首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Partsch S  Milcu A  Scheu S 《Ecology》2006,87(10):2548-2558
Decomposer invertebrates influence soil structure and nutrient mineralization as well as the activity and composition of the microbial community in soil and therefore likely affect plant performance and plant competition. We established model grassland communities in a greenhouse to study the interrelationship between two different functional groups of decomposer invertebrates, Lumbricidae and Collembola, and their effect on plant performance and plant nitrogen uptake in a plant diversity gradient. Common plant species of Central European Arrhenatherion grasslands were transplanted into microcosms with numbers of plant species varying from one to eight and plant functional groups varying from one to four. Separate and combined treatments with earthworms and collembolans were set up. Microcosms contained 15N labeled litter to track N fluxes into plant shoots. Presence of decomposers strongly increased total plant and plant shoot biomass. Root biomass decreased in the presence of collembolans and even more in the presence of earthworms. However, it increased when both animal groups were present. Also, presence of decomposers increased total N concentration and 15N enrichment of grasses, legumes, and small herbs. Small herbs were at a maximum in the combined treatment with earthworms and collembolans. The impact of earthworms and collembolans on plant performance strongly varied with plant functional group identity and plant species diversity and was modified when both decomposers were present. Both decomposer groups generally increased aboveground plant productivity through effects on litter decomposition and nutrient mineralization leading to an increased plant nutrient acquisition. The non-uniform effects of earthworms and collembolans suggest that functional diversity of soil decomposer animals matters and that the interactions between soil animal functional groups affect the structure of plant communities.  相似文献   

2.
Debate on the relationship between diversity and stability has been driven by the recognition that species loss may influence ecosystem properties and processes. We conducted a litterbag experiment in the Scottish Highlands, United Kingdom, to examine the effects of altering plant litter diversity on decomposition, microbial biomass, and microfaunal abundance. The design of treatments was fully factorial and included five species from an upland plant community (silver birch, Betula pendula; Scots' pine, Pinus sylvestris; heather, Calluna vulgaris; bilberry, Vaccinium myrtillus; wavy-hair grass, Deschampsia flexuosa); species richness ranged from one to five species. We tested the effects of litter species richness and composition on variable means, whether increasing litter species richness reduced variability in the decomposer system, and whether any richness-variability relationships were maintained over time (196 vs. 564 days). While litter species composition effects controlled variable means, we revealed reductions in variability with increasing litter species richness, even after accounting for differences between litter types. These findings suggest that higher plant species richness per se may result in more stable ecosystem processes (e.g., decomposition) and decomposer communities. Negative richness-variation relationships generally relaxed over time, presumably because properties of litter mixtures became more homogeneous. However, given that plant litter inputs continue to enter the belowground system over time, we conclude that variation in ecosystem properties may be buffered by greater litter species richness.  相似文献   

3.
Talbot JM  Treseder KK 《Ecology》2012,93(2):345-354
Litter decay rates often correlate with the initial ratios of lignin:nitrogen (N) or lignin:cellulose in litter. However, the chemical and microbial mechanisms that give rise to these patterns are still unclear. To identify these mechanisms, we studied the decomposition of a model plant system, Arabidopsis thaliana, in which plants were manipulated to have low levels of lignin, cellulose, or litter N. Nitrogen fertilizer often increases the loss of cellulose, but it suppresses the breakdown of lignin in plant litter. To understand the mechanisms driving these patterns, we decomposed plants in litterbags for one year in control and N-fertilized plots in an Alaskan boreal forest. We found that litter N had a positive effect on total mass loss because it increased the loss of lignin, N, and soluble C. Lignin had a negative effect on rates of total litter mass loss due to decreases in the loss of cellulose and hemicellulose. Cellulose had a positive effect on lignin loss, supporting the concept of a "priming effect" for lignin breakdown. However, the low-cellulose plants also lost more of their original cellulose compared to the other plant types, indicating that decomposers mined the litter for cellulose despite the presence of lignin. Low-lignin litter had higher fungal biomass and N-acetyl glucosaminidase (NAG, a chitinase) activity, suggesting that lignin restricted fungal growth and may have influenced competitive interactions between decomposers. Nitrogen fertilization increased NAG activity in the early stages of decay. In the later stages, N fertilization led to increased cellulase activity on the litters and tended to reduce lignin losses. The transition over time from competition among decomposers to high cellulase activity and suppressed lignin loss under N fertilization suggests that, in N-limited systems, N fertilization may alter decomposer community structure by favoring a shift toward cellulose- and mineral-N users.  相似文献   

