首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
A fundamentally revised version of the HERMES agro-ecosystem model, released under the name of MONICA, was calibrated and tested to predict crop growth, soil moisture and nitrogen dynamics for various experimental crop rotations across Germany, including major cereals, sugar beet and maize. The calibration procedure also included crops grown experimentally under elevated atmospheric CO2 concentration. The calibrated MONICA simulations yielded a median normalised mean absolute error (nMAE) of 0.20 across all observed target variables (n = 42) and a median Willmott's Index of Agreement (d) of 0.91 (median modelling efficiency (ME): 0.75). Although the crop biomass, habitus and soil moisture variables were all within an acceptable range, the model often underperformed for variables related to nitrogen. Uncalibrated MONICA simulations yielded a median nMAE of 0.27 across all observed target variables (n = 85) and a median d of 0.76 (median ME: 0.30), also showing predominantly acceptable results for the crop biomass, habitus and soil moisture variables. Based on the convincing performance of the model under uncalibrated conditions, MONICA can be regarded as a suitable simulation model for use in regional applications. Furthermore, its ability to reproduce the observed crop growth results in free-air carbon enrichment experiments makes it suited to predict agro-ecosystem behaviour under expected future climate conditions.  相似文献   

2.
The general results of material flow analyses for agricultural farms presented in Part I are now specified for three farms in Lower Saxony. For this, the existing material flow net for winter wheat is extended by the crops of winter barley, winter rye, summer barley, rape, sugar beets and potatoes. The assessment is essentially done regarding the impact categories of resource depletion, cumulated energy demand (CED) and emissions to atmosphere. Besides the assessment of single farms or crops, also the comparison, of different agricultural production systems is possible, whereby the choice of the functional unit and the basis of comparison (with reference to input or output) is of major importance. Additionally, as for agricultural means of production, the material flows and emissions resulting from the provision of carbolime — an often employed carbonate fertiliser as for sugar-beet cultivation — are derived completely within this article. Furthermore, sensitivity analyses on the subject of detail intensity of agricultural basic data are presented for the example of machine employment. The material flow nets are regarded as transferable to other farms with similar crop rotation systems, with an appropriate expenditure of information gathering and parameterisation. The complete net can be used as a module within further investigations, e.g. of the industrial processing of food, as a pre-production chain for agricultural resources being part of the production process (winter wheat — mill, brewing barley — brewery, sugar beets — sugar-factory).  相似文献   

3.
《Ecological modelling》2006,190(1-2):116-132
Over a period of 5 years, the agro-ecosystem model Opus was used to simulate soil water and nitrogen balance as well as crop growth for three experimental field plots. At these plots, different agricultural management practices were applied. The data set obtained from these plots consists of automatically recorded time series of daily volumetric soil water contents measured by TRIME-probes as well as daily pressure heads measured by tensiometer. Aboveground total biomass, yield, nitrogen-uptake by crops as well as nitrate contents in the soil were measured at 6–10 sample times per year. The objective of this study was an evaluation of the accuracy of Opus regarding the simulation of crop growth, soil water and nitrogen balance. The simulations of soil water contents and pressure heads correspond with the commonly measured trends in soil depths shallower than 60 cm. In depths deeper than 60 cm, some differences between measured and simulated soil water contents as well as pressure heads could be observed. Nitrate contents in the root zone and the aboveground total biomass were simulated satisfactorily. In contrast to that, simulated and observed yields show greater discrepancies. This indicates the need of a site specific calibration of crop growth parameters within the Opus model.  相似文献   

