首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Savannas commonly consist of a discontinuous cover of overstory trees and a groundcover of grasses. Savanna models have previously demonstrated that vegetation feedbacks on fire frequency can limit the density of overstory trees, thereby maintaining savannas. Positive feedbacks of either savanna trees alone or trees and grasses together on fire frequency have been shown to result in a stable savanna equilibrium. Grass feedbacks on fire frequency, in contrast, have resulted in stable equilibria in either a grassland or forest state, but not in a savanna. These results, however, were derived from a system of differential equations that assumes that fire occurrence is strictly deterministic and that vegetation losses due to fire are continuous in time. We develop an alternative formulation of the grass-fire feedback model that assumes that fires are discrete and occur stochastically in time to examine the influence of these assumptions on the predicted state of the system. We show that incorporating fire as a discrete event can produce a recurring temporal refuge in which both grass and trees co-occur in a stable, bounded savanna. In our model, tree abundance is limited without invoking demographic bottlenecks in the transition from fire-sensitive to fire-resistant life history stages. An increasing strength of grass feedback on fire results in regular, predictable fires, which suggests that the system can also be modeled using a set of difference equations. We implement this discrete system using modified Leslie/Gower difference equations and demonstrate the existence of a bounded savanna state in this model framework. Our results confirm the potential for grass feedbacks to result in stable savannas, and indicate the importance of modeling fire as a discrete event rather than as a loss rate that is continuous in time.  相似文献   

2.
Fire, elephants, and frost are important disturbance factors in many African savannas, but the relative magnitude of their effects on vegetation and their interactions have not been quantified. Understanding how disturbance shapes savanna structure and composition is critical for predicting changes in tree cover and for formulating management and conservation policy. A simulation model was used to investigate how the disturbance regime determines vegetation structure and composition in a mixed Kalahari sand woodland savanna in western Zimbabwe. The model consisted of submodels for tree growth, tree damage caused by disturbance, mortality, and recruitment that were parameterized from field data collected over a two-year period. The model predicts that, under the current disturbance regime, tree basal area in the study area will decline by two-thirds over the next two decades and become dominated by species unpalatable to elephants. Changes in the disturbance regime are predicted to greatly modify vegetation structure and community composition. Elephants are the primary drivers of woodland change in this community at present-day population densities, and their impacts are exacerbated by the effects of fire and frost. Frost, in particular, does not play an important role when acting independently but appears to be a key secondary factor in the presence of elephants and/or fire. Unlike fire and frost, which cannot suppress the woodland phase on their own in this ecosystem, elephants can independently drive the vegetation to the scrub phase. The results suggest that elephant and fire management may be critical for the persistence of certain woodland communities within dry-season elephant habitats in the eastern Kalahari, particularly those dominated by Brachystegia spiciformis and other palatable species.  相似文献   

3.
Savannas are ecosystems characterized by the coexistence of woody species (trees and bushes) and grasses. Given that savanna characteristics are mainly formed from competition, herbivory, fire, woodcutting, and patchy soil and precipitation characteristics, we propose a spatially explicit model to examine the effects of the above-mentioned parameters on savanna vegetation dynamics in space and time. Furthermore, we investigate the effects of the above-mentioned parameters on tree–bush–grass ratios, as well as the degrees of aggregation of tree–bush–grass biomass. We parameterized our model for an arid savanna with shallow soil depth as well as a mesic one with generally deeper and more variable soil depths. Our model was able to reproduce savanna vegetation characteristics for periods of time over 2000 years with daily updated time steps. According to our results, tree biomass was higher than bush biomass in the arid savanna but bush biomass exceeded tree and grass biomass in the simulated mesic savanna. Woody biomass increased in our simulations when the soil's porosity values were increased (mesic savanna), in combination with higher precipitation. Savanna vegetation varied from open savanna to woodland and back to open savanna again. Vegetation cycles varied over ∼300-year cycles in the arid and ∼220-year cycles in the mesic-simulated savanna. Autocorrelation values indicated that there are both temporal and spatial vegetation cycles. Our model indicated cycling savanna vegetation at the landscape scale, cycles in cells, and patchiness, i.e. patch dynamics.  相似文献   