4.
Lamb EG 《Ecology》2008,89(1):216-225
Multiple factors linked through complex networks of interaction including fertilization, aboveground biomass, and litter control the diversity of plant communities. The challenge of explaining plant diversity is to determine not only how each individual mechanism directly influences diversity, but how those mechanisms indirectly influence diversity through interactions with other mechanisms. This approach is well established in the study of plant species richness, but surprisingly little effort has been dedicated toward understanding the controls of community evenness, despite the recognition that this aspect of diversity can influence a variety of critical ecosystem functions. Similarly, studies of diversity have predominantly focused on the influence of shoot, rather than root, biomass, despite the fact that the majority of plant biomass is belowground in many natural communities. In this study, I examine the roles of belowground biomass, live aboveground biomass, litter, and light availability in controlling the species richness and evenness of a rough fescue grassland community using structural equation modeling. Litter was the primary mechanism structuring grassland diversity, with both richness and evenness declining with increasing litter cover. There were few relationships between shoot biomass, shading, and diversity, and more importantly, no relationship between root biomass and diversity. The lack of relationship between root biomass and species richness and evenness suggests that, even though root competition in grasslands is intense, belowground interactions may not play an important role in structuring community diversity or composition.  相似文献   

5.
植物多样性对土壤微生物的影响   总被引:6,自引:0,他引:6  
肖辉林  郑习健 《生态环境》2001,10(3):238-241
生物多样性强烈地影响生态系统的过程.生态系统过程的变化可导致生物多样性衰减并因此导致生态系统功能衰退.植物种丰度和植物功能多样性对土壤细菌群落的代谢活性和代谢多样性有成正比的影响.土壤细菌的代谢活性和代谢多样性随植物种数量的对数和植物功能组的数量而直线上升.其原因可能是由植被流入土壤的物质和能量的多样性和数量的增加,也可能是由土壤动物区系起作用的土壤微生境的多样性的增加造成的.由于植物多样性的丧失所引起的植物生物量的减少对分解者群落有强烈的影响微生物生物量将可能减少,因为在大多数陆地生态系统中,有机碳源限制着土壤微生物的活性.  相似文献   

6.
Terrestrial ecosystems consist of mutually dependent producer and decomposer subsystems, but not much is known on how their interactions are modified by plant diversity and elevated atmospheric CO2 concentrations. Factorially manipulating grassland plant species diversity and atmospheric CO2 concentrations for five years, we tested whether high diversity or elevated CO2 sustain larger or more active soil communities, affect soil aggregation, water dynamics, or nutrient cycling, and whether plant diversity and elevated CO2 interact. Nitrogen (N) and phosphorus (P) pools, symbiotic N2 fixation, plant litter quality, soil moisture, soil physical structure, soil nematode, collembola and acari communities, soil microbial biomass and microflora community structure (phospholipid fatty acid [PLFA] profiles), soil enzyme activities, and rates of C fluxes to soils were measured. No increases in soil C fluxes or the biomass, number, or activity of soil organisms were detected at high plant diversity; soil H2O and aggregation remained unaltered. Elevated CO2 affected the ecosystem primarily by improving plant and soil water status by reducing leaf conductance, whereas changes in C cycling appeared to be of subordinate importance. Slowed-down soil drying cycles resulted in lower soil aggregation under elevated CO2. Collembola benefited from extra soil moisture under elevated CO2, whereas other faunal groups did not respond. Diversity effects and interactions with elevated CO2 may have been absent because soil responses were mainly driven by community-level processes such as rates of organic C input and water use; these drivers were not changed by plant diversity manipulations, possibly because our species diversity gradient did not extend below five species and because functional type composition remained unaltered. Our findings demonstrate that global change can affect soil aggregation, and we advocate that soil aggregation should be considered as a dynamic property that may respond to environmental changes and feed back on other ecosystem functions.  相似文献   

