color. We investigated responses of insect visitors to experimental manipulations of flower color in the New Zealand alpine. Native syrphid flies (Allograpta and Platycheirus) and solitary bees (Hylaeus and Leioproctus) showed distinct preferences for visiting certain flower species. These responses were determined, in part, by flower color, as insects also responded to experimental manipulations of visible petal color in 7 out of 11 tests with different combinations of flower species and insect type. When preferences were detected, syrphid flies chose yellow over white petals regardless of flower species, whereas Hylaeus chose white over yellow Ourisia glandulosa. In some cases, the strength and direction of color preference depended on the context of other floral traits, in which case the response usually favored the familiar, normal combination of traits. Syrphid flies also visited in response to floral morphological traits but did not show preference based on UV reflectance. The unusually high preponderance of white flowers in the New Zealand alpine is not explained by complete generalization of flower color choice. Instead, the insect visitors show preferences based on color, including colors other than white, along with other floral traits. Furthermore, they can respond in complex ways to combinations of floral cues, suggesting that traits may act in nonadditive ways in determining pollinator visitation.  相似文献   

3.
This is the first report showing that using honeybee (Apis mellifera) and wild pollinators complementary pollination can enhance soybean productivity (Glycine max). Current industrial production of soybean involves autopollination and high loads of pesticides. Therefore, growers have neglected possible biotic pollination despite suggestions that soybean benefit from insect pollinators. Reports advocating possible biotic pollination are based on experiments where bees are caged with flowering plants and the absence of pesticides, thus not in field conditions. Therefore, here we compared in field conditions soybean yield produced (1) independently of biotic pollinators, (2) with wild pollinators and (3) with honeybee colonies. Results showed an increase of +6.34 % of soybean yield in areas where wild pollinators had free access to flowers. The introduction of honeybee colonies further raised the yield of +18.09 %. Our findings therefore show that, though soybean is autogamous, allowing pollination by wild pollinators leads to higher yields. Moreover, adding honeybee mitigates pollination deficits and improves yield compared to current practices.  相似文献   

4.
Bee-pollinated plants are frequently dichogamous: e.g. each flower has a discernable male and female phase, with only the male phase offering a pollen reward. Pollen-collecting bees should therefore discriminate against female-phase flowers to maximise their rate of pollen harvest, but this behaviour would reduce plant fitness due to inferior pollination. Here, we test the hypothesis that flowers use pollen-mimicking floral guides to prevent flower-phase discrimination. Such floral guides resemble pollen in spectral reflection properties and are widespread among angiosperm flowers. In an array of artificial flowers, bumblebees learned less well to discriminate between flower variants simulating different flowering phases when both flower variants carried an additional pollen-yellow guide mark. This effect depended crucially on the pollen-yellow colour of the guide mark and on its spatial position within the artificial flower. We suggest that floral guides evolved to inhibit flower-phase learning in bees by exploiting the innate colour preferences of their pollinators.  相似文献   

5.
Kessler A  Halitschke R  Poveda K 《Ecology》2011,92(9):1769-1780
Although induced plant responses to herbivory are well studied as mechanisms of resistance, how induction shapes community interactions and ultimately plant fitness is still relatively unknown. Using a wild tomato, Solanum peruvianum, native to the Peruvian Andes, we evaluated the disruption of pollination as a potential ecological cost of induced responses. More specifically, we tested the hypothesis that metabolic changes in herbivore-attacked plants, such as the herbivore-induced emission of volatile organic compounds (VOCs), alter pollinator behavior and consequentially affect plant fitness. We conducted a series of manipulative field experiments to evaluate the role of herbivore-induced vegetative and floral VOC emissions as mechanisms by which herbivory affects pollinator behavior. In field surveys and bioassays in the plants' native habitat, we found that real and simulated herbivory (methyl jasmonate application) reduced attractiveness of S. peruvianum flowers to their native pollinators. We show that reduced pollinator preference, not resource limitation due to leaf tissue removal, resulted in reduced seed set. Solitary bee pollinators use floral plant volatiles, emitted in response to herbivory or methyl jasmonate treatment, as cues to avoid inflorescences on damaged plants. This herbivory-induced pollinator limitation can be viewed as a general cost of induced plant responses as well as a specific cost of herbivory-induced volatile emission.  相似文献   

