首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The seasonal speciation of mercury (Hg) was determined in water, soil, and sediments from watersheds located in the North-West province of South Africa. The study area is known to have a long history of mining activities which also include the recovery of gold from old tailings. Both inorganic (IHg) and methyl mercury (MHg) were detected at high concentrations (up to 8480 μg IHg kg?1 and 13 μg MHg kg?1) in surface sediments during dry season. A considerable remobilization of Hg from bottom sediments was observed in water from dry to wet season as well as the migration of Hg away from pollution sources due to seasonal influences. Hg in sediments mostly has been speciated as Hg0. Enhancement of Hg methylation occurred mainly in deeper sediments at regions corresponding to the lowest redox potential, higher pH, and enrichment of IHg. Hg values in borehole waters were very high (up to 3310 ng L?1) suggesting a serious contamination of the site groundwater which needs to be addressed urgently in order to minimize further impact that affects the Vaal River and other water systems located nearby.  相似文献   

2.
Arsenic bioavailability in rock, soil and water resources is notoriously hazardous. Geogenic arsenic enters the body and adversely affects many biochemical processes in animals and humans, posing risk to public health. Chelpu is located in NE Iran, where realgar, orpiment and pyrite mineralization is the source of arsenic in the macroenvironment. Using cluster random sampling strategy eight rocks, 23 soils, 12 drinking water resources, 36 human urine and hair samples and 15 adult sheep urine and wool samples in several large-scale herds in the area were randomly taken for quantification of arsenic in rock/soil/water, wool/hair/urine. Arsenic levels in rock/soil/water and wool/hair/urine were measured using inductively coupled plasma spectroscopy and atomic absorption spectrophotometry, respectively. While arsenic levels in rocks, soils and water resources hazardously ranged 9.40–25,873.3 mg kg?1, 7.10–1448.80 mg kg?1 and 12–606 μg L?1, respectively, arsenic concentrations in humans’ hair and urine and sheep’s wool and urine varied from 0.37–1.37 μg g?1 and 9–271.4 μg L?1 and 0.3–3.11 μg g?1 and 29.1–1015 μg L?1, respectively. Local sheep and human were widely sick and slightly anemic. Hematological examination of the inhabitants revealed that geogenic arsenic could harm blood cells, potentially resulting in many other hematoimmunological disorders including cancer. The findings warn widespread exposure of animals and human in this agroecologically and geopolitically important region (i.e., its proximity with Afghanistan, Pakistan and Turkmenistan) and give a clue on how arsenic could induce infectious and non-infectious diseases in highly exposed human/animals.  相似文献   

3.
A cloud-point extraction (CPE) process using the nonionic surfactant, polyethylene glycol tert octylphenyl ether (Triton X-114) was employed for determination of Hg(II) ions in aqueous solutions. The method is based on the ion-pairing reaction of Hg(II) with Pyronin B (PyrB+) in the presence of excess iodide at pH 6.0 and extraction of the complex formed. The chemical variables affecting CPE efficiency were studied, and the analytical characteristics of the method were obtained. The calibration curves were linear in the range of 1–40 μg L?1 with the detection limits of 0.35 and 0.30 μg L?1 at 556 and 521 nm. Selectivity was also tested. The coefficients of variation of the method are 2.4% and 5.2% for five replicate measurements of mercury at levels of 10 and 25 μg L?1, respectively. The results obtained for two certified reference samples were in a good agreement with the certified values. The method was applied to the determination of total mercury in vegetable samples.  相似文献   

4.
The estimated daily intakes (EDIs) of six trace elements (Cu, Zn, Pb, Cd, Hg, and As) in vegetables (leafy vegetable, i.e., bok choy, fruit vegetables, i.e., cucumber and tomato, and other categories, i.e., mushroom, kidney bean, and potato), cereals (rice and wheat flour), and meats (pork, mutton, and beef) most commonly consumed by adult inhabitants of Qiqihar, Northeastern China, were determined to assess the health status of local people. The average EDIs of Cu, Zn, Pb, Cd, Hg, and As were with 20.77 μg (kg bw)?1 day?1 of Cu, 288 μg (kg bw)?1 day?1 of Zn, 2.01 μg (kg bw)?1 day?1 of Pb, 0.41 μg (kg bw)?1 day?1 of Cd, 0.01 μg (kg bw)?1 day?1 of Hg, and 0.52 μg (kg bw)?1 day?1 of As, respectively, which are below the daily allowance recommended by FAO/WHO. However, the maximum EDIs of Pb and Cd were 4.56 μg (kg bw)?1 day?1 and 1.68 μg (kg bw)?1 day?1, respectively, which are above the recommended levels [i.e., 3.58 μg (kg bw)?1 day?1 for Pb and 1.0 μg (kg bw)?1 day?1 for Cd] by FAO/WHO. This finding indicates that the potential health risk induced by daily ingestion of Pb and Cd for the local residents should receive a significant concern. Similarly, we detected elevated Pb and Cd concentrations, i.e., with average of 13.58 and 0.60 mg kg?1 dw, respectively, in the adult scalp hairs. Consumption of rice, potato, bok choy, and wheat flour contributed to 75 and 82% of Pb and Cd daily intake from foodstuffs. Nevertheless, human scalp hair is inappropriate biological material for determination of the nutritional status of trace elements in this region.  相似文献   

