首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the extent to which worker honey bees acquire information from waggle dances throughout their careers as foragers. Small groups of foragers were monitored from time of orientation flights to time of death and all in-hive behaviors relating to foraging were recorded. In the context of a novice forager finding her first food source, 60% of the bees relied, at least in part, on acquiring information from waggle dances (being recruited) rather than searching independently (scouting). In the context of an experienced forager whose foraging has been interrupted, 37% of the time the bees resumed foraging by following waggle dances (being reactivated) rather than examining the food source on their own (inspecting). And in the context of an experienced forager engaged in foraging, 17% of the time the bees initiated a foraging trip by following a waggle dance. Such dance following was observed much more often after an unsuccessful than after a successful foraging trip. Successful foragers often followed dances just briefly, perhaps to confirm that the kind of flowers they had been visiting were still yielding forage. Overall, waggle dance following for food discovery accounted for 12–25% of all interactions with dancers (9% by novice foragers and 3–16% by experienced foragers) whereas dance following for reactivation and confirmation accounted for the other 75–88% (26% for reactivation and 49–62% for confirmation). We conclude that foragers make extensive use of the waggle dance not only to start work at new, unfamiliar food sources but also to resume work at old, familiar food sources.  相似文献   

2.
Summary (1) When a honey bee follows recruitment dances to locate a new food source, does she sample multiple dances representing different food sources and selectively respond to the strongest dance? (2) Several initial findings suggested that foragers might indeed compare dances. First, dance information is arrayed in the hive in a way that facilitates comparison-making: dances for different flower patches are performed close together in time and space. Second, food-source quality is coded in the dances, in terms of dance length (number of circuits per dance). Third, dances to natural food sources vary in length by more than 2 orders of magnitude, indicating that the quality of natural food sources varies greatly. Fourth, foragers seeking a new food source follow several dances before exiting the hive (though only one dance is followed closely). (3) Nevertheless, a critical test for comparison-making revealed that foragers evidently do not compare dances. A colony was given two feeders that were equidistant from the hive but different in profitability. If foragers do not compare dances, then the proportion of recruits arriving at the richer feeder should match the proportion of dance circuits for the richer feeder. This is the pattern that we found in all 11 trials of the experiment. (4) We suggest that the reason foragers do not compare dances is that a colony's foraging success is greater if its foragers distribute themselves among the various food sources being advertised in the hive than if they crowd themselves on the one, best source. (5) Food-source selection by honey bee colonies is a democratic decision-making process. This study reveals that this selection process is organized to function effectively even though each member of the democracy possesses incomplete information about the available choices. Offprint requests to: T.D. Seeley  相似文献   

3.
Floral scents are important information cues used to organize foraging-related tasks in honeybees. The waggle dance, apart from encoding spatial information about food sources, might facilitate the transfer of olfactory information by increasing the dissipation of volatiles brought back by successful foragers. By assuming that food scents are more intensive on specific body parts of returning foragers, i.e., the posterior legs of pollen foragers and mouthparts of nectar foragers, we quantified the interactions between hive mates and foragers during dances advertising different types of food sources. For natural sources, a higher proportion of hive mates contacted the hind legs of pollen dancers (where the pollen loads were located) with their heads compared to non-pollen dancers. On the other hand, the proportion of head-to-head contacts was higher for non-pollen foragers during the waggle runs. When the food scent was manipulated, dancers collecting scented sugar solution had a higher proportion of head-to-head contacts and a lower proportion around their hind legs compared to dancers collecting unscented solution. The presence of food odors did not affect in-hive behaviors of dancers, but it increased the number of trophallaxes in-between waggle runs (i.e., during circle phases). These results suggest that the honeybee dance facilitates the olfactory information transfer between incoming foragers and hive mates, and we propose that excitatory displays in other social insect species serve the same purpose. While recent empirical and theoretical findings suggested that the colony level foraging benefits of the spatial information encoded in the waggle dance vary seasonally and with habitats, the role of the dance as a compound signal not only indicating the presence of a profitable resource but also amplifying the information transfer regarding floral odors may be important under any ecological circumstances.  相似文献   