7.
Albers D  Schaefer M  Scheu S 《Ecology》2006,87(1):235-245
We used stable isotopes to examine the incorporation of plant carbon into the belowground food web of an agricultural system. Plots were established and planted with maize (Zea mays) in a rye field (Secale cereale) near G?ttingen (northern Germany) in May 1999. In October 1999, April 2000, and October 2000, meso- and macrofauna and maize and rye litter were collected in each plot and analyzed for 13C and 15N content. 15N signatures suggested that the soil animal species analyzed span three trophic levels with the trophic position of species varying little in time. The species investigated formed a continuum from primary to secondary decomposers to predators. On average, predator species differed from primary and secondary decomposers by 3.9 sigma15N suggesting that they fed on a mixed diet of both decomposer groups. The combined analysis of 13C and 15N signatures allowed us to identify links between prey and consumer species. In October 1999, shortly after maize residues had been incorporated into the plots, maize-born carbon was present in each of the animal species investigated, including top predators. The incorporation of maize carbon into the belowground food web increased during the following 12 months but the concentration of maize-born carbon never exceeded 50% in any of the species. Furthermore, the ranks of the incorporation of maize-born carbon of the species changed little. The results suggest that the belowground food web relies heavily on carbon originating from plant residues from before the recent two growing seasons. In most species the amount of maize-born carbon increased continuously; however, in some species it decreased during winter, suggesting that these species switched to a diet based more on C3 plants during winter, or predominantly metabolized carbon incorporated during the last growing season. The study documents that the combined analysis of 13C and 15N signatures in soil invertebrate species, after replacement of C3 by C4 plants, is a powerful tool to better understand the structure of the belowground food web and the flux of carbon through it.  相似文献   

8.
In view of growing interest in understanding how biodiversity affects ecosystem functioning, we investigated effects of riparian plant diversity on litter decomposition in forest streams. Leaf litter from 10 deciduous tree species was collected during natural leaf fall at two locations (Massif Central in France and Carpathians in Romania) and exposed in the field in litter bags. There were 35 species combinations, with species richness ranging 1-10. Nonadditive effects on the decomposition of mixed-species litter were minor, although a small synergistic effect was observed in the Massif Central stream where observed litter mass remaining was significantly lower overall than expected from data on single-species litter. In addition, variability in litter mass remaining decreased with litter diversity at both locations. Mean nitrogen concentration of single- and mixed-species litters (0.68-4.47% of litter ash-free dry mass) accounted for a large part of the variation in litter mass loss across species combinations. For a given species or mixture, litter mass loss was also consistently faster in the Massif Central than in the Carpathians, and the similarity in general stream characteristics, other than temperature, suggests that this effect was largely due to differences in thermal regimes. These results support the notion that decomposition of litter mixtures is primarily driven by litter quality and environmental factors, rather than by species richness per se. However, the observed consistent decrease in variability of decomposition rate with increasing plant species richness indicates that conservation of riparian tree diversity is important even when decomposition rates are not greatly influenced by litter mixing.  相似文献   

9.
Plant diversity influences many fundamental ecosystem functions, including carbon and nutrient dynamics, during litter breakdown. Mixing different litter species causes litter mixtures to lose mass at different rates than expected from component species incubated in isolation. Such nonadditive litter-mixing effects on breakdown processes often occur idiosyncratically because their direction and magnitude change with incubation time, litter species composition, and ecosystem characteristics. Taking advantage of results from 18 litter mixture experiments in streams, we examined whether the direction and magnitude of nonadditive mixing effects are randomly determined. Across 171 tested litter mixtures and 510 incubation time-by-mixture combinations, nonadditive effects on breakdown were common and on average resulted in slightly faster decomposition than expected. In addition, we found that the magnitude of nonadditive effects and the relative balance of positive and negative responses in mixtures change predictably over time, and both were related to an index of functional litter diversity and selected environmental characteristics. Based on these, it should be expected that nonadditive effects are stronger for litter mixtures made of functionally dissimilar species especially in smaller streams. Our findings demonstrate that effects of litter diversity on plant mixture breakdown are more predictable than generally thought. We further argue that the consequences of current worldwide homogenization in the composition of plant traits on carbon and nutrient dynamics could be better inferred from long-duration experiments that manipulate both functional litter diversity and ecosystem characteristics in "hotspots of biodiversity effects," such as small streams.  相似文献   