5.
A field survey of mercury pollution in environmental media and human hair samples obtained from residents living in the area surrounding the Chatian mercury mine (CMM) of southwestern China was conducted to evaluate the health risks of mercury to local residents. The results showed that mine waste, and tailings in particular, contained high levels of mercury and that the maximum mercury concentration was 88.50 μg g?1. Elevated mercury levels were also found in local surface water, paddy soil, and paddy grain, which may cause severe health problems. The mercury concentration of hair samples from the inhabitants of the CMM exceeded 1.0 μg g?1, which is the limit recommended by the US EPA. Mercury concentrations in paddy soil were positively correlated with mercury concentrations in paddy roots, stalks, and paddy grains, which suggested that paddy soil was the major source of mercury in paddy plant tissue. The average daily dose (ADD) of mercury for local adults and preschool children via oral exposure reached 0.241 and 0.624 μg kg?1 body weight per day, respectively, which is approaching or exceeds the provisional tolerable daily intake. Among the three oral exposure routes, the greatest contributor to the ADD of mercury was the ingestion of rice grain. Open-stacked mine tailings have resulted in heavy mercury contamination in the surrounding soil, and the depth of appreciable soil mercury concentrations exceeded 100 cm.  相似文献   

6.
The study aimed to examine the contamination status of arsenic (As) in excavated small water bodies, commonly known as ponds – the integral part of daily life in the arsenic-affected rural areas of West Bengal, India in comparison to the unaffected areas. The ponds of the contaminated area had higher levels of As: water 2–174 µg L?1 (mean 31 ± 2 µg L?1) and sediment 1.3–37.3 mg kg?1 (mean 10.3 ± 0.4 mg kg?1), than those from the unaffected area: water 1–8 µg L?1 (mean 4 ± 0 µg L?1) and sediment 1.4–5.3 mg kg?1 (mean 3.0 ± 0.1 mg kg?1). A moderate positive correlation was observed between the water and sediment arsenic content of the ponds of the arsenic-affected region (r = 0.688, n = 277, p < 0.0001). Contaminated ground water, either as direct input or through agricultural washings, was found to be the major contributor of arsenic pollution to these ecosystems. Seasonal variations were not prominent. This study emphasized the beneficial role of using the studied ecosystems over the highly contaminated ground water for various livelihood activities in the Gangetic delta region.  相似文献   

7.
Metal concentrations in sediment and in whole tissue of the benthic polychaete Glycera longipinnis collected along the southwest coast of India were analysed. Relative seasonal accumulation of metals (Cu, Pb, Cr, Ni, Zn, Cd, Hg) was studied by categorising the habitat as less polluted or highly polluted based on metal contamination routed through industrial and urban sources. The metal content in tissues varied seasonally in the ranges, Cu: 2.21–27.08 μg·g?1, Pb: 0.06–4.92 μg·g?1, Cr: 1.73–29.20 μg·g?1, Ni: 1.60–4.61 μg·g?1, Zn: 14.72–82.30 μg·g?1, Cd: 0.04–1.38 μg·g?1and Hg: below decetable limits to 0.86 μg·g?1. Concentration of heavy metals was found to be high in the whole body of G. longipinnis pooled from the polluted transects. The results of this study suggest that G. longipinnis may act as a useful biological indicator for heavy metal pollution along the southwest coast of India.  相似文献   