4.
Honey bee foragers as sensory units of their colonies   总被引:5,自引:0,他引:5  
Forager honey bees function not only as gatherers of food for their colonies, but also as sensory units shaped by natural selection to gather information regarding the location and profitability of forage sites. They transmit this information to colony members by means of waggle dances. To investigate the way bees transduce the stimulus of nectar-source profitability into the response of number of waggle runs, I performed experiments in which bees were stimulated with a sucrose solution feeder of known profitability and their dance responses were videorecorded. The results suggest that several attributes of this transduction process are adaptations to enhance a bee's effectiveness in reporting on a forage site. (1) Bees register the profitability of a nectar source not by sensing the energy gain per foraging trip or the rate of energy gain per trip, but evidently by sensing the energetic efficiency of their foraging. Perhaps this criterion of nectar-source profitability has been favored by natural selection because the foraging gains of honey bees are typically limited by energy expenditure rather than time availability. (2) There is a linear relationship between the stimulus of energetic efficiency of foraging and the response of number of waggle runs per dance. Such a simple stimulus-response function appears adequate because the range of suprathreshold stimuli (max/min ratio of about 10) is far smaller than the range of responses (max/min ratio of about 100). Although all bees show a linear stimulus-response function, there are large differences among individuals in both the response threshold and the slope of the stimulus-response function. This variation gives the colony a broader dynamic range in responding to food sources than if all bees had identical thresholds of dance response. (3) There is little or no adaptation in the dance response to a strong stimulus (tonic response). Thus each dancing bee reports on the current level of profitability of her forage site rather than the changes in its profitability. This seems appropriate since presumably it is the current profitability of a forage site, not the change in its profitability, which determines a site's attractiveness to other bees. (4) The level of forage-site quality that is the threshold for dancing is tuned by the bees in relation to forage availability. Bees operate with a lower dance threshold when forage is sparse than when it is abundant. Thus a colony utilizes input about a wide range of forage sites when food is scarce, but filters out input about low-reward sites when food is plentiful. (5) A dancing bee does not present her information in one spot within the hive but instead distributes it over much of the dance floor. Consequently, the dances for different forage sites are mixed together on the dance floor. This helps each bee following the dances to take a random sample of the dance information, which is appropriate for the foraging strategy of a honey bee colony since it is evidently designed to allocate foragers among forage sites in proportion to their profitability.  相似文献   

5.
6.
Upon leaving the hive, foragers carry a small amount of honey, which they subsequently consume to generate energy for flight. We investigated the relationship between waggle-phase duration and crop volume in foragers (both dancers and dance followers) leaving the hive. Our findings indicate that these variables were positively correlated in the two types of bee, suggesting that they were able to adjust the amount of food that they carry depending on the distance to a food source. We also found that dance followers left the hive with a larger amount of honey than dancers. We suggest two possible explanations: (1) dance followers have less information about the location of the food source than dancers, who have a better knowledge of the surrounding area; or (2) honeybees lack a precise calibration method for estimating energy needs from waggle-run duration. The effect of foraging experience was confirmed: bees decreased their honey load at departure with repeated trips to a sugar-syrup feeder. Honeybees showed a different pattern of change when the feeder provided soybean flour as a pollen substitute, possibly because honeybees use honey not only as an energy source but also as “glue” to form “balls” of pollen on their hind legs. Based on our observations that followers of sugar-syrup foragers carry a different amount of honey in their crop than followers of soybean-followers, we suggest that waggle dancers also convey information concerning food type.  相似文献   

7.
All honeybee species make use of the waggle dance to communicate the direction and distance to both food sources and potential new nest sites. When foraging, all species face an identical problem: conveying information about profitable floral patches. However, profound differences in nesting biology (some nest in cavities while others nest in the open, often on a branch or a cliff face) may mean that species have different requirements when dancing to advertise new nest sites. In cavity nesting species, nest sites are a precise location in the landscape: usually a small opening leading to a cavity in a hollow tree. Dances for cavities therefore need to be as precise as possible. In contrast, when the potential nest site comprises a tree or perhaps seven a patch of trees, precision is less necessary. Similarly, when a food patch is advertised, dances need not be very precise, as floral patches are often large, unless they are so far away that recruits need more precise information to be able to locate them. In this paper, we study the dance precision of the open-nesting red dwarf bee Apis florea. By comparing the precision of dances for food sources and nest sites, we show that A. florea workers dance with the same imprecision irrespective of context. This is in sharp contrast with the cavity-nesting Apis mellifera that increases the precision of its dance when advertising a potential new home. We suggest that our results are in accordance with the hypothesis that the honeybees’ dance communication initially evolved to convey information about new nest sites and was only later adapted for the context of foraging.  相似文献   