10.
We studied the effects of tree species on leaf litter decomposition and forest floor dynamics in a common garden experiment of 14 tree species (Abies alba, Acer platanoides, Acer pseudoplatanus, Betula pendula, Carpinus betulus, Fagus sylvatica, Larix decidua, Picea abies, Pinus nigra, Pinus sylvestris, Pseudotsuga menziesii, Quercus robur, Quercus rubra, and Tilia cordata) in southwestern Poland. We used three simultaneous litter bag experiments to tease apart species effects on decomposition via leaf litter chemistry vs. effects on the decomposition environment. Decomposition rates of litter in its plot of origin were negatively correlated with litter lignin and positively correlated with mean annual soil temperature (MAT(soil)) across species. Likewise, decomposition of a common litter type across all plots was positively associated with MAT(soil), and decomposition of litter from all plots in a common plot was negatively related to litter lignin but positively related to litter Ca. Taken together, these results indicate that tree species influenced microbial decomposition primarily via differences in litter lignin (and secondarily, via differences in litter Ca), with high-lignin (and low-Ca) species decomposing most slowly, and by affecting MAT(soil), with warmer plots exhibiting more rapid decomposition. In addition to litter bag experiments, we examined forest floor dynamics in each plot by mass balance, since earthworms were a known component of these forest stands and their access to litter in litter bags was limited. Forest floor removal rates estimated from mass balance were positively related to leaf litter Ca (and unrelated to decay rates obtained using litter bags). Litter Ca, in turn, was positively related to the abundance of earthworms, particularly Lumbricus terrestris. Thus, while species influence microbially mediated decomposition primarily through differences in litter lignin, differences among species in litter Ca are most important in determining species effects on forest floor leaf litter dynamics among these 14 tree species, apparently because of the influence of litter Ca on earthworm activity. The overall influence of these tree species on leaf litter decomposition via effects on both microbial and faunal processing will only become clear when we can quantify the decay dynamics of litter that is translocated belowground by earthworms.  相似文献   

11.
Hale CM  Frelich LE  Reich PB 《Ecology》2006,87(7):1637-1649
European earthworms are colonizing earthworm-free northern hardwood forests across North America. Leading edges of earthworm invasion provide an opportunity to investigate the response of understory plant communities to earthworm invasion and whether the species composition of the earthworm community influences that response. Four sugar maple-dominated forest sites with active earthworm invasions were identified in the Chippewa National Forest in north central Minnesota, USA. In each site, we established a 30 x 150 m sample grid that spanned a visible leading edge of earthworm invasion and sampled earthworm populations and understory vegetation over four years. Across leading edges of earthworm invasion, increasing total earthworm biomass was associated with decreasing diversity and abundance of herbaceous plants in two of four study sites, and the abundance and density of tree seedlings decreased in three of four study sites. Sample points with the most diverse earthworm species assemblage, independent of biomass, had the lowest plant diversity. Changes in understory plant community composition were most affected by increasing biomass of the earthworm species Lumbricus rubellus. Where L. rubellus was absent there was a diverse community of native herbaceous plants, but where L. rubellus biomass reached its maximum, the herbaceous-plant community was dominated by Carex pensylvanica and Arisaema triphyllum and, in some cases, was completely absent. Evidence from these forest sites suggests that earthworm invasion can lead to dramatic changes in the understory community and that the nature of these changes is influenced by the species composition of the invading earthworm community.  相似文献   

