首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(vinylidene fluoride) (PVDF)/titanium dioxide (TiO2) hybrid membranes were prepared using nano-TiO2 as the modifier, and characterized by Transmission Electron Microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), atomic force microscope (AFM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The characterization results demonstrated that nano-sized TiO2 particles dispersed homogeneously within the PVDF matrix, contributing to more hydroxyls and smoother surfaces. Moreover, permeate flux, retention factor, porosity, contact angle and anti-fouling tests were carried out to evaluate the effect of TiO2 concentration on the performance of PVDF membranes. Among all the prepared membranes, PVDF/TiO2 membrane containing 10 vol.% TiO2 exhibited the best hydrophilicity with an average pure water flux up to 237 L·m?2·h?1, higher than that of unmodified PVDF membranes (155 L·m?2·h?1). Besides, the bovine serum albumin rejection of the hybrid membrane was improved evidently from 52.3% to 70.6%, and the contact angle was significantly lowered from 83° to 60°, while the average pore size and its distribution became smaller and narrower.  相似文献   

2.
• Nanoparticle incorporation and anti-biofouling grafting were integrated. • Flux of modified membranes was enhanced without rejection sacrificing. • Anti-biofouling property of modified membranes was improved. High performance is essential for the polyamide (PA) reverse osmosis (RO) membranes during the desalination process. Herein, RO membranes with high permselectivity and anti-biofouling properties were fabricated by nanoparticles incorporation and anti-biofouling grafting. Hydrotalcite (HT) incorporation was performed with a dual role, enhancing water flux and acting as grafting sites. The HT incorporation increased the water flux without sacrificing the salt rejection, compensating for the loss caused by the following grafting reaction. The exposed surface of HT acted as grafting sites for anti-biofouling agent dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOTPAC). The combination of HT incorporation and DMOTPAC grafting endowed RO membranes with high permselectivity and anti-biofouling properties. The water flux of the modified membrane PA-HT-0.06 was 49.8 L/m2·h, which was 16.4% higher than that of the pristine membrane. The salt rejection of PA-HT-0.06 was 99.1%, which was comparable to that of the pristine membrane. As to the fouling of negatively charged lysozyme, the modified membrane’s water flux recovery was superior to that of the pristine membrane (e.g. 86.8% of PA-HT-0.06 compared to 78.2% of PA-pristine). The sterilization rates of PA-HT-0.06 for E. coli and B. subtilis were 97.3% and 98.7%, much higher than those of the pristine membrane (24.0% for E. coli and 26.7% for B. subtilis).  相似文献   

3.
The performance of sequencing batch reactors (SBRs) augmented with immobilised Burkholderia cepacia PCL3 on corncob for biodegradation of carbofuran in basal salt medium (BSM) was studied. A 2.0-L SBR with a working volume of 1.5 L was operated for a total cycle of 48 h, consisting of 1.0 h fill phase, 46 h react phase and 1.0 h decant phase. The initial pH of the feed medium was 7.0. Air was fed into the reactor at a controlled flow rate of 600 mL·min ?1. The effect of hydraulic retention time (HRT) (14 to 6 days) on carbofuran-degradation efficiency was investigated at a carbofuran concentration in the feed medium of 20 mg·L ?1. The shortest HRT resulting in complete degradation of carbofuran was 8 days. At 75% of the optimum HRT (6 days), the effects of biostimulation using organic amendments, i.e. molasses, cassava pulp, rice bran and spent yeast, and the effect of carbofuran concentration in the feed medium (20–80 mg·L ?1) were investigated. The optimum conditions for SBRs were an initial carbofuran concentration of 40 mg·L ?1 and 0.1 g·L ?1 of rice bran as a biostimulated amendment. Complete degradation of carbofuran with a first-order kinetic constant (k 1) of 0.044 h?1 was achieved under these optimum conditions.  相似文献   