8.
Summary The tremble dance is a behavior sometimes performed by honeybee foragers returning to the hive. The biological significance of this behavior was unclear until Seeley (1992) demonstrated that tremble dances occur mainly when a colony's nectar influx is so high that the foragers must undertake lenghty searches in order to find food storers to unload their nectar. He suggested that tremble dancing has the effect of stimulating additional bees to function as food-storers, thereby raising the colony's capacity for processing nectar. Here I describe vibrational signals emitted by the tremble dancers. Simulation experiments with artificial tremble dance sounds revealed that these sounds inhibited dancing and reduced recruitment to feeding sites. The results suggest that the tremble dance is a negative feedback system counterbalancing the positive feedback of recruitment by waggle dances. Thus, the tremble dance seems to affect not only the colony's nectar processing rate, but also its nectar intake rate.  相似文献   

9.
Recent studies indicate that the foraging success of a honeybee colony is enhanced when it has numerous genetically diverse patrilines because of queen polyandry. We determined whether foraging is improved in part because patriline diversity generates more responsive populations of scouting foragers. Scouts search for new food sources and advertise them with waggle dances to inform other foragers about unexploited discoveries. We moved multiple-patriline and single-patriline colonies to unfamiliar locations so that colonies relied heavily on successful scouts to initiate recruitment and then compared the development of foraging effort between the two types of colonies. More waggle dance signals were produced during the incipient stages of foraging in multiple-patriline colonies compared to single-patriline colonies because scouts reported food discoveries with longer dances. Scouts also returned to multiple-patriline colonies at rates that were two thirds higher than those of single-patriline colonies, although return rates for general forager populations were not significantly different between colony types. The distance of reported food sources from hives increased with time for all colonies, but by the end of their first day in an unfamiliar environment, maximal foraging reach was greater if colonies had multiple patrilines. Most scouts in multiple-patriline colonies came from a minority of scout-rich patrilines that were generally not those from which general forager populations were derived; the presence of such scout-rich patrilines was correlated with the extent of recruitment signaling in colonies. We show how a honeybee colony’s scouting effort is (and is not) enhanced when extremely polyandrous queens produce genetically diverse colonies.  相似文献   

10.
Summary The stop signal of honey bees has long been regarded as a vibrational begging signal produced by dance followers to elicit food from waggle dancers (Esch 1964). On the basis of playback experiments and behavioral analysis, this study presents the following evidence for a different signal function. Stop signals (1) can be produced by tremble dancers, dance followers, and waggle dancers; (2) rarely elicit trophallaxis; and (3) evidently cause waggle dancers to leave the dance floor. Subsequent work by Kirchner (submitted) using vibrational playback experiments confirms the latter observation. When the colony's food storers are temporarily overwhelmed by a large nectar influx, returning foragers will search for prolonged periods before unloading food and consequently begin to tremble dance (Seeley 1992). In this study, tremble dancers were the major producer of stop signals on the dance floor. The stop signal may thus retard recruitment until balance is restored.  相似文献   

11.
This study explores the meaning and functional design of a modulatory communication signal, the honey bee shaking signal, by addressing five questions: (I) who shakes, (II) when do they shake, (III) where do they shake, (IV) how do receivers respond to shaking, and (V) what conditions trigger shaking. Several results confirm the work of Schneider (1987) and Schneider et al. (1986a): (I) most shakers were foragers (at least 83%); (II) shaking exhibited a consistent temporal pattern with bees producing the most signals in the morning (0810–1150 hours) just prior to a peak in waggle dancing activity; and (IV) bees moved faster (by 75%) after receiving a shaking signal. However, this study differs from previous work by providing a long-term, temporal, spatial, and vector analysis of individual shaker behavior. (III) Bees producing shaking signals walked and delivered signals in all areas of the hive, but produced the most shaking signals directly above the waggle dance floor. (IV) Bees responded to the signal by changing their direction of movement. Prior to receiving a signal, bees selected from the waggle dance floor moved, on average, towards the hive exit. After receiving a signal, some bees continued moving towards the exit but others moved directly away from the exit. During equivalent observation periods, non-shaken bees exhibited a strong tendency to move towards the hive exit. (V) Renewed foraging activity after food dearth triggered shaking signals, and, the level of shaking is positively correlated with the duration of food dearth. However, shaking signal levels also increased in the morning before foraging had begun and in the late afternoon after foraging had ceased. This spontaneous afternoon peak has not previously been reported. The shaking signal consequently appears to convey the general message “reallocate labor to different activities” with receiver context specifying a more precise meaning. In the context of foraging, the shaking signal appears to activate (and perhaps deactivate) colony foraging preparations. The generally weak response elicited by modulatory signals such as the shaking signal may result from a high receiver response threshold which allows the receiver to integrate multiple sources of information and which thereby increases the probability that receiver actions will be appropriate to colony needs. Received: 21 March 1997 / Accepted after revision: 30 August 1997  相似文献   

