首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study investigated two digestion methods (USEPA 3051: microwave, HNO3 or Hossner: hot plate, HF–H2SO4–HClO4) for heavy metals analysis in contaminated soil surrounding Mahad AD'Dahab mine, Saudi Arabia. Moreover, contamination metal levels were estimated. The Hossner and USEPA 3051 methods showed, respectively, average total contents of 17.2 and 18.1 mg kg?1 for Cd, 11.6 and 10.6 mg kg?1 for Co, 45.7 and 34.7 mg kg?1 for Cr, 1030 and 1100 mg kg?1 for Cu, 33,300 and 27,400 mg kg?1 for Fe, 963 and 872 mg kg?1 for Mn, 33.2 and 22.8 mg kg?1 for Ni, 791 and 782 mg kg?1for Pb, and 6320 and 2870 mg kg?1 for Zn. A lack of significant differences and a high correlation coefficient (>90%) for Cd, Pb and Cu between the two digestion methods suggest that the total-recoverable method (USEPA 3051) may be equivalent to the total-total digestion method (Hossner) for determining these metals in the studied soil. However, significantly higher concentrations of Cr, Fe, Ni and Zn were found by the Hossner method comapred with the USEPA 3051 method. The soil samples have very or extremely high levels of Zn, Cu, Cd and Pb contamination, indicating very high potential ecological risk.  相似文献   

2.
Stabilization of metals with amendments and red fescue (Festuca rubra, cv. Keszthelyi 2) growth was studied on an acidic and phytotoxic mine spoil (pHKCl 3.20–3.26; Cd 7.1 mg kg?1, Cu 120 mg kg?1, Pb 2154 mg kg?1 and Zn 605 mg kg?1) from Gyöngyösoroszi, Hungary in a pot experiment. Raising the pH above 5.0 by lime (CaCO3), and supplementing with 40 mg kg?1nitrogen (NH4NO3) made this material suitable for plant growth. All cultures were limed with 0.5% (m/m) CaCO3 (treatment 1), which was combined with 5% (m/m) municipal sewage sludge compost (treatment 2), 5% (m/m) peat (treatment 3), 7.5% (m/m) natural zeolite (clinoptilolite) (treatment 4), and 0.5 (m/m) KH2PO4 (treatment 5). Treatments 1–5 were combined with each other (treatment 6). After 60 days of red fescue growth, pH of the limed mine spoil decreased in all cultures units. Application of peat caused the highest pH decrease (1.15), while decrease of pH was less than 0.23 in treatments 2, 5 or 6. Application of lime significantly reduced concentrations of metals in the ‘plant available’ fraction of mine spoil compared to non-limed mine spoil. Amendments added to limed mine spoil changed variously the ratio of Cd, Cu, Pb and Zn in exchangeable or ‘plant available’ fractions, differently influencing the phytoavailability of these metals. Most of the metals were captured in the roots of test plants. Treatment 2 caused the appearance of less Cd in shoots (<0.1 μg g?1) or roots (3.11 μg g?1), while treatment 5 resulted in the highest Cd concentration (2.13 μg g?1) in shoots. Treatments did not influence significantly the Cu accumulation in shoots. The Pb accumulation of roots (44.7 μg g?1) was most effectively inhibited by combined treatment, while the highest value (136 μg g?1) was found in the culture treated with potassium phosphate. Pb concentration in shoots was below the detection limit, except for treatments 5 and 6. Peat application resulted in higher Zn concentration (448 μg g?1) in shoots than other amendments, where these values were around 100 μg g?1. All amendments influenced positively the dry matter yield of red fescue grown in limed mine spoil, however the application of 0.5 phosphate was less favourable. Liming, application of amendments and growth of red fescue can stabilize metals in acidic and phytotoxic mine spoil, and by phytostabilization they can reduce the risk of metal contamination of the food chain.  相似文献   