4.
The concentrations and flux of CO2, 222Radon (Rn), and gaseous elemental mercury (Hg) in soil gas were investigated based on the field measurements in June 2010 at ten sites along the seismic rupture zones produced by the May 12, 2008, Wenchuan M s 8.0 earthquake in order to assess the environmental impact of degassing of CO2, Rn and Hg. Soil gas concentrations of 344 sampling points were obtained. Seventy measurements of CO2, Rn and Hg flux by the static accumulation chamber method were performed. The results of risk assessment of CO2, Rn and Hg concentration in soil gas showed that (1) the concentration of CO2 in the epicenter of Wenchuan M s 8.0 earthquake and north end of seismic ruptures had low risk of asphyxia; (2) the concentrations of Rn in the north segment of seismic ruptures had high levels of radon, Maximum was up to level 4, according to Chinese code (GB 50325-2001); (3) the average geoaccumulation index I geo of soil Hg denoted the lack of soil contamination, and maximum values classified the soil gas as moderately to strongly polluted in the epicenter. The investigation of soil gas CO2, Rn and Hg degassing rate indicated that (1) the CO2 in soil gas was characterized by a mean \(\updelta^{13}C_{CO2}\) of ?20.4 ‰ and by a mean CO2 flux of 88.1 g m?2 day?1, which were in the range of the typical values for biologic CO2 degassing. The maximum of soil CO2 flux reached values of 399 g m?2 day?1 in the epicenter; (2) the soil Rn had higher exhalation in the north segment of seismic ruptures, the maximum reached value of 1976 m Bq m?2 s?1; (3) the soil Hg flux was lower, ranging from ?2.5 to 18.7 n g m?2 h?1 and increased from south to north. The mean flux over the all profiles was 4.2 n g m?2 h?1. The total output of CO2 and Hg degassing estimated along seismic ruptures for a survey area of 18.17 km2 were approximately 0.57 Mt year?1 and 688.19 g year?1. It is recommended that land-use planners should incorporate soil gas and/or gas flux measurements in the environmental assessment of areas of possible risk. A survey of all houses along seismic ruptures is advised as structural measures to prevent the ingress of soil gases, including CO2 and Rn, were needed in some houses.  相似文献   

5.
The development of membrane-based desalination and water purification technologies offers new alternatives to meet the global freshwater demand. Rapid advancement in carbon nanotube-based and graphene-based nanomaterials has drawn the attention of scientific investigators on various desalination technologies. These nanomaterials indeed offer advantageous structure, size, shape, porosity and mass transport behavior for membrane separation process. This article  reviews theoretical and experimental investigations of carbon nanotube- and graphene-based composite materials for desalination. Special attention is given to the simulation of molecular transport through these materials. Further, recent advances in the application of functionalization of carbon nanotube- and graphene-based materials for salt rejection and hydraulic permeation properties are discussed.  相似文献   

6.
Polycyclic aromatic hydrocarbons (PAHs) concentrations were analysed in the organic film on the glass surfaces of different functional areas in central Shanghai. Concentration levels of total PAHs in the organic film ranged from 1,348.5 to 4,007.9 ng m?2. The concentration of PAHs was lowest in parks and green spaces (1,348.5 ng m?2) and highest in traffic zones (4,007.9 ng m?2). A concentration gradient of total PAHs was observed as follows: traffic zones > commercial areas > cultural and educational areas > parks and green spaces. The distribution of PAHs was characterised by 3–4 ring PAHs in the study areas. The most abundant PAHs were phenanthrene (20.5 %), fluorene (16.7 %), pyrene (12.4 %) and chrysene (Chry) (11.2 %). The mass of the bulk film was composed of organic and inorganic compounds and ranged from 246 to 1,288 mg m?2. The bulk film thickness varied from 144 to 757 nm in the different functional areas. The ratios of An/178 and Fl/202 and principal component analysis suggested that PAHs came mainly from the mixed sources of fossil fuel, coal and incomplete combustion of biomass. Benzo[a]anthracene (BaA)/Chry is not suitable for use as a tracer for the transmission process of PAHs because of the rapid depletion of BaA in the organic film by photooxidation during daylight hours. The concentration of benzo[a]pyrene equivalent (BaPeq) varied from 21 to 701 ng g?1, and the major carcinogenic contributors of the 16 PAHs were BaP, DahA, B[b/k]F and InP, accounting for 83 % of BaPeq.  相似文献   