4.
Life history trade-offs in tropical trees and lianas   总被引:1,自引:0,他引:1  
It has been hypothesized that tropical trees partition forest light environments through a life history trade-off between juvenile growth and survival; however, the generality of this trade-off across life stages and functional groups has been questioned. We quantified trade-offs between growth and survival for trees and lianas on Barro Colorado Island (BCI), Panama using first-year seedlings of 22 liana and 31 tree species and saplings (10 mm < dbh < 39 mm) of 30 tree species. Lianas showed trade-offs similar to those of trees, with both groups exhibiting broadly overlapping ranges in survival and relative growth rates as seedlings. Life history strategies at the seedling stage were highly correlated with those at the sapling stage among tree species, with all species showing an increase in survival with size. Only one of 30 tree species demonstrated a statistically significant ontogenetic shift, having a relatively lower survival rate at the sapling stage than expected. Our results indicate that similar life history trade-offs apply across two functional groups (lianas and trees), and that life history strategies are largely conserved across seedling and sapling life-stages for most tropical tree species.  相似文献   

5.
Riginos C  Grace JB 《Ecology》2008,89(8):2228-2238
Herbivores choose their habitats both to maximize forage intake and to minimize their risk of predation. For African savanna herbivores, the available habitats range in woody cover from open areas with few trees to dense, almost-closed woodlands. This variation in woody cover or density can have a number of consequences for herbaceous species composition, cover, and productivity, as well as for ease of predator detection and avoidance. Here, we consider two alternative possibilities: first, that tree density affects the herbaceous vegetation, with concomitant "bottom-up" effects on herbivore habitat preferences; or, second, that tree density affects predator visibility, mediating "top-down" effects of predators on herbivore habitat preferences. We sampled sites spanning a 10-fold range of tree densities in an Acacia drepanolobium-dominated savanna in Laikipia, Kenya, for variation in (1) herbaceous cover, composition, and species richness; (2) wild and domestic herbivore use; and (3) degree of visibility obstruction by the tree layer. We then used structural equation modeling to consider the potential influences that tree density may have on herbivores and herbaceous community properties. Tree density was associated with substantial variation in herbaceous species composition and richness. Cattle exhibited a fairly uniform use of the landscape, whereas wild herbivores, with the exception of elephants, exhibited a strong preference for areas of low tree density. Model results suggest that this was not a response to variation in herbaceous-community characteristics, but rather a response to the greater visibility associated with more open places. Elephants, in contrast, preferred areas with higher densities of trees, apparently because of greater forage availability. These results suggest that, for all but the largest species, top-down behavioral effects of predator avoidance on herbivores are mediated by tree density. This, in turn, appears to have cascading effects on the herbaceous vegetation. These results shed light on one of the major features of the "landscape of fear" in which African savanna herbivores exist.  相似文献   

6.
Tree recruitment in an empty forest   总被引:3,自引:0,他引:3  
To assess how the decimation of large vertebrates by hunting alters recruitment processes in a tropical forest, we compared the sapling cohorts of two structurally and compositionally similar forests in the Rio Manu floodplain in southeastern Peru. Large vertebrates were severely depleted at one site, Boca Manu (BM), whereas the other, Cocha Cashu Biological Station (CC), supported an intact fauna. At both sites we sampled small (> or =1 m tall, <1 cm dbh) and large (> or =1 cm and <10 cm dbh) saplings in the central portion of 4-ha plots within which all trees > or =10 cm dbh were mapped and identified. This design ensured that all conspecific adults within at least 50 m (BM) or 55 m (CC) of any sapling would have known locations. We used the Janzen-Connell model to make five predictions about the sapling cohorts at BM with respect to CC: (1) reduced overall sapling recruitment, (2) increased recruitment of species dispersed by abiotic means, (3) altered relative abundances of species, (4) prominence of large-seeded species among those showing depressed recruitment, and (5) little or no tendency for saplings to cluster closer to adults at BM. Our results affirmed each of these predictions. Interpreted at face value, the evidence suggests that few species are demographically stable at BM and that up to 28% are increasing and 72% decreasing. Loss of dispersal function allows species dispersed abiotically and by small birds and mammals to substitute for those dispersed by large birds and mammals. Although we regard these conclusions as preliminary, over the long run, the observed type of directional change in tree composition is likely to result in biodiversity loss and negative feedbacks on both the animal and plant communities. Our results suggest that the best, and perhaps only, way to prevent compositional change and probable loss of diversity in tropical tree communities is to prohibit hunting.  相似文献   