3.
Levels of Pb, Ni, Cr, Cu, Zn, and Cd in the glass screens (GS) and printed wiring boards (PWBs) of obsolete computer monitors (OCMs) were determined by flame atomic absorption spectrophotometry (FAAS) following standard digestion. Metal concentrations (mg kg?1) in GS were in the following ranges (medians in brackets): Pb ND – 3100 (46), Cd 0.5–2.6 (0.8), Cr ND – 18.7 (3.1), and Zn 8.1–600 (37) and in PWBs (mg kg?1): Pb 34,600 ± 17,000, Cd 11 ± 9, Cr 59 ± 45, Zn 15,900 ± 7800, Cu79,000 ± 22,600, and Ni 3200 ± 2500. In GS, the levels of the six metals were lower than their total threshold limit concentrations (TTLC), except for Pb with a TTLC of 1000 mg kg?1 in 10% of the samples. In the PWBs, the TTLC of Pb and Cu (2500 mg kg?1) was exceeded many fold. For Zn (5000 mg kg?1) and Ni (2000 mg kg?1); they were exceeded by 90% and 65%, respectively. For OCMs manufactured in 2001 and later, Pb and Zn levels in GS and Cr, Zn, and Ni in PWBs were significantly reduced.  相似文献   

4.
This study determined the heavy metal concentration in soil and plants at a bone char site in Umuahia, Nigeria. Soil and plant samples collected in a randomized complete block design (RCBD) were analyzed for zinc (Zn), lead (Pb), cadmium (Cd), nickel (Ni), and arsenic (As). The concentration of metals in soil and plants in the vicinity of the bone char site are as follows: Zn (172?mg?kg?1) and Ni (0.62?mg?kg?1) in soil were highest at site P3, Pb (2.37?mg?kg?1) and As (0.08?mg?kg?1) at site P1, and Cd (18.30?mg?kg?1) at site P2. In plants, the concentrations of Zn (41.17?mg?kg?1) and Cd (3?mg?kg?1) were highest in Albizia ferruginea, Ni in Dialium guineense (0.09?mg?kg?1), while Pb was in D. guineense (0.08?mg?kg?1) and Spathodea companulata (0.06?mg?kg?1). The levels of Zn, Cd, Pb, Ni, and As in soil ranged from 11.2 to 172, 2.68 to 18.2, 0.026 to 2.37, 0.33 to 0.62, and 0.02 to 0.08?mg?kg?1, respectively. In plants, the concentration of Zn, Cd, Pb, and Ni ranged from 2.01 to 41.17, 0.12 to 3, 0.02 to 0.08, and 0.03 to 0.09?mg?kg?1, respectively. There were significant correlations between Zn and Cd, and Pb and As in soil. The high concentration of Cd in soil might affect soil productivity.  相似文献   

5.
The objective of this research was to investigate the effects of biosolids on the competitive sorption and lability of the sorbed Cd, Cu, Ni, Pb, and Zn in fluvial and calcareous soils. Competitive sorption isotherms were developed, and the lability of these metals was estimated by DTPA extraction following their sorption. Sorption of all metals was higher in the fluvial than in the calcareous soil. Sorption of Cu and Pb was stronger than that of Cd, Ni, and Zn in all soils. Biosolids application (2.5%) reduced the sorption of all metals especially Cu and Pb (28–43%) in both soils (especially the calcareous soil) at the lower added metal concentrations (50 and 100 mg L?1). However, it increased the sorption of all metals especially Pb and Cu in both soils (especially the calcareous soil; 15.5-fold for Cu) at the higher added concentrations (250 and 300 mg L?1). Nickel showed the highest lability followed by Cd, Zn, and Pb in both soils. Biosolids increased the lability of the sorbed Ni in the fluvial soils at all added concentrations and the lability of Cd, Pb, and Zn at 50 mg L?1, but decreased the lability of Cd, Pb, and Zn at 250 and 300 mg L?1 in both soils. We conclude that at low loading rate (e.g., 50 mg L?1) biosolids treatment might increase the lability and environmental risk of Cd, Cu, Pb, and Zn. However, at high loading rate (e.g., 300 mg L?1) biosolids may be used as an immobilizing agent for Cd, Cu, Pb, Zn and mobilizing agent for Ni.  相似文献   