6.
Rafferty NE  Ives AR 《Ecology》2012,93(4):803-814
The earlier flowering times exhibited by many plant species are a conspicuous sign of climate change. Altered phenologies have caused concern that species could suffer population declines if they flower at times when effective pollinators are unavailable. For two perennial wildflowers, Tradescantia ohiensis and Asclepias incarnata, we used an experimental approach to explore how changing phenology affects the taxonomic composition of the pollinator assemblage and the effectiveness of individual pollinator taxa. After finding in the previous year that fruit set varied with flowering time, we manipulated flowering onset in greenhouses, placed plants in the field over the span of five weeks, and measured pollinator effectiveness as the number of seeds produced after a single visit to a flower. The average effectiveness of pollinators and the expected rates of pollination success were lower for plants of both species flowering earlier than for plants flowering at historical times, suggesting there could be reproductive costs to earlier flowering. Whereas for A. incarnata, differences in average seed set among weeks were due primarily to changes in the composition of the pollinator assemblage, the differences for T. ohiensis were driven by the combined effects of compositional changes and increases over time in the effectiveness of some pollinator taxa. Both species face the possibility of temporal mismatch between the availability of the most effective pollinators and the onset of flowering, and changes in the effectiveness of individual pollinator taxa through time may add an unexpected element to the reproductive consequences of such mismatches.  相似文献   

7.
Peter CI  Johnson SD 《Ecology》2008,89(6):1583-1595
Plants that lack floral rewards can attract pollinators if they share attractive floral signals with rewarding plants. These deceptive plants should benefit from flowering in close proximity to such rewarding plants, because pollinators are locally conditioned on floral signals of the rewarding plants (mimic effect) and because pollinators are more abundant close to rewarding plants (magnet effect). We tested these ideas using the non-rewarding South African plant Eulophia zeyheriana (Orchidaceae) as a study system. Field observations revealed that E. zeyheriana is pollinated solely by solitary bees belonging to a single species of Lipotriches (Halictidae) that appears to be closely associated with the flowers of Wahlenbergia cuspidata (Campanulaceae), a rewarding plant with which the orchid is often sympatric. The pale blue color of the flowers of E. zeyheriana differs strongly from flowers of its congeners, but is very similar to that of flowers of W. cuspidata. Analysis of spectral reflectance patterns using a bee vision model showed that bees are unlikely to be able to distinguish the two species in terms of flower color. A UV-absorbing sunscreen was applied to the flowers of the orchid in order to alter their color, and this resulted in a significant decline in pollinator visits, thus indicating the importance of flower color for attraction of Lipotriches bees. Pollination success in the orchid was strongly affected by proximity to patches of W. cuspidata. This was evident from one of two surveys of natural populations of the orchid, as well as experiments in which we translocated inflorescences of the orchid either into patches of W. cuspidata or 40 m outside such patches. Flower color and location of E. zeyheriana plants relative to rewarding magnet patches are therefore key components of the exploitation by this orchid of the relationship between W. cuspidata and Lipotriches bee pollinators.  相似文献   

8.
The recent trend to place monetary values on ecosystem services has led to studies on the economic importance of pollinators for agricultural crops. Several recent studies indicate regional, long-term pollinator declines, and economic consequences have been derived from declining pollination efficiencies. However, use of pollinator services as economic incentives for conservation must consider environmental factors such as drought, pests, and diseases, which can also limit yields. Moreover, "flower excess" is a well-known reproductive strategy of plants as insurance against unpredictable, external factors that limit reproduction. With three case studies on the importance of pollination levels for amounts of harvested fruits of three tropical crops (passion fruit in Brazil, coffee in Ecuador, and cacao in Indonesia) we illustrate how reproductive strategies and environmental stress can obscure initial benefits from improved pollination. By interpreting these results with findings from evolutionary sciences, agronomy, and studies on wild-plant populations, we argue that studies on economic benefits from pollinators should include the total of ecosystem processes that (1) lead to successful pollination and (2) mobilize nutrients and improve plant quality to the extent that crop yields indeed benefit from enhanced pollinator services. Conservation incentives that use quantifications of nature's services to human welfare will benefit from approaches at the ecosystem level that take into account the broad spectrum of biological processes that limit or deliver the service.  相似文献   