7.
Alien invasive grasses threaten to transform Hawaiian ecosystems through the alteration of ecosystem dynamics, especially the creation or intensification of a fire cycle. Across sub-montane ecosystems of Hawaii Volcanoes National Park on Hawaii Island, we quantified fine fuels and fire spread potential of invasive grasses using a combination of airborne hyperspectral and light detection and ranging (LiDAR) measurements. Across a gradient from forest to savanna to shrubland, automated mixture analysis of hyperspectral data provided spatially explicit fractional cover estimates of photosynthetic vegetation, non-photosynthetic vegetation, and bare substrate and shade. Small-footprint LiDAR provided measurements of vegetation height along this gradient of ecosystems. Through the fusion of hyperspectral and LiDAR data, a new fire fuel index (FFI) was developed to model the three-dimensional volume of grass fuels. Regionally, savanna ecosystems had the highest volumes of fire fuels, averaging 20% across the ecosystem and frequently filling all of the three-dimensional space represented by each image pixel. The forest and shrubland ecosystems had lower FFI values, averaging 4.4% and 8.4%, respectively. The results indicate that the fusion of hyperspectral and LiDAR remote sensing can provide unique information on the three-dimensional properties of ecosystems, their flammability, and the potential for fire spread.  相似文献   

8.
The amount of carbon stored in savannas represents a significant uncertainty in global carbon budgets, primarily because fire causes actual biomass to differ from potential biomass. We analyzed the structural response of woody plants to long-term experimental burning in savannas. The experiment uses a randomized block design to examine fire exclusion and the season and frequency of burn in 192 7-ha experimental plots located in four different savanna ecosystems. Although previous studies would lead us to expect tree density to respond to the fire regime, our results, obtained from four different savanna ecosystems, suggest that the density of woody individuals was unresponsive to fire. The relative dominance of small trees was, however, highly responsive to fire regime. The observed shift in the structure of tree populations has potentially large impacts on the carbon balance. However, the response of tree biomass to fire of the different savannas studied were different, making it difficult to generalize about the extent to which fire can be used to manipulate carbon sequestration in savannas. This study provides evidence that savannas are demographically resilient to fire, but structurally responsive.  相似文献   

9.
Abstract:  Approaches to fire management in the savanna ecosystems of the 2-million ha Kruger National Park, South Africa, have changed several times over the past six decades. These approaches have included regular and flexible prescribed burning on fixed areas and a policy that sought to establish a lightning-dominated fire regime. We sought to establish whether changes in management induced the desired variability in fire regimes over a large area. We used a spatial database of information on all fires in the park between 1957 and 2002 to determine elements of the fire regime associated with each management policy. The area that burned in any given year was independent of the management approach and was strongly related to rainfall (and therefore grass fuels) in the preceding 2 years. On the other hand, management did affect the spatial heterogeneity of fires and their seasonal distribution. Heterogeneity was higher at all scales during the era of prescribed burning, compared with the lightning-fire interval. The lightning-fire interval also resulted in a greater proportion (72% vs. 38%) of the area burning in the dry season. Mean fire-return intervals varied between 5.6 and 7.3 years, and variability in fire-return intervals was strongly influenced by the sequencing of annual rainfall rather than by management. The attempt at creating a lightning-dominated fire regime failed because most fires were ignited by humans, and the policy has been replaced by a more pragmatic approach that combines flexible prescribed burning with lightning-ignited fires.  相似文献   