6.
The estimated daily intakes (EDIs) of six trace elements (Cu, Zn, Pb, Cd, Hg, and As) in vegetables (leafy vegetable, i.e., bok choy, fruit vegetables, i.e., cucumber and tomato, and other categories, i.e., mushroom, kidney bean, and potato), cereals (rice and wheat flour), and meats (pork, mutton, and beef) most commonly consumed by adult inhabitants of Qiqihar, Northeastern China, were determined to assess the health status of local people. The average EDIs of Cu, Zn, Pb, Cd, Hg, and As were with 20.77 μg (kg bw)?1 day?1 of Cu, 288 μg (kg bw)?1 day?1 of Zn, 2.01 μg (kg bw)?1 day?1 of Pb, 0.41 μg (kg bw)?1 day?1 of Cd, 0.01 μg (kg bw)?1 day?1 of Hg, and 0.52 μg (kg bw)?1 day?1 of As, respectively, which are below the daily allowance recommended by FAO/WHO. However, the maximum EDIs of Pb and Cd were 4.56 μg (kg bw)?1 day?1 and 1.68 μg (kg bw)?1 day?1, respectively, which are above the recommended levels [i.e., 3.58 μg (kg bw)?1 day?1 for Pb and 1.0 μg (kg bw)?1 day?1 for Cd] by FAO/WHO. This finding indicates that the potential health risk induced by daily ingestion of Pb and Cd for the local residents should receive a significant concern. Similarly, we detected elevated Pb and Cd concentrations, i.e., with average of 13.58 and 0.60 mg kg?1 dw, respectively, in the adult scalp hairs. Consumption of rice, potato, bok choy, and wheat flour contributed to 75 and 82% of Pb and Cd daily intake from foodstuffs. Nevertheless, human scalp hair is inappropriate biological material for determination of the nutritional status of trace elements in this region.  相似文献   

7.
Twenty trace elements in fine particulate matters (i.e., PM2.5) at urban Chengdu, a southwest megacity of China, were determined to study the characteristics, sources and human health risk of particulate toxic heavy metals. This work mainly focused on eight toxic heavy metal elements (As, Cd, Cr, Cu, Mn, Ni, Pb and Zn). The average concentration of PM2.5 was 165.1 ± 84.7 µg m?3 during the study period, significantly exceeding the National Ambient Air Quality Standard (35 µg m?3 in annual average). The particulate heavy metal pollution was very serious in which Cd and As concentrations in PM2.5 significantly surpassed the WHO standard. The enrichment factor values of heavy metals were typically higher than 10, suggesting that they were mainly influenced by anthropogenic sources. More specifically, the Cr, Mn and Ni were slightly enriched, Cu was highly enriched, while As, Cd, Pb and Zn were severely enriched. The results of correlation analysis showed that Cd may come from metallurgy and mechanical manufacturing emissions, and the other metals were predominately influenced by traffic emissions and coal combustion. The results of health risk assessment indicated that As, Mn and Cd would pose a significant non-carcinogenic health risk to both children and adults, while Cr would cause carcinogenic risk. Other toxic heavy metals were within a safe level.  相似文献   

8.
Temporal variations and correlations between radial oxygen loss (ROL), iron (Fe) plaque formation, cadmium (Cd) and arsenic (As) accumulation were investigated in two rice cultivars at four different growth stages based upon soil pot and deoxygenated solution experiments. The results showed that there were significant differences in ROL (1.1–16 μmol O2 plant?1 h?1), Fe plaque formation (4,097–36,056 mg kg?1), Cd and As in root tissues (Cd 77–162 mg kg?1; As 49–199 mg kg?1) and Fe plaque (Cd 0.4–24 mg kg?1; As 185–1,396 mg kg?1) between these growth stages. ROL and Fe plaque increased dramatically from tillering to ear emergence stages and then were much reduced at the grain-filling stage. Furthermore, significantly positive correlations were detected between ROL and concentrations of Fe, Cd and As in Fe plaque. Our study indicates that increased Fe plaque forms on rice roots at the ear emergence stage due to the increased ROL. This stage could therefore be an important period to limit the transfer and distribution of Cd and As in rice plants when growing in soils contaminated with these toxic elements.  相似文献   