9.
Most plants attract multiple flower visitors that may vary widely in their effectiveness as pollinators. Floral evolution is expected to reflect interactions with the most important pollinators, but few studies have quantified the contribution of different pollinators to current selection on floral traits. To compare selection mediated by diurnal and nocturnal pollinators on floral display and spur length in the rewarding orchid Gymnadenia conopsea, we manipulated the environment by conducting supplemental hand-pollinations and selective pollinator exclusions in two populations in central Norway. In both populations, the exclusion of diurnal pollinators significantly reduced seed production compared to open pollination, whereas the exclusion of nocturnal pollinators did not. There was significant selection on traits expected to influence pollinator attraction and pollination efficiency in both the diurnal and nocturnal pollination treatment. The relative strength of selection among plants exposed to diurnal and nocturnal visitors varied among traits and populations, but the direction of selection was consistent. The results suggest that diurnal pollinators are more important than nocturnal pollinators for seed production in the study populations, but that both categories contribute to selection on floral morphology. The study illustrates how experimental manipulations can link specific categories of pollinators to observed selection on floral traits, and thus improve our understanding of how species interactions shape patterns of selection.  相似文献   

10.
若尔盖高原的马先蒿属植物花部形态多样化,为探讨花冠差异是否与不同的繁殖对策相联系,在该区四川红原县分别对短管无喙的多齿马先蒿(Pedicularis polyodonta)和长管具喙的刺齿马先蒿(P.armata)的花部形态、昆虫访花频率和种子产出进行了比较研究.多齿马先蒿的花冠呈"鸟头"状,多个花的集合与鸟群相似,因此特别检测了这种拟态是否具有规避鸟类和蝗虫或吸引蜂类传粉的功能.研究发现,与刺齿马先蒿相比,多齿马先蒿的花冠较小、数量较少,但花蜜含量较高,因此蜂类访问频率较高,结实率高.两种马先蒿的单花种子产量没有显著差异;多齿马先蒿单个个体的种子数量较多,但种子较小.研究表明,为提高繁殖成功率,多齿马先蒿倾向于依赖花质量(如花蜜含量所指示)和种子数量,而刺齿马先蒿倾向于依赖花数量.蝗虫对两种马先蒿的危害没有显著差异,说明多齿马先蒿的"鸟头"拟态不具有规避蝗虫的功能;在具有"鸟头"花冠的多齿马先蒿的样地,鸟类的拜访频率较刺齿马先蒿显著较少,但蜂类的访问频率显著较高,说明"鸟头"拟态可能与规避鸟类、保护传粉者有关,其拟态功能需要进一步实验验证.图2表1参37  相似文献   

11.
Experimental Demonstration of an Allee Effect in American Ginseng   总被引:6,自引:0,他引:6  
Abstract: Harvesting of wild American ginseng (   Panax quinquefolius ) for the herbal trade has lowered natural population sizes. We tested for reproductive limitation due to small population size (a form of the Allee effect) by experimentally planting "natural" populations numbering 4, 16, and 64 using 4-year-old cultivated plants. Plant size traits and reproductive traits ( bud, flower, green fruit, and mature fruit) were recorded through the ensuing summer. Fruit production per flower and per plant increased in proportion to flowering population size (  p = 0.0063 and p = 0.0017, respectively), strongly suggesting that an Allee effect occurs in very small populations. The increase in fruit production was not explained by either plant or inflorescence size differences. Although population size-dependent pollination, through insufficient pollinator visitation rate or pollen transfer rate, seems the most likely cause of the observed effects, our limited observations of pollinators were not sufficient to demonstrate a change in pollination rates as a function of population size. Knowledge of the presence as well as the mechanism underlying this Allee effect may be especially useful for management and determination of minimum viable population size of the species in the wild.  相似文献   