10.
This paper presents the development and validation results of a weighted small-world network model designed to simulate fire patterns in real heterogeneous landscapes. Fire spread is simulated on a gridded landscape, a mosaic in which each cell represents an area of the land surface. In this model, the interaction between burning and non-burning cells (here, due to flame radiation) may extend well beyond nearest neighbors, and depends on local conditions of wind, topography, and vegetation. An approach based on the coupling of the solid flame model with the Monte Carlo method is used to predict the radiative heat flux from the flame generated by the burning of each combustible cell to its neighbors. The weighting procedure takes into account latency (a combustible cell will only ignite when it has accumulated enough energy along time) and flaming persistence of burning cells. The model is applied to very different fire scenarios: a historical Mediterranean fire that occurred in southeastern France in 2005 and experimental fires conducted in arid savanna fuels in South Africa in 1992. Model results are found to be in agreement with real fire patterns, in terms both of rate of spread, and of the area and shape of the burn. This work also shows that the fractal properties of fire patterns predicted by the model are similar to those observed from satellite images of three other Mediterranean fire scars.  相似文献   

11.
In this study we combined an extensive database of observed wildfires with high-resolution meteorological data to build a novel spatially and temporally varying survival model to analyze fire regimes in the Mediterranean ecosystem in the Cape Floristic Region (CFR) of South Africa during the period 1980-2000. The model revealed an important influence of seasonally anomalous weather on fire probability, with increased probability of fire in seasons that are warmer and drier than average. In addition to these local-scale influences, the Antarctic Ocean Oscillation (AAO) was identified as an important large-scale influence or teleconnection to global circulation patterns. Fire probability increased in seasons during positive AAO phases, when the subtropical jet moves northward and low level moisture transport decreases. These results confirm that fire occurrence in the CFR is strongly affected by climatic variability at both local and global scales, and thus likely to respond sensitively to future climate change. Comparison of the modelled fire probability between two periods (1951-1975 and 1976-2000) revealed a 4-year decrease in an average fire return time. If, as currently forecasted, climate change in the region continues to produce higher temperatures, more frequent heat waves, and/or lower rainfall, our model thus indicates that fire frequency is likely to increase substantially. The regional implications of shorter fire return times include shifting community structure and composition, favoring species that tolerate more frequent fires.  相似文献   

12.
Longleaf pine (Pinus palustris) savannas of the southeastern U.S. represent an archetype of a fire dependent ecosystem. They are known to have very short fire return intervals (∼1-3 years) that perpetuate understory plant diversity (up to 50 species m−2), support pine recruitment, and suppress fire sensitive hardwoods. Understanding the relationships that regulate longleaf and southern hardwoods is especially critical. With decreased fire frequency, insufficient intensity, or lack of underground competition, a woody mid-story rapidly develops, dominated by fire sensitive trees and shrubs that in-turn suppress more fire dependent species (including pine seedlings). This may occur in forest gaps, where pine-needle abundance is diminished, reducing fire spread potential. The interactions between longleaf pine, hardwoods, forest fuels, and fire frequency are complex and difficult to understand spatially. The objective of this study was to develop a spatially explicit longleaf pine-hardwood stochastic simulation model (LLM), incorporating tree demography, plant competition, and fuel and fire characteristics. Data from two longleaf pine study sites were used to develop and evaluate the model with the goal to incorporate simple site-specific calibration parameters for model versatility. Specific model components included pine seed masting, hardwood clonal sprouting, response to fire (re-sprouting, mortality), and tree density driven competition effects. LLM spatial outputs were consistent with observed forest gap dynamics associated with pine seedling establishment and hardwood encroachment. Changes in fire frequency (i.e., fire probability = 0.35-0.05) illustrated a shift in community structure from longleaf pine dominated to a hardwood dominated community. This approach to assessing model response may be useful in characterizing longleaf ecosystem resilience, especially at intermediate fire frequencies (e.g., 0.15) where the community may be sensitive to small changes in the fire regime. Height distributions and population densities were similar to in situ findings (field and LIDAR data) for both study sites. Height distributions output by the LLM illustrated fluctuations in population structure. The LLM was especially useful in determining knowledge gaps associated with fuel and fire heterogeneity, plant-plant interactions, population structure and its temporal fluctuations, and hardwood demography. This is the first known modeling work to simulate interactions between longleaf pine and hardwoods and provides a foundation for further studies on fire and forest management, especially in relation to ecological forestry practices, restoration, and site-specific applications.  相似文献   