9.
Cadmium (Cd) is a carcinogenic metal contaminating the environment and ending up in wastewaters. There is therefore a need for improved methods to remove Cd by adsorption. Biogenic elemental selenium nanoparticles have been shown to adsorb Zn, Cu and Hg, but these nanoparticles have not been tested for Cd removal. Here we studied the time-dependency and adsorption isotherm of Cd onto biogenic elemental selenium nanoparticles using batch adsorption experiments. We measured ζ-potential values to assess the stability of nanoparticles loaded with Cd. Results show that the maximum Cd adsorption capacity amounts to 176.8 mg of Cd adsorbed per g of biogenic elemental selenium nanoparticles. The ζ-potential of Cd-loaded nanoparticles became less negative from ?32.7 to ?11.7 mV when exposing nanoparticles to an initial Cd concentration of 92.7 mg L?1. This is the first study that demonstrates the high Cd uptake capacity of biogenic elemental selenium nanoparticles, of 176.8 mg g?1, when compared to that of traditional adsorbents such as carboxyl-functionalized activated carbon, of 13.5 mg g?1. An additional benefit is the easy solid–liquid separation by gravity settling due to coagulation of Cd-loaded biogenic elemental selenium nanoparticles.  相似文献   

10.
Contents and changes of some hazardous elements in 388 animal feed and manure samples collected in 2009–2010 from 194 animal farms in 10 provinces of China were determined. The concentrations of Cu, Zn, Cr, and Pb in animal manures were in the ranges of 10–1800, 50–6300, 0.1–340, and 1.0–310 mg kg?1, with median concentrations of 200, 500, 15, and 11 mg kg?1, respectively. As, Cd, and Hg were in ranges from undetectable to 280, undetectable to 10, and 0.01–2.5 mg kg?1, respectively. The concentrations of Cu, Zn, and As were highest in the manure from pig, followed by the manure from poultry and dairy cows. From 1990 to 2010, Cu, Zn, As, Cd, and Cr contents in manure increased strongly, especially in pig and poultry manure. Most of the increases occurred before 2003 and then stabilized or decreased which reflects the extensive use of feed additives before 2003 and the gradual stabilization since then.  相似文献   

11.
Food is the major source of metal exposure for the nonsmoking general population. Food samples of plant and animal origin from Ismailia, Egypt, were analyzed for the content of cadmium (Cd), lead (Pb), chromium (Cr), zinc (Zn), and copper (Cu) using AAS. The Cr, Zn, and Cu concentrations were in the range of 1.7–249?µg?kg?1 wet weight (ww), 2–66?mg?kg?1?ww, and 0.5–3.46?mg?kg?1?ww, respectively. The mean daily intake of Cr, Zn, and Cu was 28.9?µg day?1, 8.55?mg day?1, and 1.7?mg day?1, respectively. The intake estimates are within the range of the recommended intake established internationally. Concentrations of Cd and Pb were in the range of 10–321?µg?kg?1?ww and 31–1200?µg?kg?1?ww, respectively. The weekly dietary intake for Cd and Pb (4.02 and 20.4?µg?kg?1 b.w, respectively) is lower than the FAO/WHO PTWI. Bread is the foodstuff that provided the highest rate of Pb and Cd (62 and 46% of the daily intake) to adults in Ismailia city.  相似文献   