7.
To further determine the fouling behavior of bovine serum albumin (BSA) on different hydrophilic PVDF ultrafiltration (UF) membranes over a range of pH values, self-made atomic force microscopy (AFM) colloidal probes were used to detect the adhesion forces of membrane–BSA and BSA–BSA, respectively. Results showed that the membrane–BSA adhesion interaction was stronger than the BSA–BSA adhesion interaction, and the adhesion force between BSA–BSA-fouled PVDF/PVA membranes was similar to that between BSA–BSA-fouled PVDF/PVP membranes, which indicated that the fouling was mainly caused by the adhesion interaction between membrane and BSA. At the same pH condition, the PVDF/PVA membrane–BSA adhesion force was smaller than that of PVDF/ PVP membrane–BSA, which illustrated that the more hydrophilic the membrane was, the better antifouling ability it had. The extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) theory predicts that the polar or Lewis acid–base (AB) interaction played a dominant role in the interfacial free energy of membrane–BSA and BSA–BSA that can be affected by pH. For the same membrane, the pH values of a BSA solution can have a significant impact on the process of membrane fouling by changing the AB component of free energy.
  相似文献   

8.
A novel nanocomposite OMWCNT-A-GO was synthesized by conjugating OMWCNT and GO. The P-OMWCNT-A-GO membrane was fabricated by non-solvent induced phase inversion. The P-OMWCNT-A-GO exhibits the best water flux, BSA rejection and flux recovery. It should be due to the enhanced membrane pore size, porosity and hydrophilicity. Although carbon nanomaterials have been widely used as effective nanofillers for fabrication of mixed matrix membranes (MMMs) with outstanding performances, the reproducibility of the fabricated MMMs is still hindered by the non-homogenous dispersion of these carbon nanofillers in membrane substrate. Herein, we report an effective way to improve the compatibility of carbon-based nanomaterials with membrane matrixes. By chemically conjugating the oxidized CNTs (o-CNTs) and GO using hexanediamine as cross-linker, a novel carbon nanohybrid material (G-CNTs) was synthesized, which inherited both the advanced properties of multi-walled carbon nanotubes (CNTs) and graphene oxide (GO). The G-CNTs incorporated polyvinylidene fluoride (PVDF) MMMs (G-CNTs/PVDF) were fabricated via a non-solvent induced phase separation (NIPS) method. The filtration and antifouling performances of G-CNTs/PVDF were evaluated using distillate water and a 1 g/L bovine serum albumin (BSA) aqueous solution under 0.10 MPa. Compared to the MMMs prepared with o-CNTs, GO, the physical mixture of o-CNTs and GO and pure PVDF membrane, the G-CNTs/PVDF membrane exhibited the highest water flux up to 220 L/m2/h and a flux recovery ratio as high as 90%, as well as the best BSA rejection rate. The excellent performances should be attributed to the increased membrane pore size, porosity and hydrophilicity of the resulted membrane. The successful synthesis of the novel nanohybrid G-CNTs provides a new type of nanofillers for MMMs fabrication.  相似文献   

9.
Water shortage is a major problem facing the world today, although 70% of the earth is covered with water. With 95% of this water in seas and oceans, man has to find the most energy-efficient way of desalination for sustainable freshwater supply. Conventional desalination technologies such as reverse osmosis and thermal distillation involve large amounts of energy, especially for high salt rejection. In comparison, the discovery of two-dimensional materials such as graphene and its structural analogs boron nitride and molybdenum disulphide (MoS2) has fostered been tremendous progress for energy-saving desalination using nanopores of these materials. This article reviews the recent developments in this technology with experimental and molecular simulation literature survey over the past few years. It explains the role of nanopores in desalination in terms of structure, energy, cost-effectiveness and process efficiency.  相似文献   