13.
The estimation of the dispersal kernel for the seedling and sapling stages of the recruitment process was made possible through the application of inverse modeling to dispersal data. This method uses the spatial coordinates of adult trees and the counts of seedlings (or saplings) in small quadrats to estimate the dispersal kernel. The unknown number of recruits produced by an adult tree (the fecundity) is estimated - simultaneously with the dispersal kernel - via an allometric linear model relating the unknown quantity with a (easily) measured characteristic of the adult tree (usually the basal area). However, the allometric relation between tree size and reproductive success in the sapling (or seedling) stage may not be strong enough when numerous, well-documented, post-dispersal processes (such as safe-site limitation for recruitment) cause large post-dispersal seedling mortality, which is usually unrelated to the size of the tree that dispersed them. In this paper we hypothesize that when tree size and reproductive success in the seedling/sapling stage are not well correlated then the use of allometry in inverse modeling is counter-productive and may lead to poor model fits. For these special cases we suggest using a new model for effective dispersal that we term the unrestricted fecundity (UF) model that, contrary to allometric models, makes no assumptions on the fecundities; instead they are allowed to vary freely from one tree to another and even to be zero for trees that are reproductively inactive. Based on this model, we examine the hypothesis that when tree size and reproductive success are weakly correlated and the fecundities are estimated independently of tree size the goodness-of-fit and the ecological meaning of dispersal models (in the seedling or sapling stage) may be enhanced. Parameters of the UF model are estimated through the EM algorithm and their standard errors are approximated via the observed information matrix. We fit the UF model to a dataset from an expanding European beech population of central Spain as well as to a set of simulated dispersal data were the correlation between reproductive success and tree size was moderate. In comparisons with a simple allometric model, the UF model fitted the data better and the parameter estimates were less biased. We suggest using this new approach for modeling dispersal in the seedling and sapling stages when tree size (or other adult-specific covariates) is not deemed to be in strong relation to the reproductive success of adults. Models that use covariates for modeling the fecundity of adults should be preferred when reproductive success and tree size guard a strong relationship.  相似文献   

14.
SUMMARY

Rainfall-surface water runoff relationships have been examined for 912 rainfall events during the 1992 and 1993 monsoon seasons on 15 erosion plots on a variety of non-cultivated land uses in the Middle Hills, Nepal. Vegetation cover and type examined ranged from grassland and relatively undisturbed mixed broadleaf forest to subtropical Sal forest, in various states of degradation, and bare ground. Runoff was frequently generated on most plots and often by relatively small rainfall amounts (less than 5 mm) and low rainfall intensities (3 mm/h). Ground cover and canopy cover were significant factors in determining amounts of runoff. Runoff coefficients ranged from 1–2% under grassland and mixed broadleaf forest to 57–64% on the bare sites. Coefficients for Sal forest were between these two extremes; specific values depended on the level of degradation induced by human activity. The most degraded forest sites experienced runoff coefficients of 33%. Ground cover beneath the trees, especially leaf litter, was more effective in reducing runoff than the amount of canopy cover. Canopy cover was more effective during the less intense storms but was ineffective when the rainfall intensity was high. The results suggest that a minimum ground cover of 60% will keep runoff to within 10% of total rainfall amounts for most normal monsoons in the Middle Hills. This will also reduce the risk of gullying and surface soil erosion. It is the nature of the forest that is important and not its total area. In the study area, although the total area under forest had not changed, some of the forest had become more degraded with a corresponding increase in mean runoff rates. Increased runoff can occur even if the area under forest increases. Estimates of levels of degradation based solely on changing forest areas are likely to be inaccurate.  相似文献   