8.
The effect of calcium and magnesium either singly or in combination on accumulation of cadmium and copper in Labeo rohita (rohu) and Catla catla (catla) was investigated in this study under laboratory conditions. The investigation showed that copper accumulation in rohu exposed to 0.25 mg L?1 of copper for 14 days reduced from 31.0 ± 0.4 mg kg?1 at no calcium/magnesium treatment to 3.5 ± 0.2 and 2.2 ± 0.1 mg kg?1, respectively, at 75 mg L?1 calcium or magnesium treatment. The copper level in catla exposed to 0.20 mg L?1 of copper for 14 days reduced from 5.7 ± 0.1 mg kg?1 at no calcium/magnesium treatment to 3.4 ± 0.2 and 3.3 ± 0.1 mg kg?1, respectively, at 300 mg L?1 calcium or magnesium treatment. The cadmium accumulation in rohu exposed to 0.20 mg L?1 of cadmium for 14 days reduced from 1.7 ± 0.1 mg kg?1 at no magnesium treatment to 1.4 ± 0.1 mg kg?1 at 120 mg L?1 magnesium treatment. The cadmium accumulation in catla exposed to 0.20 mg L?1 of cadmium for 14 days reduced from 0.8 ± 0.2 mg kg?1 at no magnesium treatment to 0.6 ± 0.2 mg kg?1 at 80 mg L?1 magnesium treatment. Copper and cadmium treatments also reduced some essential microelements of rohu and catla. Both the fishes restored these elements at different levels of calcium and magnesium.  相似文献   

9.
Total mercury (HgTOT) concentrations were determined by inductively coupled plasma mass spectrometry (ICP MS) for South African Highveld coals. The distribution of Hg in coals was investigated using a four-stage sequential leaching protocol and isotope dilution/gas chromatography coupled to ICP MS (ID-GC-ICP MS). The results show that HgTOT ranged from 144 to 303?µg?kg?1 with a mean of 199?±?26?µg?kg?1, while HgTOT leached from coals using different solvents ranged between 103 and 310?µg?kg?1 (mean: 218?±?60?µg?kg?1). Hg leaching rates of 53–78% were achieved in crushed coals. Hg0, Hg2+, and CH3Hg+ were identified in all coals. CH3Hg+ in studied coals ranged between 0.1 and 0.4 (mean: 0.2) µg?kg?1. GC ICP MS chromatograms also showed unknown Hg peaks which were identified as other organomercury species such as ethylmercury. Modes of occurrence of Hg in coals were variable with the organic-bound (37–40%) and the sulfide-bound (37–39%) being the dominant mercury forms. Increasing the HCl concentration in the used protocol increased the amount of Hg leached (16%) during this step.  相似文献   

10.
The present work deals with the determination of uranium concentrations in drinking and ground water samples by laser fluorimetry and calculation of cumulative, age-dependent radiation doses to humans. The concentrations were found to be between 0.20 ± 0.03 and 64.0 ± 3.6 μg L?1, with an average of 11.1 ± 1.5 μg L?1, well within the drinking water limit of regulatory bodies. The concentrations of uranium increase with depth of water samples collection. The estimated annual ingestion dose due to the intake of uranium through drinking water for all age groups varied between 0.2 and 137 μSv a?1, with an average of 17.3 μSv a?1. The mean annual ingestion dose is 5% of the global average ingestion dose, for infants, marginally higher than for other age group. Most effective dose values were less than 20 μSv a?1.  相似文献   

11.
Surface and subsurface soil samples contaminated with crude oils were collected from an impacted site at Bodo City in the Niger Delta, Nigeria, after a field reconnaissance survey. An uncontaminated soil sample collected 100 m from the impacted site, but within the same geographical area, was used as a control. Trace elements such as, As, Cu, Cr, Cd, Fe, Pb, Ba, Ni, V, Hg and cation-exchange capacity constituents of the contaminated and uncontaminated soils were determined by atomic absorption spectroscopy. Trace element concentrations were: Cu, 0.5–13.4 mg kg? 1; Cr, 0.2–0.8 mg kg? 1; Fe, 6.2–8.7 mg kg? 1; Ba 80.0–108.0 mg kg? 1; Ni, 0.6–4.8 mg kg? 1; and V, 4.0–9.4 mg kg? 1; cation-exchange capacity ranged from 43.6 to 57.2 mg kg? 1 in surface and subsurface soils. Results showed that eigenvalues for the two first principal components represent up to 49% of the total variance. A positive correlation of the first principal component with Cu, Cr and cation-exchange capacity shows pollution from oil spillage, while a positive correlation of the second principal component with Cr, Fe, V, and dissolved oxygen (DO) shows both oil pollution and allochthonous inputs.  相似文献   