10.
A simple and totally organic-free (green) method, viz. headspace water-based liquid-phase microextraction combined with high-performance liquid chromatography-ultraviolet detection has been successfully developed for analysis of formic acid and acetic acid in environmental water samples. A microdrop of an aqueous solution of sodium hydroxide was suspended from the tip of a microsyringe needle over the headspace of the stirred sample solution containing the analytes at pH 1.0 for a given time. The microdrop was then retracted into the microsyringe, diluted with HPLC mobile phase, and injected to HPLC. Optimum efficiency has been achieved for: 3.0 µL NaOH microdrop (0.1 mol L?1) exposed for 15 min over the headspace of an aqueous sample of 6.5 mL at 55 °C, containing 15% w/v of Na2SO4, adjusted to pH = 1.0 and stirred at 750 rpm. Under these conditions, enrichment factors of 162 and 187, limits of detection of 0.3 and 0.1 µg L?1 (S/N = 3) with dynamic linear ranges of 1–500 and 0.5–500 µg L?1 were obtained for formic acid and acetic acid, respectively. A reasonable repeatability (5.8% ≤ RSD ≤ 8.8%, n = 6) and satisfactory linearity (r2 ≥ 0.997) illustrated the performance of the method.  相似文献   

11.
The removal of arsenic from water with natural and modified clinoptilolite   总被引:1,自引:0,他引:1  
The presence of increased arsenic concentrations in Eastern Croatia is a consequence of the geological composition of the soil. Because of its known harmful effects, arsenic removal is of high importance and adsorption represents an attractive and economically efficient approach to arsenic removal. The use of zeolites obtained from the Donje Jesenje deposit, Croatia (CZ) and the Zlatokop deposit in Vranjska Banja, Serbia (SZ) in Na- and Fe–Na-modified forms was investigated in order to effectively remove arsenate and arsenite from aqueous solutions. The adsorption kinetics of arsenic was studied as a function of the initial arsenate and arsenite concentrations (30–300 μg · L?1), equilibration time (3–48 h), pH (5–10) and in the presence of sulfate and phosphate at initial concentrations of 0.2–0.5 mg · L?1. In order to estimate sorption constants designating the sorption capacity and affinity of the zeolites samples, the experimental results were fitted to the Langmuir and Freundlich sorption isotherms. Desorption tests conducted with 1–3 mol · L?1 HCl indicated that arsenate sorption was irreversible. The results obtained indicated that use of the Serbian zeolite in the Fe–Na-modified form (Fe–Na-SZ) was favourable for arsenate removal from water containing up to 30 μg As · L?1.  相似文献   