12.
The waggle dance of the honey bee is a recruitment behavior used to communicate the location of a resource to a nest mate. There is, however, significant imprecision communicating the direction across waggle runs in a single dance. In this study, we ask whether honey bee recruits determine the direction of their flight based on an average of many waggle runs, or on a single waggle run. We show that the distribution of recruit flight directions is narrower than the distribution of directions indicated in the dance. We also show that there is a better fit between observed flight directions and the prediction of a multiple-waggle-run-averaging model than a last-waggle-run or other single-waggle-run models. These findings substantially weaken hypotheses about the adaptive nature of imprecision in honey bee recruitment.  相似文献   

13.
The honey bee dance language, used to recruit nestmates to food sources, is regarded by many as one of the most intriguing communication systems in animals. What were the ecological circumstances that favoured its evolution? We examined this question by creating experimental phenotypes in which the location information of the dances was obscured. Surprisingly, in two temperate habitats, these colonies performed only insignificantly worse than colonies which were able to communicate normally. However, foraging efficiency was substantially impaired in an Asian tropical forest following this manipulation. This indicates that dance language communication about food source locations may be important in some habitats, but not in others. Combining published data and our own, we assessed the clustering of bee forage sites in a variety of habitats by evaluating the bees’ dances. We found that the indicated sites are more clustered in tropical than in temperate habitats. This supports the hypothesis that in the context of foraging, the dance language is an adaptation to the particular habitats in which the honey bees evolved. We discuss our findings in relation to spatial aggregation patterns of floral food in temperate and tropical habitats.  相似文献   

14.
Nectar collection in the honey-bee is partitioned. Foragers collect nectar and take it to the nest, where they transfer it to receiver bees who then store it in cells. Because nectar is a fluctuating and unpredictable resource, changes in worker allocation are required to balance the work capacities of foragers and receivers so that the resource is exploited efficiently. Honey bee colonies use a complex system of signals and other feedback mechanisms to coordinate the relative and total work capacities of the two groups of workers involved. We present a functional evaluation of each of the component mechanisms used by honey bees – waggle dance, tremble dance, stop signal, shaking signal and abandonment – and analyse how their interplay leads to group-level regulation. We contrast the actual regulatory system of the honey bee with theory. The tremble dance conforms to predicted best use of information, where the group in excess applies negative feedback to itself and positive feedback to the group in shortage, but this is not true of the waggle dance. Reasons for this and other discrepancies are discussed. We also suggest reasons why honey bees use a combination of recruitment plus abandonment and not switching between subtasks, which is another mechanism for balancing the work capacities of foragers and receivers. We propose that the waggle and tremble dances are the primary regulation mechanisms, and that the stop and shaking signals are secondary mechanisms, which fine-tune the system. Fine-tuning is needed because of the inherent unreliability of the cues, queueing delays, which foragers use to make recruitment decisions. Received: 15 December 1998 / Received in revised form: 6 March 1999 / Accepted: 12 March 1999  相似文献   

15.
Adaptation or constraint? Reference-dependent scatter in honey bee dances   总被引:1,自引:1,他引:0  
The waggle dance of the honey bee is used to recruit nest mates to a resource. Dancer bees, however, may indicate many directions within a single dance bout; we show that this scatter in honey bee dances is strongly dependent on the sensory modality used to determine a reference angle in the dance. Dances with a visual reference are more precise than those with a gravity reference. This finding undermines the idea that scatter is introduced into dances, which the bees could perform more precisely, in order to spread recruits out over resource patches. It also calls into question reported interspecific differences that had been interpreted as adaptations of the dance to different habitats. Our results support a non-adaptive hypothesis: that dance scatter results from sensory and performance constraints, rather than modulation of the scatter by the dancing bee. However, an alternative adaptive hypothesis cannot be ruled out.  相似文献   

16.
A curious feature of the honeybee's waggle dance is the imprecision in the direction indication for nearby food sources. One hypothesis for the function of this imprecision is that it serves to spread recruits over a certain area and thus is an adaptation to the typical spatial configuration of the bees' food sources, i.e., flowers in sizable patches. We report an experiment that tests this tuned-error hypothesis. We measured the precision of direction indication in waggle dances advertising a nest site (typically a tree cavity, hence a target that is almost a point) and compared it with that of dances advertising a food source (typically a flower patch, hence a target that covers an area). The precision of dances for a nearby nest site was significantly higher than that of dances for an equidistant feeder. This was demonstrated four times with four colonies. Our evidence therefore supports the hypothesis that the level of precision in the direction indication for nearby food sources is tuned to its optimum without being at its maximum. Received: 9 December 1998 / Received in revised form: 24 February 1999 / Accepted 12 March 1999  相似文献   