4.
When discussing strategies for realising an environmental friendly agricultural production, there are methods for quantifying environmental effects which do not originate in agricultural contexts. For instance, the methodology of Life Cycle Assessment is mainly developed from analyses of industrial production lines and products. Substance flow analyses in agriculture contain a complete analysis of agriculturally caused substance and energy flows, to which certain environmental effects are assigned, and also an assessment of these effects. For the provision of production means, balancing agricultural production procedures includes the extraction of energy sources and mineral resources from their reservoirs. The growth phase of the crops regarded (cereals, sugar beet, rape) is described depending on the nutrients nitrogen, phophor, potassium and calcium. The nitrogen flux within the system plant-soil-atmosphere is recorded referring to its temporal dynamic. In the framework of this study, selected environmental effects of agricultural production procedures of winter wheat are calculated regarding different conditions of locations and are supplemented by declining scenario simulations. Essential features of the structure of the substance flow net, which is implemented for the calculation and which can be used completely or as for single modules for further studies, are explained. Basing on selected categories of effectiveness, ecological optimisation potentials of varying agricultural provision of production means and procedures are estimated within the whole context of provision. Thereby, the effects of a reduced employment of fertilisers, of a change as for the kind of fertiliser and of the region of origin of the N-fertiliser, as well as variations concerning mechanical work in the fields are outlined for the cultivation of winter wheat.  相似文献   

5.
Effect of water quality on yield of sugar beet and sweet sorghum   总被引:2,自引:0,他引:2  
To study the effects of quality of water on soil and plant, an experiment was conducted at Rudashat Drainage and Reclamation Experiment Station in 1999. Four irrigation water salinities (2, 5, 8 and 11 ds m(-1)) and two sugar crops (sugar beet and sweet sorghum) were used in this experiment. The results showed that under the same water quality, sweet sorghum used 2700 cubic meter per hectare less water than sugar beet. As the quality of irrigation water decreased, the soil salinity and exchangeable sodium percent increased which caused yield reduction for both plants. Sugar beet by accumulating Na and Cl in its leaves tolerated salinity but its usage as a forage crop caused some limitations, whereas sweet sorghum by not accumulating Na and Cl escape salinity and it can be used as a forage crop without any limitation.  相似文献   

6.
The benefits of genetically modified herbicide-tolerant (GMHT) sugar beet (Beta vulgaris) varieties stem from their presumed ability to improve weed control and reduce its cost, particularly targeting weed beet, a harmful annual weedy form of the genus Beta (i.e. B. vulgaris ssp. vulgaris) frequent in sugar beet fields. As weed beet is totally interfertile with sugar beet, it is thus likely to inherit the herbicide-tolerance transgene through pollen-mediated gene flow. Hence, the foreseeable advent of HT weed beet populations is a serious threat to the sustainability of GM sugar beet cropping systems. For studying and quantifying the long-term effects of cropping system components (crop succession and cultivation techniques) on weed beet population dynamics and gene flow, we developed a biophysical process-based model called GeneSys-Beet in a previous study. In the present paper, the model was employed to identify and rank the weed life-traits as function of their effect on weed beet densities and genotypes, using a global sensitivity analysis to model parameters. Monte Carlo simulations with simultaneous randomization of all life-trait parameters were carried out in three cropping systems contrasting for their risk for infestation by HT weed beets. Simulated weed plants and bolters (i.e. beet plants with flowering and seed-producing stems) were then analysed with regression models as a function of model parameters to rank processes and life-traits and quantify their effects. Key parameters were those determining the timing and success of growth, development, seed maturation and the physiological end of seed production. Timing parameters were usually more important than success parameters, showing for instance that optimal timing of weed management operations is more important than its exact efficacy. The ranking of life-traits though depended on the cropping system and, to a lesser extent, on the target variable (i.e. GM weeds vs. total weed population). For instance, post-emergence parameters were crucial in rotations with frequent sugar beet crops whereas pre-emergence parameters were most important when sugar beet was rare. In the rotations with frequent sugar beet and insufficient weed control, interactions between traits were small, indicating diverse populations with contrasted traits could prosper. Conversely, when sugar beet was rare and weed control optimal, traits had little impact individually, indicating that a small number of optimal combinations of traits would be successful. Based on the analysis of sugar beet parameters and genetic traits, advice for the future selection of sugar beet varieties was also given. In climatic conditions similar to those used here, the priority should be given to limiting the presence of hybrid seeds in seed lots rather than decreasing varietal sensitivity to vernalization.  相似文献   