12.
Stabilization of metals with amendments and red fescue (Festuca rubra, cv. Keszthelyi 2) growth was studied on an acidic and phytotoxic mine spoil (pHKCl 3.20–3.26; Cd 7.1 mg kg?1, Cu 120 mg kg?1, Pb 2154 mg kg?1 and Zn 605 mg kg?1) from Gyöngyösoroszi, Hungary in a pot experiment. Raising the pH above 5.0 by lime (CaCO3), and supplementing with 40 mg kg?1nitrogen (NH4NO3) made this material suitable for plant growth. All cultures were limed with 0.5% (m/m) CaCO3 (treatment 1), which was combined with 5% (m/m) municipal sewage sludge compost (treatment 2), 5% (m/m) peat (treatment 3), 7.5% (m/m) natural zeolite (clinoptilolite) (treatment 4), and 0.5 (m/m) KH2PO4 (treatment 5). Treatments 1–5 were combined with each other (treatment 6). After 60 days of red fescue growth, pH of the limed mine spoil decreased in all cultures units. Application of peat caused the highest pH decrease (1.15), while decrease of pH was less than 0.23 in treatments 2, 5 or 6. Application of lime significantly reduced concentrations of metals in the ‘plant available’ fraction of mine spoil compared to non-limed mine spoil. Amendments added to limed mine spoil changed variously the ratio of Cd, Cu, Pb and Zn in exchangeable or ‘plant available’ fractions, differently influencing the phytoavailability of these metals. Most of the metals were captured in the roots of test plants. Treatment 2 caused the appearance of less Cd in shoots (<0.1 μg g?1) or roots (3.11 μg g?1), while treatment 5 resulted in the highest Cd concentration (2.13 μg g?1) in shoots. Treatments did not influence significantly the Cu accumulation in shoots. The Pb accumulation of roots (44.7 μg g?1) was most effectively inhibited by combined treatment, while the highest value (136 μg g?1) was found in the culture treated with potassium phosphate. Pb concentration in shoots was below the detection limit, except for treatments 5 and 6. Peat application resulted in higher Zn concentration (448 μg g?1) in shoots than other amendments, where these values were around 100 μg g?1. All amendments influenced positively the dry matter yield of red fescue grown in limed mine spoil, however the application of 0.5 phosphate was less favourable. Liming, application of amendments and growth of red fescue can stabilize metals in acidic and phytotoxic mine spoil, and by phytostabilization they can reduce the risk of metal contamination of the food chain.  相似文献   

13.
Exposure to airborne particulate matter results in the deposition of millions of particle in the lung; consequently, there is need for monitoring them particularly in indoor environments. Case study was conducted in three different microenvironments, i.e., urban, rural and roadside to examine the elemental bioavailability in fine particulate matter and its potential health risk. The samples were collected on polytetrafluoroethylene filter paper with the help of fine particulate sampler during August–September, 2012. The average mass concentration of PM2.5 was 71.23 µg m?3 (rural), 45.33 µg m?3 (urban) and 36.71 µg m?3 (roadside). Elements in PM2.5 were analyzed by inductively coupled plasma atomic emission spectroscopy. Percentage bioavailability was determined to know the amount of soluble fraction that is actually taken across the cell membrane through inhalation pathway. Cadmium and lead were found to have cancer risk in a risk evaluation using an Integrated Risk Information system.  相似文献   

14.
A chelating-modified biosorbent is produced by coupling of a dye, procion red, to yeast cells. The resulting modified cells have been characterized by Fourier transform infrared, elemental analysis and thermogravimetric analysis and studied for preconcentration and determination of trace Sm(III). The optimum pH value for sorption of the samarium ions is 6.2. The sorption capacity of functionalized modified yeast cells is 7.2 mg g?1. Recovery was 99% when Sm(III) was eluted with an aqueous solution of 0.1 mol L?1 ethylenediaminetetraacetic acid. Scatchard analysis suggested that binding sites were homogeneous. The equilibrium data were analyzed using Langmuir, Freundlich, Temkin, and Redlich–Peterson isotherm models, and the respective constants were determined as 1.0 (L mg?1), 2.9 [(mg g?1) (L mg?1)1/n], 2.4 × 108 (L g?1), and 30 (dm3 g?1) at 20 °C. The method was applied for an Sm(III)-containing sample of ceramic industry effluent.  相似文献   