12.
Mercury (Hg) is a potent nephrotoxin. The aim of this study was to investigate the protective role of Curcuma longa extract and curcumin against HgCl2-induced nephrotoxicity. Male Sprague Dawley rats were administered HgCl2 (12 μmol kg?1, ip; once only) followed by treatment of Curcuma longa extract (200 mg kg?1, po) and curcumin (80 mg kg?1, po) for three days after 24 h of HgCl2 administration. The present results showed that mercuric chloride administration caused an impairment of renal function system which was evident from significant increase in urea, creatinine, uric acid, and blood urea nitrogen concentration in serum. In addition, the swelling in glomerulus and degenerated renal tubules with obstructed lumen was also observed by acute mercuric chloride administration. Treatment with Curcuma longa extract and curcumin was effective in restoring all variables of kidney functions near to control group, which was consistent with kidney histoarchitecture. In conclusion, these results suggest that Curcuma longa extract and curcumin protect against HgCl2-induced nephrotoxicity. This study could be important for the further understanding of mercury toxicity in renal tissues and in the development of better treatments for people and/or animals exposed to the metal.  相似文献   

13.
In this investigation, the concentrations of particles in ambient air, gaseous elemental mercury (GEM), and particulate-bound mercury (Hg(p)) in total suspended particulates (TSP) as well as dry deposition at a (Traffic) sampling site at Hung-kuang were studied during the day and night in 2012. The results reveal that the mean concentrations of TSP in ambient air, GEM, and Hg(p) were 69.72 μg/m3, 3.17, and 0.024 ng/m3, respectively, at the Hung-kuang (Traffic) sampling site during daytime sampling periods. The results also reveal that the mean rates of dry deposition of particles from ambient air and Hg(p) were 145.20 μg/m2 min and 0.022 ng/m2 min, respectively, at the Hung-kuang (Traffic) sampling site during the daytime sampling period. The mean concentrations of TSP in ambient air, GEM, and Hg(p) were 60.56 μg/m3, 2.74, and 0.018 ng/m3, respectively, at the Hung-kuang (Traffic) sampling site during the nighttime sampling period. The mean rates of dry deposition of particles and Hg(p) from ambient air were 132.58 μg/m2 min and 0.016 ng/m2 min, respectively, at the Hung-kuang (Traffic) sampling site during the nighttime sampling period.  相似文献   

14.
Sediment samples were collected from Tinishu Akaki River (TAR), Lake Awassa, and Lake Ziway, Ethiopia for determination of mercury. The air-dried samples were analyzed for mercury with a differential atomic absorption spectrometer after thermal evaporation of bound mercury converting it to its atomic form. Certified reference materials (CRMs) of sediments and soils were used to validate the method. The recovery of mercury from CRMs and sediments was in the range of 95–100%. The limit of detection for the determination of mercury was 50?ng?kg?1. The concentration of total mercury in the sediments varied from 3.9 to 110?µg?kg?1 for TAR, 14 to 67?µg?kg?1 for Lake Awassa, and 17 to 110?µg?kg?1 for Lake Ziway. It was found that the total mercury concentrations in all samples were below the United States Environmental Protection Agency guideline of 200?µg?kg?1.  相似文献   

15.
Cleaning validation is a major challenge in multi-product pharmaceutical industries. UV spectrophotometric and HPLC methods have been developed and validated for determination of residual amount of Loratadine. Both methods were validated for linearity, range, accuracy, precision, and robustness. The limit of quantification was 1 mg L?1 by UV spectrophotometric method and 0.5 mg L?1 by HPLC method. A spike recovery study was done on a stainless steel (316 grade) plate and specific residual cleaning level (SRCL) was down to 6 μg 25.8 cm?2. Recovery was found to be more than 70%. Both methods were simple, highly sensitive, precise, and accurate, and have potential of being useful for routine quality control.  相似文献   

16.
Catecholamines and their metabolites affect children's nervous system. Dopamine is an important neurotransmitter in the brain. In the routine analysis for diagnostics of diseases, the dopamine metabolite homovanillic acid (HVA) is determined. Mercury is a neurotoxic agent and can cause different undesirable effects on the brain. In the present work a putative correlation between HVA, the main metabolite of dopamine, and mercury in urine of healthy and autistic children was studied. The level of HVA was higher in the urine of autistic children (14.5 ± 8.3 mg L?1) compared to generally healthy children (4.4 ± 0.5 mg L?1). The level of mercury in the urine of autistic children was lower (0.36 ± 0.24 µg L?1) than in the urine of healthy children (2.1 ± 1.0 µg L?1) showing that there is no correlation between HVA and mercury.  相似文献   

17.
Mercury and arsenic pollution has been recognized as a potential environmental and public health problem for over 40 years. The major source of exposure to mercury for humans is the ingestion of fish. This study was conducted with the aim of determining the levels of mercury and arsenic in the muscles of four fish species caught in the Beheshtabad River and comparing the results with the maximum tolerance levels for mercury and arsenic. The samples of 90 fish were used for the determination of both the metals by graphite furnace atomic absorption spectrometry. The results showed that the concentrations ranged from 1.5 to 3.8 µg kg?1 for mercury and from 35 to 70 µg kg?1 for arsenic, with means of 2.7 ± 0.5 and 57 ± 12 µg kg?1, respectively. Both mean levels were lower than the threshold limits acceptable by WHO standards.  相似文献   

18.