12.
Moeller DA  Geber MA  Eckhart VM  Tiffin P 《Ecology》2012,93(5):1036-1048
Mutualisms are well known to influence individual fitness and the population dynamics of partner species, but little is known about whether they influence species distributions and the location of geographic range limits. Here, we examine the contribution of plant-pollinator interactions to the geographic range limit of the California endemic plant Clarkia xantiana ssp. xantiana. We show that pollinator availability declined from the center to the margin of the geographic range consistently across four years of study. This decline in pollinator availability was caused to a greater extent by variation in the abundance of generalist rather than specialist bee pollinators. Climate data suggest that patterns of precipitation in the current and previous year drove variation in bee abundance because of its effects on cues for bee emergence in the current year and the abundance of floral resources in the previous year. Experimental floral manipulations showed that marginal populations had greater outcross pollen limitation of reproduction, in parallel with the decline in pollinator abundance. Although plants are self-compatible, we found no evidence that autonomous selfing contributes to reproduction, and thus no evidence that it alleviates outcross pollen limitation in marginal populations. Furthermore, we found no association between the distance to the range edge and selfing rate, as estimated from sequence and microsatellite variation, indicating that the mating system has not evolved in response to the pollination environment at the range periphery. Overall, our results suggest that dependence on pollinators for reproduction may be an important constraint limiting range expansion in this system.  相似文献   

13.
Bumblebees forage uninterrupted for long periods of time because they are not distracted by sex or territorial defense and have few predators. This has led to a long running debate about whether bumblebees forage optimally. This debate has been enriched by the possibility that bumblebees foraging within clover patches have flight patterns that can be approximated by Lévy flights. Such flight patterns optimise the success of random searches. Bumblebees foraging within a flower patch tend to approach the nearest flower but then often depart without landing or probing it if it has been visited previously; unvisited flowers are not rejected in this manner. Here, this foraging behaviour has been replicated in numerical simulations. Lévy flight patterns are found to be an inconsequential emergent property of a bumblebees’ foraging behaviour. Lévy flights are predicted to emerge when bees reject at least 99% of previously visited flowers. A foraging bumblebee can certainly empty a clover flower head of nectar in one visit, but lower rates of rejection are observed for many other flowers. These findings suggest that Lévy flight patterns in foraging bumblebees are rare and specific to a few flower species and that if they exist, then they are not part of an innate, evolved optimal searching strategy.  相似文献   

14.
Irwin RE  Adler LS 《Ecology》2008,89(8):2207-2217
Pollen movement within and among plants affects inbreeding, plant fitness, and the spatial scale of genetic differentiation. Although a number of studies have assessed how plant and floral traits influence pollen movement via changes in pollinator behavior, few have explored how nectar chemical composition affects pollen transfer. As many as 55% of plants produce secondary compounds in their nectar, which is surprising given that nectar is typically thought to attract pollinators. We tested the hypothesis that nectar with secondary compounds may benefit plants by encouraging pollinators to leave plants after visiting only a few flowers, thus reducing self-pollen transfer. We used Gelsemium sempervirens, a plant whose nectar contains the alkaloid gelsemine, which has been shown to be a deterrent to foraging bee pollinators. We found that high nectar alkaloids reduced the total and proportion of self-pollen received by one-half and one-third, respectively. However, nectar alkaloids did not affect female reproduction when we removed the potential for self-pollination (by emasculating all flowers on plants). We then tested the assumption that self-pollen in combination with outcrossed pollen depresses seed set. We found that plants were weakly self-compatible, but self-pollen with outcrossed pollen did not reduce seed set relative to solely outcrossed flowers. Finally, an exponential model of pollen carryover suggests that high nectar alkaloids could benefit plants via increased pollen export (an estimate of male function), but only when pollinators were efficient and abundant and plants had large floral displays. Results suggest that high nectar alkaloids may benefit plants via increased pollen export under a restricted set of ecological conditions, but in general, the costs of high nectar alkaloids in reducing pollination balanced or outweighed the benefits of reducing self-pollen transfer for estimates of female and male reproduction.  相似文献   