15.
Quality of groundwater in the Yarmouk basin, Jordan has been assessed through the study of hydrogeochemical characteristics and the water chemistry as it is considered the main source for drinking and agriculture activities in the region. The results of the relationship between Ca2+ + Mg2+ versus HCO3? + CO32?, Ca2+ + Mg2+ versus total cations, Na+ + K+ versus total cations, Cl? + SO42? versus Na+ + K+, Na+ versus Cl?, Na+ versus HCO3? + CO32?, Na+ versus Ca2+, and Na+: Cl? versus EC describe the mineral dissolution mechanism through the strong relationship between water with rocks in alkaline conditions with the release of Ca2+, Mg2+, Na+, K+, HCO3?, CO32?, SO42?, and F? ions in the groundwater for enrichment. Furthermore, evaporation processes, groundwater depletion, and ion exchange contribute to the increased concentration of Na+ and Cl? ions in groundwater. Anthropogenic sources are one of the main reasons for contamination of groundwater in the study area and for increasing the concentration of Mg2+, Na+, Cl?, SO42?, and NO3? ions. Results show the quality of groundwater in the study area is categorized as follows: HCO3? + CO32? > Cl? > SO42? > NO3? > F? and Na+ > Ca2+ > Mg2+ > K+. In conclusion, the results of TDS, TH, and chemical composition showed that 26% of the groundwater samples were unsuitable for drinking. About 28% of groundwater samples in the study area have a high concentration of Mg2+, Na+, and NO3? above the acceptable limit. Also, based on high SAR, 10% of the groundwater samples were not suitable for irrigation purposes.  相似文献   

16.
• A high-performance electrode was prepared with super-aligned carbon nanotubes. • SACNT/AC electrode achieved a ~100% increase in desalination capacity and rate. • SACNT/AC electrode achieved a ~26% increase in charge efficiency. • CUF process with SACNT/AC achieved an up to 2.43-fold fouling reduction. • SACNT/AC imparts overall improved water purification efficiency. The practical application of the capacitive deionization (CDI) enhanced ultrafiltration (CUF) technology is hampered due to low performance of electrodes. The current study demonstrated a novel super-aligned carbon nanotube (SACNT)/activated carbon (AC) composite electrode, which was prepared through coating AC on a cross-stacked SACNT film. The desalination capability and water purification performance of the prepared electrode were systematically investigated at different applied voltages (0.8–1.2 V) with a CDI system and a CUF system, respectively. In the CDI tests, as compared with the control AC electrode, the SACNT/AC electrode achieved an approximately 100% increase in both maximum salt adsorption capacity and average salt adsorption rate under all the applied voltage conditions, demonstrating a superior desalination capability. Meanwhile, a conspicuous increase by an average of ~26% in charge efficiency was also achieved at all the voltages. In the CUF tests, as compared with the control run at 0 V, the treatment runs at 0.8, 1.0, and 1.2 V achieved a 2.40-fold, 2.08-fold, and 2.43-fold reduction in membrane fouling (calculated according to the final transmembrane pressure (TMP) data at the end of every purification stage), respectively. The average TMP increasing rates at 0.8, 1.0, and 1.2 V were also roughly two times smaller than that at 0 V, indicating a dramatical reduction of membrane fouling. The SACNT/AC electrode also maintained its superior desalination capability in the CUF process, resulting in an overall improved water purification efficiency.  相似文献   

17.
Laboratory experiments have been performed to investigate the effects of salt exclusion on the behaviour of lakes with salinities up to 8 g L?1. At these salinities the freezing temperature is less than the temperature of maximum density and, unlike sea-ice, a reverse temperature stratification forms beneath the ice that can support at least some of the excluded salt. Temperature time series at four depths showed that salt exclusion drives cascades of localised overturning, while the persistence of reverse temperature stratification indicated that mixing was not complete. While our array of temperature sensors had insufficient spatial resolution to provide full details of the flow, we hypothesize that: at salinities of 1 and 2 g L?1  salt is released relatively uniformly and forms a layer of elevated salinity immediately below the ice, which supports double-diffusive salt-fingering; and at salinities of 4 and 8 g L?1, salt plumes penetrate the reverse stratification. After the ice melted, a relatively fresh surface layer formed above a more saline layer, sufficient to suppress spring turnover. Our measurements compare favourably with field observations from lakes, and highlight the importance of salt exclusion on biogeochemical processes in lakes.  相似文献   