7.
充分利用华北地区冬季空闲耕地及光热资源,以冬闲耕地为对照,研究二月兰(Orychophragmus violaceus)、毛苕(Vicia uillosa Roth.)、黑麦草(Secale cereale L.)、草木樨(Melilotus officinalis)、紫花苜蓿(Medicago satiua L.)5种不同冬闲覆盖作物地上部、地下部以及总碳、氮的蓄积量及其对土壤理化性质的影响。结果表明:5种覆盖作物总干物质质量在4.6-8.82 t.hm-2之间,是冬闲田干物质质量的1.6-3.1倍。5种覆盖作物全碳蓄积量在1.80-3.14 t.hm-2之间,是冬闲田碳蓄积量的1.9-3.3倍。与对照相比,各覆盖处理均明显提高氮素蓄积,尤以苜蓿最佳,达到了202.8 kg.hm-2,差异显著。试验选择5种肥覆盖均可提高土壤有机质质量分数(0.90-2.86 g.kg);黑麦草覆盖可明显降低土壤容重(0.08 g.cm3);毛苕和苜蓿栽培均可显著降低土壤pH,但同时土壤盐分有所增加;二月兰和黑麦草栽培在提高土壤水分含量方面表现最好。  相似文献   

8.
A procedure has been developed for the analysis of metsulfuron‐methyl in the soil of field crops. The soil extracts are cleaned by repeated TLC, and metsulfuron‐methyl is simultaneously separated from its soil metabolites. Metsulfuron‐methyl is transformed by diazomethane into its N,N ‘‐dimethyl derivative which in the GC (electron capture detection) and GC‐MS apparatus is transformed into a benzisothiazole compound which is measured with great sensitivity. The sensitivity limit is 0.3 μg metsulfuron‐methyl kg‐1 dry soil. The results of the chemical analyses are confirmed by bioassays using sugar beet as test plant. Metsulfuron‐methyl was measured in the soil of two winter wheat crops after post‐emergence application in the spring of 6 g metsulfuron‐methyl ha‐1. In the 0–8 cm surface soil layer, the metsulfuron‐methyl soil half‐life was 78 days in 1997, and 67 days in 1998. During crop, metsulfuron‐methyl remained in the 0–8 cm surface soil layer. There, it was at a maximum concentration and herbicide efficiency in a 2 cm‐thick soil layer. This maximum concentration soil layer progressively moved down during crop, attaining the 4–6 cm surface soil layer at crop end. After the winter wheat harvest at the end of July, and the rotary‐tilling of the 0–10 cm surface soil layer before sowing of the green manures, 27% of the metsulfuron‐methyl initial dose still remained in the 0–10 cm surface soil layer. This residue progressively disappeared, and was no more detected at the middle of November. It had no, or only very low inhibiting effect on the growth of the green manures. Thus there is no concern about the possible phytotoxicity of persistent metsulfuron‐methyl soil residues towards the following crops, when metsulfuron‐methyl is applied at the rate of 6 g a.i.ha‐1.  相似文献   

9.
Microbial processes, particularly enzyme activities, play crucial functional roles in soil ecology, hence serving as sensitive indicators of soil quality. We assessed the temporal dynamics of microbial biomass and selected soil enzymes (β-d-glucosidase, cellobiohydrolase, polyphenol oxidase, urease, glycine-aminopeptidase and alkaline phosphatase) during wheat cultivation, under four different tillage practices in the rice–wheat system. The four practices involved conventional tilling of soil before cultivating each crop (CTR-CTW); no tilling before cultivating rice but conventional tillage before wheat (NTR-CTW); conventional tilling before cultivating rice but no tilling before wheat (CTR-NTW) and no tilling before cultivation of each crop (NTR-NTW). Microbial biomass and activities of hydrolytic enzymes increased under NTR-NTW followed by CTR-NTW and NTR-CTW with respect to the conventional practice CTR-CTW, thus reflecting improvement in microbial activities with reduced tillage frequency. Enzyme activities generally depended on soil moisture and temperature, but nature of relationships varied among different practices. Nutrient demand appeared to be the strongest driver of alkaline phosphatase and urease, and soil temperature for glycine-aminopeptidase. Under CTR-CTW, activities of most of the extracellular enzymes were related with β-d-glucosidase or urease, but such relations altered under rest of the practices. The study showed that extracellular soil enzymes respond sensitively to tillage practices as well as environmental variables, particularly soil temperature and moisture and hence can serve as a sensitive indicator of changes in soil processes. Considering improvement in microbial biomass and enzymatic activities as indicators of better soil quality, adoption of no tillage apparently improved soil quality. Still, more number of field studies are required under tillage managements to explore the relationships between different enzyme activities and environmental factors.  相似文献   