17.
This study investigates the brief piping signals ("stop signals") of honey bee workers by exploring the context in which worker piping occurs and the identity and behavior of piping workers. Piping was stimulated reliably by promoting a colony's nectar foraging activity, demonstrating a causal connection between worker piping and nectar foraging. Comparison of the behavior of piping versus non-piping nectar foragers revealed many differences, e.g., piping nectar foragers spent more time in the hive, started to dance earlier, spent more time dancing, and spent less time on the dance floor. Most piping signals (approximately 99%) were produced by tremble dancers, yet not all (approximately 48%) tremble dancers piped, suggesting that the short piping signal and the tremble dance have related, but not identical, functions in the nectar foraging communication system. Our observations of the location and behavior of piping tremble dancers suggest that the brief piping signal may (1) retard recruitment to a low-quality food source, and (2) help to enhance the recruitment success of the tremble dance.  相似文献   

18.
Tremble dances are sometimes performed by returning forager bees instead of waggle dances. Recent studies by Seeley (1992) and Kirchner (1993) have revealed that this behaviour is part of the recruitment communication system of bees. The ultimate cause of tremble dances is, according to Seeley (1992), an imbalance between the nectar intake rate and the nectar processing capacity of the colony. This imbalance is correlated with a long initial search time of returning foragers to find bees to unload them. However, it remained unclear whether a long search time is the direct proximate cause of tremble dancing. Here we report that a variety of experimental conditions can elicit tremble dances. All of them have in common that the total search time that foragers spend searching for unloaders, until they are fully unloaded, is prolonged. This finding supports and extends the hypothesis that a long search time is the proximate cause of tremble dancing. The results also confirm the previous reports of Lindauer (1948) and others about factors eliciting tremble dancing.  相似文献   

19.
A honeybee colony needs to divide its workforce so that each of the many tasks it performs has an appropriate number of workers assigned to it. This task allocation system needs to be flexible enough to allow the colony to quickly adapt to an ever-changing environment. In this study, we examined possible mechanisms by which a honeybee colony regulates the division of labor between scouts (foragers that search for new food sources without having been guided to them) and recruits (foragers that were guided via recruitment dances toward food sources). Specifically, we examined the roles that the availability of recruitment dances and worker genotype has in the colony-level regulation of the number of workers engaged in scouting. Our approach was threefold. We first developed a mathematical model to demonstrate that the decision to become a scout or a recruit could be regulated by whether a potential forager can find a recruitment dance within a certain time period. We then tested this model by investigating the effect of dance availability on the regulation of scouts in the field. Lastly, we investigated if the probability of being a scout has a genetic basis. Our field data supported the hypothesis that scouts are those foragers that have failed to locate a recruitment dance as predicted by our model, but we found no effect of genotype on the propensity of foragers to become scouts.  相似文献   

20.
Honeybees present a paradox that is unusual among the social Hymenoptera: extremely promiscuous queens generate colonies of nonreproducing workers who cooperate to rear reproductives with whom they share limited kinship. Extreme polyandry, which lowers relatedness but creates within-colony genetic diversity, produces substantial fitness benefits for honeybee queens and their colonies because of increased disease resistance and workforce productivity. However, the way that these increases are generated by individuals in genetically diverse colonies remains a mystery. We assayed the foraging and dancing performances of workers in multiple-patriline and single-patriline colonies to discover how within-colony genetic diversity, conferred to colonies by polyandrous queens, gives rise to a more productive foraging effort. We also determined whether the initiation by foragers of waggle-dance signaling in response to an increasing sucrose stimulus (their dance response thresholds) was linked to patriline membership. Per capita, foragers in multiple-patriline colonies visited a food source more often and advertised it with more waggle-dance signals than foragers from single-patriline colonies, although there was variability among multiple-patriline colonies in the strength of this difference. High-participation patrilines emerged within multiple-patriline colonies, but their more numerous foragers and dancers were neither more active per capita nor lower-threshold dancers than their counterparts from low-participation patrilines. Our results demonstrate that extreme polyandry does not enhance recruitment effort through the introduction of low-dance-threshold, high-activity workers into a colony’s population. Rather, genetic diversity is critical for injecting into a colony’s workforce social facilitators who are more likely to become engaged in foraging-related activities, so boosting the production of dance signals and a colony’s responsiveness to profitable food sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号