18.
The use of a new sorbent developed from the husk of pomegranate, a famous fruit in Egypt, for the removal of toxic chromium from aqueous solution has been investigated. The batch experiment was conducted to determine the adsorption capacity of the pomegranate husk. The effects of initial metal concentration (25 and 50 mg l?1), pH, contact time, and sorbent concentration (2–6 g l?1) have been studied at room temperature. A strong dependence of the adsorption capacity on pH was observed, the capacity increased as the pH decreased, and the optimum pH value was pH 1.0. Adsorption equilibrium and kinetics were studied with different sorbent and metal concentrations. The adsorption process was fast, and equilibrium was reached within 3 h. The maximum removal was 100% for 25 mg l?1 of Cr6+ concentration on 5 g l?1 pomegranate husk concentration, and the maximum adsorption capacity was 10.59 mg g?1. The kinetic data were analysed using various kinetic models—pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion equations—and the equilibrium data were tested using several isotherm models, Langmuir, Freundlich, Tempkin, Dubinin–Radushkevich, and Generalized isotherm equations. The Elovich and pseudo-second-order equations provided the greatest accuracy for the kinetic data, while Langmuir and Generalized isotherm models were the closest fit for the equilibrium data. The activation energy of sorption has also been evaluated as 0.236 and 0.707 kJ mol?1 for 25 and 50 mg l?1 chromium concentration, respectively.  相似文献   

19.
PVDF blended different graft ratio of PVDF-g-PEGMA were systematically studied. Tuning the amphiphilic copolymer synthesis time to control membrane performance. The PVDF membrane with PVDF-g-PEGMA at 19 h possesses most surface oxygen content. The synthesis time of PVDF-g-PEGMA at 9 h is good for high flux UF membrane. Polyvinylidene fluoride grafted with poly(ethylene glycol) methyl ether methacrylate (PVDF-g-PEGMA) was synthesized using atomic transfer radical polymerization (ATRP) at different reaction times (9 h, 19 h, and 29 h). The corresponding conversion rates were 10%, 20% and 30%, respectively. PVDF was blended with the copolymer mixture containing PVDF-g-PEGMA, solvent and residual PEGMA under different reaction times. In this study, we explored the effect of the copolymer mixture additives with different synthesis times on cast membrane performance. Increasing the reaction time of PVDF-g-PEGMA causes more PVDF-g-PEGMA and less residual PEGMA to be found in the casting solution. Incremental PVDF-g-PEGMA can dramatically increase the viscosity of the casting solution. An overly high viscosity led to a delayed phase inversion, thus hindering PEGMA segments in PVDF-g-PEGMA from migrating to the membrane surface. However, more residual PEGMA contributed to helping more PEGMA segments migrate to the membrane surface. The pure water fluxes of the blended membrane with reaction times of 9 h, 19 h, and 29 h are 5445 L·m−2·h−1, 1068 L·m−2·h−1and 1179 L·m−2·h−1, respectively, at 0.07 MPa. Delayed phase inversion can form smaller surface pore size distributions, thus decreasing the water flux for the membranes with PVDF-g-PEGMA at 19 h and 29 h. Therefore, we can control the membrane pore size distribution by decreasing the reaction time of PVDF-g-PEGMA to obtain a better flux performance. The membrane with PVDF-g-PEGMA at 19 h exhibits the best foulant rejection and cleaning recovery due to its narrow pore size distribution and high surface oxygen content.  相似文献   

20.
A bacterial strain capable of degrading carbofuran as the sole carbon source was isolated from carbofuran-phytoremediated rhizosphere soil of rice. A 16S rRNA study identified the strain as Burkholderia sp. (isolate PCL3). Free cells of isolate PCL3 possessed inhibitory-type degradation kinetics with a q max of 0.087 day?1 and S m of 248.76 mg·L?1. Immobilised PCL3 on corncob and sugarcane bagasse possessed Monod-type degradation kinetics with a q max of 0.124 and 0.098 day?1, respectively. The optimal pH and temperature with the highest degradation rate coefficient of carbofuran were pH 7.5 and 35 °C, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号