12.
Hyperaccumulation of metals by plants involves at least three processes: efficient absorption by roots, efficient root-to-shoot translocation and hypertolerance through internal detoxification. In this study, Thlaspi caerulescens was separately exposed to Cd and Zn at 0, 50, 100 and 200 μ M for 7 d to monitor plant responses in hydroponics. Significant dose-dependent accumulation was observed for both metals, mainly in roots (up to 3.2 and 9.2 mg g ?1 for Cd and Zn, respectively). However, Cd was more phytotoxic in terms of plant growth and photosynthesis. This higher toxicity was also evidenced by MetPLATE bioassay. Root exudation was significantly correlated to Cd and Zn translocation (r>0.85) proving its involvement in facilitating metal uptake. As for antioxidative responses, plants reacted to Cd and Zn by broadly exhibiting an elevation of glutathione reductase activity before declining at 200 μ M due to higher phytotoxicity. By contrast, superoxide dismutase activity was unlikely to be affected by both metals. Root-to-shoot apoplastic flow was traced using a fluorescent dye (trisodium-8-hydroxy-1,3,6-pyrenetrisulfonic acid; PTS), whose concentration in leaves increased to a certain extent with Cd and Zn accumulation, indicating that heavy metals have a comparable effect to drought or salinity in promoting the passive diffusion of water and solutes. Nevertheless, Cd at 200 μ M hindered the diffusion of PTS and consequently affected the apoplastic transport in plants.  相似文献   

13.
In this study, the effect of silicon (Si) addition on cadmium (Cd) toxicity in rice seedlings was investigated. After a series of screening experiments, 50 μmol·L?1 of Cd and 10 μ mol·L?1 of Si were selected. Treatment of rice seedlings with Cd (50 μ mol·L?1) resulted in significant accumulation of this metal in roots and shoots. The data revealed that accumulation of Cd resulted in oxidative stress in rice seedlings as evidenced by increased accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA; a peroxidation product of lipids). However, addition of Si (10 μ mol·L?1) together with Cd prevented accumulation of Cd, H2O2 and MDA. Antioxidant capacity was decreased by Cd but enhanced by Si addition. Cd decreased the length and frequency of root hairs, stomatal frequency, and distorted leaf mesophyll cells and vascular bundles. However, addition of Si together with Cd reduced these abnormalities. The results showed that addition of exogenous Si protected rice seedlings against Cd toxicity by preventing Cd accumulation and oxidative stress (H2O2 and MDA accumulation) by increasing Si accumulation and antioxidant capacity, which maintained the structure and integrity of leaf and root.  相似文献   

14.
The study deals with the toxicological impact of cadmium nanoparticles (Cd NPs) on Bacillus subtilis as a model Gram-positive bacterium. Cadmium oxide (CdO) NPs (~22 nm) and cadmium sulfide (CdS) NPs (~3 nm) were used in this study. Both the NPs were found to inhibit the cell viability of B. subtilis when added to the culture at mid-log phase, the viable cell number declined with increasing concentration of Cd NPs. At mid-log phase, 15 mg L?1 CdO NPs inhibited growth by ~50%, whereas at 30 mg L?1 growth completely ceased. Under the same conditions, CdS NPs inhibited growth by ~50% at a concentration of 8 mg L?1, and at 20 mg L?1 growth was completely retarded. The cells changed their morphological features to a filamentous form with increasing Cd NPs exposure time, leading to associated with clumping. NPs treated cells when stained with 4′, 6-diamino-2-phenylindole, showed filamentous multinucleated bead structure, suggesting irregularities in cell division. Increasing intracellular oxidative stress due to Cd NPs exposure might be one of the reasons for the cell morphological changes and toxicity in B. subtilis.  相似文献   

15.
Tadpoles of the common freshwater Sunda toad, Duttaphrynus melanostictus (Amphibia, Bufonidae), were exposed for a 4-day period under laboratory conditions to copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb), nickel (Ni), iron (Fe), aluminum (Al), and manganese (Mn) at various concentrations. Mortality was assessed and median times of death (LT50) and lethal concentrations (LC50) were calculated. LT50 and LC50 increased with the decrease in mean exposure times and concentrations for all metals. LC50 (96?h) for Cu, Cd, Zn, Pb, Ni, Fe, Al, and Mn were 0.03, 0.3, 4.2, 1.5, 8.8, 0.4, 1.9, and 39?mg?L?1, respectively. Cu was the most toxic to D. melanostictus, followed by Cd, Fe, Al, Pb, Zn, Ni, and Mn (Cu?>?Cd?>?Fe?>?Al?>?Pb?>?Zn?>?Ni?>?Mn). Duttaphrynus melanostictus is similarly sensitive to these metals as other amphibian tadpoles.  相似文献   