12.
Seasonal variations in plant species effects on soil N and P dynamics   总被引:6,自引:0,他引:6  
Eviner VT  Chapin FS  Vaughn CE 《Ecology》2006,87(4):974-986
It is well established that plant species influence ecosystem processes, but we have little ability to predict which vegetation changes will alter ecosystems, or how the effects of a given species might vary seasonally. We established monocultures of eight plant species in a California grassland in order to determine the plant traits that account for species impacts on nitrogen and phosphorus cycling. Plant species differed in their effects on net N mineralization and nitrification rates, and the patterns of species differences varied seasonally. Soil PO4- and microbial P were more strongly affected by slope position than by species. Although most studies focus on litter chemistry as the main determinant of plant species effects on nutrient cycling, this study showed that plant species affected biogeochemical cycling through many traits, including direct traits (litter chemistry and biomass, live-tissue chemistry and biomass) and indirect traits (plant modification of soil bioavailable C and soil microclimate). In fact, species significantly altered N and P cycling even without litter inputs. It became particularly critical to consider the effects of these multiple traits in order to account for seasonal changes in plant species effects on ecosystems. For example, species effects on potential rates of net N mineralization were most strongly influenced by soil bioavailable C in the fall and by litter chemistry in the winter and spring. Under field conditions, species effects on soil microclimate influenced rates of mineralization and nitrification, with species effects on soil temperature being critical in the fall and species effects on soil moisture being important in the dry spring. Overall, this study clearly demonstrated that in order to gain a mechanistic, predictive understanding of plant species effects on ecosystems, it is critical to look beyond plant litter chemistry and to incorporate the effects of multiple plant traits on ecosystems.  相似文献   

13.
海拔是影响物种多样性格局的决定性因素之一,对生态系统格局与过程起着重要作用。运用回归分析、相关分析、Duncan多重比较和Pearson相关系数检验对岷山北坡高海拔2300—2900 m草本群落特征、群落初级生产力及不同植物功能群进行分析。结果表明:样地共调查出草本植物20科35属44种,菊科、百合科和蔷薇科的物种数分别占总物种数的比例为25%,14%和11%,表现出明显的优势性。草本群落的生物量均与海拔梯度的相关性不显著(P>0.05),且随海拔升高均表现出先增后减的总体趋势;植物盖度、物种丰富度、密度均与海拔表现出极显著负相关关系(P<0.001),而植物高度与海拔表现出极显著正相关关系(P<0.01)。从功能群的角度分析,随着海拔梯度的不断升高,禾本科、菊科以及杂类草3个植物功能群的叶碳含量(LCC)和根碳含量(RCC)整体呈上升趋势;叶磷含量(LPC)整体都呈下降趋势,而禾本科的根磷含量(RPC)呈上升趋势,菊科和杂类草表现出先升后降的趋势;叶氮含量(LNC)禾本科呈下降趋势,菊科呈上升趋势,杂类草呈先上升后下降的变化趋势,根氮含量(RNC)禾本科和杂类草的呈上升趋势,而菊科表现出先上升后下降的趋势。研究结果初步揭示了岷山北坡不同海拔梯度草本植物群落特征及其生物量的变化特征,以及物种多样性和主要植物功能群碳、氮、磷元素在海拔梯度上的分布差异,为今后岷山北坡草本群落分布格局和生物地球化学循环的研究提供科学依据。  相似文献   

14.
Current theories may not fully explain why latitudinal patterns of plant diversity differ between terrestrial and flooded ecosystems. Moreover, the co-occurrence of hyper diverse stands in lowland tierra firma (not inundated) forests and almost monospecific stands in mangroves and gallery riparian vegetation within the tropics remains enigmatic. Building on evidence from ecology and agriculture, we present a new model investigating the hypothesis that, besides the general positive feedback of plant growth by nutrients release, litter decomposition builds up an intra-specific negative feedback functionally linked with tree diversity. The model results were compared with extensive published data sets both across and within latitudinal zones. The model predicts correctly the biomass production and decomposition process, as well as the number of tree species, their relative abundance in all environmental conditions providing a novel, putative explanation also for the diversity variations observed within the tropics. The model demonstrates a possible mechanistic link between the carbon cycle and biodiversity patterns, which is interesting in the debate about advancing in the direction of a unifying ecosystem theory.  相似文献   