10.
我国近地层臭氧污染日趋严重,其不断增加的浓度对农作物的生长造成了严重威胁。以冬小麦和大豆为研究对象,基于大田开顶式气室(OTC)试验,分别设置对照(CK)、100 n L·L~(-1)和150 n L·L~(-1)这3个O3浓度处理组,对2种作物生长指标和产量等参数连续观测,结果表明:O3浓度增加对冬小麦和大豆的株高、叶面积和生物量产生影响,并且对大豆的影响更为明显。与此同时,O3浓度增加使得冬小麦的穗重、穗粒数以及大豆的单株荚数、单株粒数、单株粒重都呈现大幅度下降状态,进而导致其产量降低。在100 n L·L~(-1)臭氧处理下,冬小麦产量较CK降低了12.89%,而大豆产量下降了23.76%。在150 n L·L~(-1)的臭氧处理下,冬小麦产量较对照组降低了29.23%,大豆则比对照组下降了41.57%,与CK相比,大豆产量下降更为明显。上述研究表明,臭氧污染对农作物的生长具有显著影响,且大豆对O3的反应比冬小麦敏感。  相似文献   

11.
As the typical planting pattern of winter wheat in the dry highlands of the Loess Plateau, ridge mulching-furrow planting (RMFP) has played an important role in fertilizer efficiency of different fertilizers, and the differences in fertilizer efficiency further influence the diversity of the structure of soil microbial communities. The effects of different fertilization practices on winter wheat yield formation, soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), and soil microbial biomass phosphorus (SMBP) were investigated by field experiments during 2014-2016 in the winter wheat growing region of the dry highlands in southern Shanxi. The treatments included four groups, farmer fertilization (FF), monitoring fertilization (MF), monitoring fertilization combined application of manure (MFM), and monitoring fertilization combined application of bio-organic fertilizer (MFB). Results showed a significant increase in winter wheat yield by optimized and balanced fertilization, and the grain yield of MFB was highest among all treatments, with a value of 4 107-5 400 kg/hm2, which was 14.5%-23.2% (P < 0.05) higher than that of FF. The effects of different fertilization treatments on the winter wheat yield formulation mainly depended on spike number; however, no effect was found on kernel number per spike and 1 000-grain weight. Soil microbial biomass was affected by both growth period and fertilization patterns, i.e., the content of SMBC from jointing to flowering stage was highest during the winter wheat growth period, whereas the maximum values of SMBN and SMCP were found during the jointing stage. Changes in the rates of SMBC, SMBN, and SMBP during the entire growth period were less than 50%; however, the average contribution rate of optimized fertilization on SMBC, SMBN, and SMBP reached 90%. Compared to single chemical fertilizer applications, the combined application chemical fertilizer and manure or bio-organic fertilizer significantly improved the contents of SMBC, SMBN, and SMBP; however, the contents of SMBC and SMBN between MFM and MFB had no significant difference, whereas the SMBP of MFB was 19.8%-47.1% (P < 0.05) higher than that of MFM owing to the effect of mixed phosphorus bacteria. The soil microbial biomass C/N and C/P of the different treatments were 6.9-9.8 and 14.4-41.0, respectively, and maximum values occurred during the flowering stage. Given the above, the combined application of reasonable chemical fertilizer and bio-organic fertilizer can effectively improve the winter wheat yield and soil microbial biomass under RMFP cultivation in the dry highlands of the Loess Plateau. © 2018 Science Press. All rights reserved.  相似文献   