Five centuries of mining and processing of mercury ore in the Idrija area have resulted in widespread contamination of different environmental compartments. Environmental impacts on a regional and local scale, caused by atmospheric emissions from the Idrija ore roasting plant, were established in the investigations of mercury spatial distribution in soil and attic dust in 160 km2 area. Very high values were determined in the Idrijca River valley, and they decrease exponentially with the distance from Idrija. Mercury concentrations in attic dust are higher than in surrounding soils and the attic dust/soil ratio changes with distance. Measurements of mercury in the air confirmed widespread dispersion of mercury and showed highly elevated mercury concentrations around roasting plant and mine ventilation shaft. Beside, systematic monitoring of mercury contents in the stream sediments has demonstrated that huge amounts of mercury are stored in areas where ancient overbank sediments were deposited, and there was no decrease in mercury concentration in active sediments during the last 15 years. Recently, interesting and extremely polluted locations of historical small-scale roasting sites in the Idrija surroundings were discovered. Ongoing geochemical study aims to determine the extreme pollution and significance of these sites for wider contamination of soils and aquatic systems. Presented studies have shown that Hg mining in Idrija caused intense pollution of local and regional environment including the aquatic systems in the Gulf of Trieste, which is seen as the final sink of a major part of the Hg stored in soils and river sediments in the Idrija area.

  相似文献   

19.
Controlled laboratory experiments were conducted to examine how photosynthesis and growth occur in Potamogeton wrightii Morong under different photoperiods and nutrient conditions. The experiment was based on a 3×2 factorial design with three photoperiods (16, 12 and 8 h) of 200 μE · m?2·s?1 irradiance and two nutrient conditions, high (90 μmol N · L?1·d?1 and 9 μmol P · L?1·d?1) and low (30 μmol N L?1·d?1 and 3 μmol P · L?1·d?1). After 14, 28, 56 and 70 days of growth, plants were harvested to determine net photosynthesis rate and various growth parameters. Above- and below-ground biomass were investigated on days 56 and 70 only. Plants under low nutrient conditions had greater leaf area, more chlorophyll a, a higher rate of net photosynthesis and accumulated more above- and below-ground biomass than plants in the high nutrient condition. Plants with an 8 h photoperiod in the low nutrient condition had a significantly higher rate of net photosynthesis, whereas 8 h photoperiod plants in the high nutrient condition had a lower rate of net photosynthesis and their photosynthetic capacity collapsed on day 70. We conclude that P. wrightii has the photosynthetic plasticity to overcome the effects of a shorter photoperiod under a tolerable nutrient state.  相似文献   

20.
Due to its potential toxic properties, metal mobilization is of major concern in areas surrounding Pb–Zn mines. In the present study, metal contents and toxicity of soils, aqueous extracts from soils and mine drainage waters from an abandoned F–Ba–Pb–Zn mining area in Osor (Girona, NE Spain) were evaluated through chemical extractions and ecotoxicity bioassays. Toxicity assessment in the terrestrial compartment included lethal and sublethal endpoints on earthworms Eisenia fetida, arthropods Folsomia candida and several plant species, whereas aquatic tests involved bacteria Vibrio fischeri, microalgae Raphidocelis subcapitata and crustaceans Daphnia magna. Total concentrations of Ba (250–5110 mg kg?1), Pb (940 to >5000 mg kg?1) and Zn (2370–11,300 mg kg?1) in soils exceeded intervention values to protect human health. Risks for the aquatic compartment were identified in the release of drainage waters and in the potential leaching and runoff of metals from contaminated soils, with Cd (1.98–9.15 µg L?1), Pb (2.11–326 µg L?1) and Zn (280–2900 µg L?1) concentrations in filtered water samples surpassing US EPA Water Quality Criteria (2016a, b). Terrestrial ecotoxicity tests were in accordance with metal quantifications and identified the most polluted soil as the most toxic. Avoidance and reproduction tests with earthworms showed the highest sensitivity to metal contamination. Aquatic bioassays performed in aqueous extracts from soils confirmed the results from terrestrial tests and also detected toxic effects caused by the mine drainage waters. Algal growth inhibition was the most sensitive aquatic endpoint. In view of the results, the application of a containment or remediative procedure in the area is encouraged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号