15.
Hines J  Megonigal JP  Denno RF 《Ecology》2006,87(6):1542-1555
Historically, terrestrial food web theory has been compartmentalized into interactions among aboveground or belowground communities. In this study we took a more synthetic approach to understanding food web interactions by simultaneously examining four trophic levels and investigating how nutrient (nitrogen and carbon) and detrital subsidies impact the ability of the belowground microbial community to alter the abundance of aboveground arthropods (herbivores and predators) associated with the intertidal cord grass Spartina alterniflora. We manipulated carbon, nitrogen, and detrital resources in a field experiment and measured decomposition rate, soil nitrogen pools, plant biomass and quality, herbivore density, and arthropod predator abundance. Because carbon subsidies impact plant growth only indirectly (microbial pathways), whereas nitrogen additions both directly (plant uptake) and indirectly (microbial pathways) impact plant primary productivity, we were able to assess the effect of both belowground soil microbes and nutrient availability on aboveground herbivores and their predators. Herbivore density in the field was suppressed by carbon supplements. Carbon addition altered soil microbial dynamics (net potential ammonification, litter decomposition rate, DON [dissolved organic N] concentration), which limited inorganic soil nitrogen availability and reduced plant size as well as predator abundance. Nitrogen addition enhanced herbivore density by increasing plant size and quality directly by increasing inorganic soil nitrogen pools, and indirectly by enhancing microbial nitrification. Detritus adversely affected aboveground herbivores mainly by promoting predator aggregation. To date, the effects of carbon and nitrogen subsidies on salt marshes have been examined as isolated effects on either the aboveground or the belowground community. Our results emphasize the importance of directly addressing the soil microbial community as a factor that influences aboveground food web structure by affecting plant size and aboveground plant nitrogen.  相似文献   

16.
Bouchard V  Frey SD  Gilbert JM  Reed SE 《Ecology》2007,88(11):2903-2914
Most plant diversity-function studies have been conducted in terrestrial ecosystems and have focused on plant productivity and nutrient uptake/retention, with a notable lack of attention paid to belowground processes (e.g., root dynamics, decomposition, trace gas fluxes). Here we present results from a mesocosm experiment in which we assessed how the richness of emergent macrophyte functional groups influences aboveground and belowground plant growth and microbial-mediated functions related to carbon and nitrogen cycling, with an emphasis on methane (CH4) efflux and potential denitrification rates. We found that an increase in the richness of wetland plant functional groups enhanced belowground plant biomass, altered rooting patterns, and decreased methane efflux, while having no effect on aboveground plant production or denitrification potential. We hypothesize that the greater root production and increased rooting depth in the highest diversity treatments enhanced CH4 oxidation to a relatively greater degree than methane production, leading to an overall decrease in CH4 efflux across our plant functional group richness gradient.  相似文献   

17.
Biodiversity loss is proceeding at an unprecedented rate, yet we lack a thorough understanding of the consequences of losing diversity at different scales. While species diversity is known to impact community and ecosystem processes, genotypic diversity is assumed to have relatively smaller effects. Nonetheless, a few recent studies suggest that genotypic diversity may have quantitatively similar ecological consequences compared to species diversity. Here we show that increasing either genotypic diversity of common evening primrose (Oenothera biennis) or species diversity of old-field plant species resulted in nearly equivalent increases (approximately 17%) in aboveground primary production. The predominant mechanism explaining this effect, niche complementarity, was similar for each type of diversity. Arthropod species richness also increased with both types of plant diversity, but the mechanisms leading to this effect differed: abundance-driven accumulation of arthropod species was important in plant genotypic polycultures, whereas resource specialization was important in plant species polycultures. Thus, similar increases in primary productivity differentially impacted higher trophic levels in response to each type of plant diversity. These results highlight important ecological similarities and differences between genotypic and species diversity and suggest that genotypic diversity may play a larger role in community and ecosystem processes than previously realized.  相似文献   