12.
An experiment involving four qualities of irrigation water two sugar beet and three sweet sorghum cultivars was conducted in a split plot design with four replications at Rudasht Drainage and Reclamation Experiment Station in 1999. The results showed salinity of water has an adverse effect on sugar beet and sweet sorghum biomass. Sweet sorghum cultivar SSV108 had the lowest biomass under all qualities of irrigation water Sweet sorghum cultivar Rio had the maximum biomass with water qualities of 2, 5, and 8 dS m(-1). Sugar beet cultivar 7233 had the maximum biomass with 11 dS m(-1). The effect of irrigation water quality was not significant for sugar characteristics such as brix, pol and purity. However, responses of cultivars on the above parameters were significant and sugar beet cultivars had higher brix, pol and purity and lower invert sugar and starch than sweet sorghum cultivars. In conclusion, sweet sorghum cultivars are not recommended to be irrigated with saline water of more than 8 dS m(-1) for sugar production. Under such condition, they may be suitable to be grown for forage purposes.  相似文献   

13.
Nitrogen fertilization and winter pruning are commonly used to control crop production in peach [Prunus persica (L.) Batsch] orchards. They are also known to affect the dynamics of Myzus persicae (Sulzer) (Homoptera: Aphididae) aphid populations via bottom-up regulation processes. Interactions between crops and pests can cause complex system behaviour in response to management practices. An integrated approach will therefore improve the understanding of the effects of these two cultural practices on aphid and peach performances.We developed a simulation model that describes the cultural control of interacting peach tree and aphid population dynamics. It uses the principles of common trophic models while gathering available knowledge and explicit assumptions on peach and aphid functioning and the effects of cultural practices.The model was able to qualitatively reproduce the system behaviour observed in the field. It accounted for actions and feedback such as stimulation of foliar growth by winter pruning, consecutive aphid population increase, subsequent damage to foliage, and partial compensatory growth of foliage. The model also reproduced low losses in fruit production due to aphid infestations. However, it called for further integration of ‘long-term’ effects. Analysis of the model showed the complexity of peach tree and aphid responses to leaf N × winter pruning interactions. Simulations indicated that fruit production losses remained low within a range of realistic values of leaf N and pruning intensity, whereas manipulating peach and aphid dynamics, their interactions and their relationships to practices could result in higher losses.The model is useful to evaluate the relevance of cultural practices for a bottom-up regulation of aphid dynamics in crop-pest management. After considering other control methods and fruit quality, it can be used to find a combination of practices that optimises trade-offs between fruit production and environmental conservation goals. A modelling approach that links crop growth and pest population dynamics and integrates management practice effects has strong potential for improving crop-pest management in an integrated crop production context.  相似文献   

14.
土壤微生物生物量碳(SMBC)反映了土壤有机碳(SOC)情况,其值大小代表了土壤肥力的高低,研究不同耕作方式SMBC的变化特征及其影响因素具有重要意义。试验于2001年在中国科学院栾城农业生态系统实验站开始,试验设置翻耕(CT)、旋耕(RT)、免耕(NT)三个处理。利用熏蒸提取-容量分析法研究了不同耕作处理2007~2008年冬小麦生育期的SMBC分布特征及影响因素。结果表明SMBC具有时空变化特征:在冬小麦生育期中,各SMBC处理均随着时间波动起伏,并在小麦返青期和扬花期达到峰值;空间分布上SMBC含量随土壤深度的增加而降低。不同耕作处理间差异显著,0~5 cm土层SMBC以NT最高,CT最低;5~10 cm土层RT与CT相当,NT最低;10~20 cm土层以CT最高,NT最低;20~30 cm各处理均较低,NT亦为最低。对不同处理SMBC层化率分析显示:NT具有明显的表层富集现象;RT处理0~10 cm SMBC分布均匀;CT处理0~20 cm SMBC分布均匀。对SMBC的影响因素分析表明:土壤有机碳是SMBC空间分布的主要影响因素,二者呈显著正相关。而土壤温度和土壤含水量是影响SMBC季节变化的主要外界因素。  相似文献   