15.
Although predators can affect foraging behaviors of floral visitors, rarely is it known if these top-down effects of predators may cascade to plant fitness through trait-mediated interactions. In this study we manipulated artificial crab spiders on flowers of Rubus rosifolius to test the effects of predation risk on flower-visiting insects and strength of trait-mediated indirect effects to plant fitness. In addition, we tested which predator traits (e.g., forelimbs, abdomen) are recognized and avoided by pollinators. Total visitation rate was higher for control flowers than for flowers with an artificial crab spider. In addition, flowers with a sphere (simulating a spider abdomen) were more frequently visited than those with forelimbs or the entire spider model. Furthermore, the presence of artificial spiders decreased individual seed set by 42% and fruit biomass by 50%. Our findings indicate that pollinators, mostly bees, recognize and avoid flowers with predation risk; forelimbs seem to be the predator trait recognized and avoided by hymenopterans. Additionally, predator avoidance by pollinators resulted in pollen limitation, thereby affecting some components of plant fitness (fruit biomass and seed number). Because most pollinator species that recognized predation risk visited many other plant species, trait-mediated indirect effects of spiders cascading down to plant fitness may be a common phenomenon in the Atlantic rainforest ecosystem.  相似文献   

16.
Summary To study risk aversion in hand-reared bananaquits (Coereba flaveola) we placed individuals in a cage with a 1 m2 floral board having a random array of 85 yellow and 85 red artificial flowers. Flowers of one color were filled with the same quantity of nectar (constant flowers), whereas flowers of the other color were filled with variable quantities of nectar (variable flowers). The constant and variable flowers had identical mean contents, only their variances differed. After three presentations, the constant flowers were made variable and vice versa to control for color preferences. Naive foragers tended to avoid variable flowers. The degree of risk aversion was influenced by previous experience, the relative variability of the variable flowers, and flower color. Variable flowers having similar coefficients of variation, but different reward variables (volume or concentration) resulted in similar levels of risk aversion. Within single foraging episodes the following was observed: sequences of constant flowers increased while sequences of variable flowers remained similar to random foraging; the probability of revisiting a constant flower was higher than revisiting a variable flower; the average amount of nectar consumed from constant and variable flowers was similar within the assessment periods (prior to favoring constant flowers); the proportion of visits falling below the mean expected reward during the assessment period or its inverse (the proportion visited with at least the equivalent of the mean) may be a cue used for risk aversion; risk aversion persisted through long foraging bouts despite changed nectar distributions suggesting that the bananaquits did not track resource distributions well within foraging bouts.  相似文献   

17.
The patch living rules of a pollinator, the bumblebee Bombus terrestris L., are studied here in the framework of motivational models widely used for parasitoids: The rewarding events found during the foraging process are supposed to increase or decrease suddenly the tendency of the insect to stay in the current patch and therefore to adjust the patch residence time to the patch profitability. The foraging behaviour of these pollinators was observed in two environment types to determine their patch-leaving decisions. The rich environment was composed of male-fertile flowers, offering pollen and nectar, and the poor one of male-sterile flowers, offering little nectar and no pollen. The experimental design consisted of a patch system in which inflorescences were evenly arranged in two rows (1 m distance). Residence times of foragers inside inflorescences and rows were analysed by a Cox proportional hazards model, taking into account recent and past experience acquired during the foraging bout. Most of the results showed a decremental motivational mechanism, that is, a reduction in the residence time on the inflorescence or in the row related to exploitation of flowers within inflorescences and inflorescences within rows These results indicate that bumblebees tend to leave the patch using departure rules similar to those found in parasitoids. The results also provide information on the memory, learning and evaluating capabilities of bumblebees especially when rich and poor environments were compared. The patch-leaving mechanism suggested by this study is consistent with the central place foraging theory.  相似文献   