18.
三江源区不同建植年代人工草地群落演替与土壤养分变化   总被引:6,自引:0,他引:6  
研究了了三源区不同建植期人工修复草地在不同演替阶段毒杂草[主要是甘肃马先蒿(Pedicularis kansuensis)]的入侵规律、数量特征,植物群落物种组成、生物苗和草地质最以及土壤养分、微生物活性的变化规律.结果表明,不同建植期人工修复草地植物群落的种类组成、植物功能群组成和群落数量特征存在显著差异.随着演替时间的推移,人工草地群落盖度、高度、物种数、生物最和多样性指数均表现出"V"字型变化规律,杂类草--甘肃马先蒿的数量特征变化尤为明显,在4 a的人工草地群落中开始局部入侵,在5~6 a的人工草地群落中大面积入侵,其入侵速度、入侵面积达到高峰期.土壤的含水量、容重、土壤中有机质、氮素和磷素在演替过程(7 a、9 a草地)中逐渐降低,到一定时期又逐步增加;随着演替的进行,不同建植期人工草地的土壤微牛物生物量碳和酶活性均呈"V"字型,变化.对于退化生态系统的恢复首先是植被恢复,其次是土壤肥力的恢复.土壤有机质等养分的积累、微生物活性的改善不仅能使土壤-植物复合系统的功能得以恢复,同时也能促进物种多样性的形成,有利于人工草地群落稳定性的提高.在试验区尽管植被恢复演替进行得比较缓慢,但从土壤发展的角度看,仍属进展演替.所以,在退化高寒草甸的恢复过程中,若降低和有效控制外界的干扰(如围栏封育),可为退化草地恢复提供繁殖体与土壤环境,实现人工草地逐步向恢复(正向)演替进行.图3表6参34  相似文献   

19.
Clark CM  Tilman D 《Ecology》2010,91(12):3620-3630
Plant species richness has declined and composition shifted in response to elevated atmospheric deposition of biologically active nitrogen over much of the industrialized world. Litter thickness, litter nitrogen (N) content, and soil N mineralization rates often remain elevated long after inputs cease, clouding the prospects that plant community diversity and composition would recover should N inputs be reduced. Here we determined how N cycling, litter accumulation, and recruitment limitation influenced community recovery following cessation of long-term N inputs to prairie-like grasslands. We alleviated each of these potential inhibitors through a two-year full-factorial experiment involving organic carbon addition, litter removal, and seed addition. Seed addition had the largest effect on increasing seedling and species numbers and may be necessary to overcome long-term burial of seeds of target perennial grassland species. Litter removal increased light availability and bare sites for colonization, though it had little effect on reducing the biomass of competing neighbors or altering extractable soil N. Nonetheless, these positive influences were enough to lead to small increases in species richness within one year. We found that, although C addition quickly altered many factors assumed favorable for the target community (decreased N availability and biomass of nearby competitors, increased light and site availability), these changes were insufficient to positively impact species richness or seedling numbers over the experimental duration. However, only carbon addition had species-specific effects on the existing plant community, suggesting that its apparent limited utility may be more a result of slow recovery under ambient recruitment rather than from a lack of a restorative effect. There were dramatic interactions among treatments, with the positive effects of litter removal largely negated by carbon addition, and the positive effects of seed addition generally amplified by litter removal. It remains unclear whether each mechanism explored here will induce community recovery, but over different temporal scales. Long-term monitoring will help resolve these remaining questions. Regardless, our results suggest that reversal of species loss and compositional shifts from N deposition in prairies may be more inhibited by habitat fragmentation, recruitment limitation, and long-term suppression of fire than from continued effects of elevated N.  相似文献   

20.
Summary. Soil organisms in direct and indirect interaction with plant roots affect aboveground herbivores, likely by inducing different plant responses. We investigated the combined effects of the root-knot nematode Meloidogyne incognita (in direct interaction with roots) and the endogeic earthworm Octolasion tyrtaeum (in indirect interaction with roots) on the performance of Brassica oleracea. Both earthworms and nematodes increased N uptake and shoot biomass of B. oleracea. Earthworm activity mobilized more soil N than litter N, and herbivory by nematodes tended to increase the microbial biomass in soil. Only the structural class of sulphur containing glucosinolates was affected by the soil organisms. Earthworms decreased glucoiberin concentrations in B. oleracea shoots. Glucoraphanin was affected by an interaction between earthworms and nematodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号