15.
Modelling nutrient uptake by crops implies considering and integrating the processes controlling the soil nutrient supply, the uptake by the root system and relationships between the crop growth response and the amount of nutrient absorbed. We developed a model that integrates both dynamics of maize growth and phosphorus (P) uptake. The crop part of the model was derived from Monteith's model. A complete regulation of P-uptake by the roots according to crop P-demand and soil P-supply was assumed. The soil P-supply to the roots was calculated using a diffusion equation and assuming that roots behave as zero-sinks. The actual P-uptake and crop growth were calculated at each time step by comparing phosphate and carbohydrate supply–demand ratios. Model calculations for P-uptake and crop growth were compared to field measurements on a long term P-fertilization trial. Three P-fertilization regimes (no P-fertilization, 42.8 kg P ha−1 year−1 and 94.3 kg P ha−1 year−1) have led to a range of P-supply. Our model correctly simulated both the crop development and growth for all P-treatments. P-uptake was correctly predicted for the two non-limiting P-treatments. Nevertheless, for the limiting P-treatment, P-uptake was correctly predicted during the early period of growth but it was underestimated at the last sampling date (61 day after sowing). Several arguments for under-prediction were considered. However, most of them cannot explain the observed magnitude in discrepancy. The most likely reason might be the fact that biomass allocation between shoot and root must be modelled more precisely. Despite this mismatch, the model appears to provide realistic simulations of the soil–plant dynamic of P in field conditions.  相似文献   

16.

Background

With a growing production and use of agricultural substrates in biogas facilities, the competition between food and energy production, environmental issues, and sustainability goals has seen an increase in the last decade and poses a challenge to policy makers. Statistical yield data has a low spatial resolution and only covers standard crops and makes no statement in regard to yields under climate change. To support policy makers and regional planners in an improved allocation of agricultural land use, a new crop model (BioSTAR) has been developed.

Results

Simulations with weather and yield data from 7 years and four regions in Lower Saxony have rendered overall good modeling results with prediction errors (RMSE and percentage) ranging from 1.6 t and 9.8% for winter wheat to 2.1 t and 11.9% for maize. The model-generated ET0 and ETa values (mean of four locations) are lower than ET0/ETa values calculated with the Penman-Monteith method but appear more realistic when compared to field trial data from northern and eastern Germany.

Conclusions

The model has proven to be a functioning tool for modeling site-specific biomass potentials at the farm level, and because of its Access® database interface, the model can also be used for calculating biomass yields of larger areas, like administration districts or states. Out of the seven crops modeled in this study, only limited yield and test site data was available for winter barley, winter rye, sorghum, and sunflower. For further improvement of model performance and model calibration, more trial data and data testing are required for these crops.  相似文献   

17.
甲烷(CH4)和氧化亚氮(N2O)是仅次于二氧化碳(CO2)的重要温室气体,农田是大气CH4和N20的重要来源,但目前农业措施对CH4和N2O排放的影响尚不明确。以水旱轮作稻田旱作季休闲为对照,采用静态箱.气相色谱法研究了种植紫云英、黑麦草、冬小麦以及油菜等4种作物对稻田旱作季CH4和N2O排放及其温室效应的影响。结果表明:水旱轮作稻田旱作季CH4排放通量较低,而N2O排放较为明显。稻田旱作季CH4平均排放通量表现为油菜〉黑麦草〉冬小麦〉紫云英〉休闲,依次为8.96、7.19、6.94、6.52和6.02μg·m-2·h-1,季节N20平均排放通量的顺序是油菜(61.1lμg·m-2·h-1)〉冬小麦(52.5lag·m-2·h-1)〉黑麦草(34.0μg·m-2·h。)〉休闲(15.3lμg·m-2·h-1)〉紫云英(13.6lμg·m-2·h-1)。稻田旱作季种植不同作物对CH4和N2O季节总排放量的影响达到极显著水平(P〈0.01),C144和N2O季节总排放量均以种植油菜为最大,分别达到43.2和294.7mg·m-2,比对照休闲增加49%和299%。种植油菜、冬小麦和黑麦草较对照休闲显著增加稻田旱作季总增温潜势(P〈0.05),紫云英和休闲处理间总增温潜势无显著差异(P〉0.05)。研究表明,种植油菜、冬小麦和黑麦草等作物由于氮肥的施用增加了水旱轮作稻田旱作季温室效应。  相似文献   