18.
外来植物在迁入地的生存和繁殖策略,是入侵生物学研究的热门话题之一。开展入侵植物的繁殖策略研究,有助于深入了解入侵生物在迁入地的生存繁衍机制,对入侵植物在可控范围内的适当使用具有重要的指导意义。通过野外传粉昆虫观测、光学和电镜扫描观测和人工控制授粉等方法,对外来植物大花老鸦嘴(Thunbergia grandiflora)在广州和深圳的4个居群的开花物候、花部结构、花粉活力、传粉昆虫及其行为等传粉生物学特征进行了研究。结果表明:大花老鸦嘴的单花花期为1 d,上午10:00时花粉活力最高,长雄蕊花粉活力可达73.92%,短雄蕊花粉活力可达71.54%,随后花粉活力逐渐下降。主要传粉者为扁柄木蜂(Xylocopa latipes),开花当天访花高峰期的9:00—10:00,单花访花频率可达5 h-1以上,之后开始逐渐减少,14:00之后未观测到扁柄木蜂访花,18:00后仅剩蚂蚁等体型较小的昆虫长期栖息于花序或花蕾。控制授粉实验结果显示,无论是人工异株授粉、自花授粉,还是自然授粉,结果率均为0,4个居群均未见结实。光学显微镜下子房发育完整;电镜扫描观测结果显示其花粉在柱头上能萌发,但花粉管不能延伸到子房位置。目前在园林栽培的大花老鸭嘴均以块根或茎为繁殖体培育苗木,虽然这些植株均能开出鲜艳的花朵,花粉传递者也充足,但未见任何结果现象。因此,初步推测本次研究区域内的大花老鸭嘴种群可能来自相同或相近的无性系,故不同居群间异株授粉的不结果现象可能为“自交不亲和”,或“染色体多倍化”所致。  相似文献   

19.
Floral scents are known as an olfactory signal for attracting pollinators, but why the flowers pollinated by highly specialised pollinators emit scents consisting of mixtures of many compounds and dominated by one or a few compounds is still poorly understood. We supposed that each (especially characteristic) chemical in floral scents may play a specific role in mediating pollinator behaviours and tested this supposition in a fig-fig wasp mutualism. Ficus curtipes is obligately pollinated by an undescribed Eupristina species. In the scent of F. curtipes receptive figs, over 50 compounds have been identified, and the scent is dominated by two compounds, 6-methyl-5-hepten-2-ol (OL) and 6-methyl-5-hepten-2-one (NE). We therefore tested the roles of the two major chemicals in mediating the pollinator behaviours. Our results show that OL and NE, respectively, act as a long-distance attractant and a fig-entry behaviour stimulant to the obligate pollinator wasp. Namely, OL attracts the wasps to the figs and NE guides the wasps into the figs. This finding on the work division of floral scent compounds partially explains the maintenance mechanism of the fig-fig wasp mutualism and the significance of the chemical diversity of floral scent in plant–pollinator interactions, especially in specialised pollination systems.  相似文献   

20.
Parasites can affect host behavior in subtle but ecologically important ways. In the laboratory, we conducted experiments to determine whether parasitic infection by the intestinal protozoan Crithidia bombi or the tracheal mite Locustacarus buchneri alters the foraging behavior of the bumble bee Bombus impatiens. Using an array of equally rewarding yellow and blue artificial flowers, we measured the foraging rate (flowers visited per minute, flower handling time, and flight time between flowers) and flower constancy (tendency to sequentially visit flowers of the same type) of bees with varying intensities of infection. Bumble bee workers infected with tracheal mites foraged as rapidly as uninfected workers, but were considerably more constant to a single flower type (yellow or blue). In contrast, workers infected with intestinal protozoa showed similar levels of flower constancy, but visited 12% fewer flowers per minute on average than uninfected bees. By altering the foraging behavior of bees, such parasites may influence interactions between plants and pollinators, as well as the reproductive output of bumble bee colonies. Our study is the first to investigate the effects of parasitic protozoa and tracheal mites on the foraging behavior of bumble bees, and provides the first report of Crithidia bombi in commercial bumble bees in North America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号