15.
Forest encroachment threatens the biological diversity of grasslands globally. Positive feedbacks can reinforce the process, affecting soils and ground vegetation, ultimately leading to replacement of grassland by forest species. We tested whether restoration treatments (tree removal, with or without fire) reversed effects of nearly two centuries of encroachment by Abies grandis and Pinus contorta into dry, montane meadows in the Cascade Range, Oregon, USA. In nine, 1-ha plots containing a patchy mosaic of meadow openings and forests of varying age (20 to > 140 yr), we compared three treatments affecting the ground vegetation: control (no trees removed), unburned (trees removed, slash burned in piles leaving 90% of the area unburned), and burned (trees removed, slash broadcast burned). We quantified changes over 3-4 years in soils, abundance and richness of species with differing habitat associations (meadow, forest, and ruderal), and recruitment of conifers. Except for a transient increase in available N (especially in burn scars), effects of burning on soils were minimal due, in part, to mixing by gophers. Tree removal greatly benefited meadow species at the expense of forest herbs. Cover and richness of meadow species increased by 47% and 38% of initial values in unburned plots, but changed minimally in burned plots. In contrast, cover and richness of forest herbs declined by 44% and 26% in unburned plots and by 79% and 58% in burned plots. Ruderal species and conifer seedlings were uncommon in both treatments. Although vegetation was consumed beneath burn piles, meadow species recovered significantly after three years. Long-term tree presence did not preclude recovery of meadow species; in fact, colonization was greater in older than in younger forests. In sum, temporal trends were positive for most indicators, suggesting strong potential for restoration. Contrary to conventional wisdom, tree removal without fire may be sufficient to shift the balance from forest to meadow species. In meadows characterized by historically infrequent fire, small-scale disturbances and competitive interactions may be more critical to ecosystem maintenance and restoration. Managers facing the worldwide phenomenon of tree invasion should critically evaluate the ecological vs. operational need for fire in ecosystem restoration.  相似文献   

16.
Baraloto C  Morneau F  Bonal D  Blanc L  Ferry B 《Ecology》2007,88(2):478-489
We investigated the relationship between habitat association and physiological performance in four congeneric species pairs exhibiting contrasting distributions between seasonally flooded and terra firme habitats in lowland tropical rain forests of French Guiana, including Virola and Iryanthera (Myristicaceae), Symphonia (Clusiaceae), and Eperua (Caesalpiniaceae). We analyzed 10-year data sets of mapped and measured saplings (stems >150 cm in height and <10 cm diameter at breast height [dbh]) and trees (stems > or =10 cm dbh) across 37.5 ha of permanent plots covering a 300-ha zone, within which seasonally flooded areas (where the water table never descends below 1 m) have been mapped. Additionally, we tested the response of growth, survival, and leaf functional traits of these species to drought and flood stress in a controlled experiment. We tested for habitat preference using a modification of the torus translation method. Strong contrasting associations of the species pairs of Iryanthera, Virola, and Symphonia were observed at the sapling stage, and these associations strengthened for the tree stage. Neither species of Eperua was significantly associated with flooded habitats at the sapling stage, but E. falcata was significantly and positively associated with flooded forests at the tree stage, and trees of E. grandiflora were found almost exclusively in nonflooded habitats. Differential performance provided limited explanatory support for the observed habitat associations, with only congeners of Iryanthera exhibiting divergent sapling survival and tree growth. Seedlings of species associated with flooded forest tended to have higher photosynthetic capacity than their congeners at field capacity. In addition, they tended to have the largest reductions in leaf gas exchange and growth rate in response to experimental drought stress and the least reductions in response to experimental inundation. The corroboration of habitat association with differences in functional traits and, to a lesser extent, measures of performance provides an explanation for the regional coexistence of these species pairs. We suggest that specialization to seasonally flooded habitats may explain patterns of adaptive radiation in many tropical tree genera and thereby provide a substantial contribution to regional tree diversity.  相似文献   

17.
不同演替阶段中黧蒴栲种群的大小结构与分布格局   总被引:16,自引:0,他引:16  
在中亚热带常绿阔叶林,有代表性地选择三个黧蒴栲群落类型,即黧蒴栲纯林(常绿阔叶林皆伐地自然演替而成的黧蒴栲纯林,用生长锥对优势木进行随机抽查得其最大年龄为13a)、以黧蒴栲为优势种的混交林(经优势木随机抽测其最大年龄为24a)和黧蒴栲已不成为优势种的混交林(实为天然次生林,优势木随机抽测最大年龄为53a)。测定分析结果表明,黧蒴栲群落在自然演替的前期即幼林阶段的种群大小级结构呈典型的三角状增长型;  相似文献   