18.
全氟辛烷磺酸短期暴露对不同作物苗期生长的影响   总被引:1,自引:0,他引:1  
全氟辛烷磺酸(PFOS)作为一种新型持久性有机污染物,目前国内外对其生态毒性研究主要集中在水环境领域,而高等植物的生态毒性数据尚不完善。因此,本研究采用内培养方式,选取小麦、大麦、小白菜、三叶草、绿豆作为供试植物,利用根伸长、芽伸长、地上部分生物量等评价指标,研究了PFOS短期暴露对不同供试作物苗期生长的影响,建立了PFOS和作物苗期生长的剂量-效应关系,并对不同的评价指标进行相关性分析,筛选出表征PFOS生态毒性的敏感植物。结果表明,不同供试作物培育3 d后,PFOS对其于不同毒性终点的最小EC50值为:小麦352 mg·kg-1(根伸长)、大麦434 mg·kg-1(根伸长)、三叶草794 mg·kg-1(地上部分生物量鲜重)、小白菜829 mg·kg-1(地上部分生物量鲜重)、绿豆>1 000 mg·kg-1,因此敏感程度依次为:小麦>大麦>三叶草>小白菜>绿豆。须根系作物小麦、大麦较直根系作物三叶草、小白菜和绿豆敏感,而须根系作物各评价指标的敏感程度依次为:根伸长>地上部分生物量鲜重>芽伸长>地上部分生物量干重,可见小麦的根伸长对PFOS污染最为敏感。各评价指标间均呈正相关关系,表明PFOS对同种植物的不同评价指标影响趋势一致。  相似文献   

19.
A model for simulating resource flows in a rural subsistence community is described. The People and Landscape Model (PALM) consists of a number of agents representing households, the landscape, and livestock. The landscape is made up of a number of homogeneous land units, or ‘fields’, each represented by an object containing data, methods and properties relevant to the field. Each field object consists of a number of soil layer objects, each of which contains routines to calculate its water balance and carbon and nitrogen dynamics. Organic matter decomposition is simulated by a version of the CENTURY model, while water and nitrogen dynamics are simulated by versions of the routines in the DSSAT crop models. The soil processes are simulated continuously, and vegetation types (crops, weeds, trees) can come and go in a field depending on its management. Crop growth and development are simulated by a generic model based on the DSSAT crop models, and which can be parameterised for different crops. Similarly, livestock growth and resource use is simulated by a generic model which can be parameterised for buffalo, cows, goats, sheep, chickens and pigs.  相似文献   

20.
The exploitation of crop allelopathy against weeds may be useful to reduce issues related to the use of herbicides. Several crops, such as alfalfa, barley, black mustard, buckwheat, rice, sorghum, sunflower and wheat, demonstrate strong weed suppression ability, either by exuding allelochemical compounds from living plant parts or from decomposing residues. As well as the positive effect on weed reduction, the introduction in agronomic rotations of allelopathic crops, their use as a mulch to smother crops or as a green manure may also be helpful in reduction of other agricultural problems, such as environmental pollution, use of unsafe products and human health concerns, through a reduction in chemical inputs. Knowledge of allelopathic properties of crops may also be advantageous in mitigation of soil sickness. Moreover, information on weed allelopathy may be profitable in preventing serious crop damage if the weed biomass is buried in the soil, and a crop susceptible to allellochemicals is planned for the following year. The use of allelopathic traits from crops or cultivars with important weed inhibition qualities, together with common weed control strategies, can play an important role in the establishment of sustainable agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号