18.
Trait-based community assembly theory suggests that trait variation among co-occurring species is shaped by two main processes: abiotic filtering, important in stressful environments and promoting similarity, and competition, more important in productive environments and promoting dissimilarity. Previous studies have indeed found trait similarity to decline along productivity gradients. However, these studies have always been done on single trophic levels. Here, we investigated how interactions between trophic levels affect trait similarity patterns along environmental gradients. We propose three hypotheses for the main drivers of trait similarity patterns of plants and herbivores along environmental gradients: (1) environmental control of both, (2) bottom-up control of herbivore trait variation, and (3) top-down control of grass trait variation. To test this, we collected data on the community composition and trait variation of grasses (41 species) and grasshoppers (53 species) in 50 plots in a South African savanna. Structural equation models were used to investigate how the range and spacing of within-community functional trait values of both grasses and their insect herbivores (grasshoppers; Acrididae) respond to (1) rainfall and fire frequency gradients and (2) the trait similarity patterns of the other trophic level. The analyses revealed that traits of co-occurring grasses became more similar toward lower rainfall and higher fire frequency (environmental control), while showing little evidence for top-down control. Grasshopper trait range patterns, on the other hand, were mostly directly driven by vegetation structure and grass trait range patterns (bottom-up control), while environmental factors had mostly indirect effects via plant traits. Our study shows the potential to expand trait-based community assembly theory to include trophic interactions.  相似文献   

19.
Forests experiencing moderate- or mixed-severity fire regimes are presumed to be widespread across the western United States, but few studies have characterized these complex disturbance regimes and their effects on contemporary forest structure. Restoration of pre-fire-suppression open-forest structure to reduce the risk of uncharacteristic stand-replacing fires is a guiding principle in forest management policy, but identifying which forests are clear candidates for restoration remains a challenge. We conducted dendroecological reconstructions of fire history and stand structure at 40 sites in the upper montane zone of the Colorado Front Range (2400-2800 m), sampled in proportion to the distribution of forest types in that zone (50% dominated by ponderosa pine, 28% by lodgepole pine, 12% by aspen, 10% by Douglas-fir). We characterized past fire severity based on remnant criteria at each site in order to assess the effect of fire history on tree establishment patterns, and we also evaluated the influence of fire suppression and climate. We found that 62% of the sites experienced predominantly moderate-severity fire, 38% burned at high severity, and no sites burned exclusively at low severity. The proportion of total tree and sapling establishment was significantly different among equal time periods based on a chi-square test, with highest tree and sapling establishment during the pre-fire-suppression period (1835-1919). Superposed epoch analysis revealed that fires burned during years of extreme drought (95% CI). The major pulse of tree establishment in the upper montane zone occurred during a multidecadal period of extreme drought conditions in the Colorado Front Range (1850-1889), during which 53% of the fires from the 1750-1989 period burned. In the upper montane zone of the Colorado Front Range, historical evidence suggests that these forests are resilient to prolonged periods of severe drought and associated severe fires.  相似文献   

20.
Thaxton JM  Platt WJ 《Ecology》2006,87(5):1331-1337
Small-scale variation in fire intensity and effects may be an important source of environmental heterogeneity in frequently burned plant communities. We hypothesized that variation in fire intensity resulting from local differences in fuel loads produces heterogeneity in pine savanna ground cover by altering shrub abundance. To test this hypothesis, we experimentally manipulated prefire fuel loads to mimic naturally occurring fuel-load heterogeneity associated with branch falls, needle fall near large pines, and animal disturbances in a frequently burned longleaf pine (Pinus palustris) savanna in Louisiana, USA. We applied one of four fuel treatments (unaltered control, fine-fuel removal, fine-fuel addition, wood addition) to each of 540 (1-m2) quadrats prior to growing-season prescribed fires in each of two years (1999 and 2001). In both years fuel addition increased (and fuel removal decreased) fuel consumption and maximum fire temperatures relative to unaltered controls. Fuel addition, particularly wood, increased damage to shrubs, increased shrub mortality, and decreased resprout density relative to controls. We propose that local variation in fire intensity may contribute to maintenance of high species diversity in pine savannas by reducing shrub abundance and creating openings in an otherwise continuous ground cover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号