16.
Metal concentrations in sediment and in whole tissue of the benthic polychaete Glycera longipinnis collected along the southwest coast of India were analysed. Relative seasonal accumulation of metals (Cu, Pb, Cr, Ni, Zn, Cd, Hg) was studied by categorising the habitat as less polluted or highly polluted based on metal contamination routed through industrial and urban sources. The metal content in tissues varied seasonally in the ranges, Cu: 2.21–27.08 μg·g?1, Pb: 0.06–4.92 μg·g?1, Cr: 1.73–29.20 μg·g?1, Ni: 1.60–4.61 μg·g?1, Zn: 14.72–82.30 μg·g?1, Cd: 0.04–1.38 μg·g?1and Hg: below decetable limits to 0.86 μg·g?1. Concentration of heavy metals was found to be high in the whole body of G. longipinnis pooled from the polluted transects. The results of this study suggest that G. longipinnis may act as a useful biological indicator for heavy metal pollution along the southwest coast of India.  相似文献   

17.
The Bursa region of Turkey has important agricultural production areas. Animal producers use agricultural fields in this region for disposal of manure. Therefore, in this study the concentrations of the seven trace metals Zn, Mn, Cu, Ni, Cr, Pb, and Cd in 324 animal feed and manure samples from three dairy cattle, three laying hens farms, and three broiler farms have been determined. The average concentrations in dairy cattle manure were 130 (Zn), 150 (Mn), 4.2 (Cu), 6.8 (Ni), 44 (Cr), 0.8 (Pb), and 0.09 (Cd) mg kg?1 dry weight; for laying hens manure 240 (Zn), 190 (Mn), 0.63 (Cu), 3.8 (Ni), 30 (Cr), 0.55 (Pb), and 0.12 (Cd) mg kg?1 dry weight; and for broiler manure 240 (Zn), 280 (Mn), 1.4 (Cu), 3.8 (Ni), 35 (Cr), 3.4 (Pb), and 0.16 (Cd) mg kg?1 dry weight. The calculated trace metal loading rate indicated that manure application might pose a potential risk to agricultural fields according to the current soil protection regulations of Turkey.  相似文献   

18.
The present study evaluated the beneficial effect of acetyl-L-carnitine (ALC) on subacute chlorpyrifos (CPF)-induced alterations in serum lipid profiles and some biomarkers of oxidative stress in Wistar rats. Twenty-eight adult male rats divided into four groups of seven animals each (group I–IV) were used: I (S/oil) received soya oil (2 ml kg?1), II (ALC) received ALC (300 mg kg?1); III (CPF) received CPF (8.5 mg kg?1 ~ 1/10th LD50); IV (ALC+CPF) was pretreated with ALC (300 mg kg?1) and then exposed to CPF (8.5 mg kg?1), 30 min later. The treatment was orally for 28 days duration. Sera obtained from blood samples were evaluated for the levels of triglyceride (TG), total cholesterol (TC), high density lipoprotein-cholesterol (HDL-c), malondialdehyde (MDA), and the activities of superoxide dismutase (SOD) and catalase (CAT). The levels of low density lipoprotein-cholesterol (LDL-c), very low density lipoprotein-cholesterol (VLDL-c), and atherogenic index (AI) were calculated. The result showed that elevated levels of TG, TC, LDL-c, VLDL-c, AI, and MDA, and the decreased levels of HDL-c, CAT, and SOD induced by CPF were modulated by ALC. It was concluded that ALC ameliorated the alterations in serum lipid and oxidative stress induced by CPF exposure in the rats, partly through its antioxidant properties.  相似文献   

19.
Estuarine sediments in the<63 μm size fraction were collected from 15 stations within the Tambaraparni River Estuary, located on the east coast of India. The distribution of the heavy metals Cd, Co, Cr, Cu, Ni, Pb and Zn was recorded. Our analysis distinguished two groups of elements. First, Cd, Pb and Zn, which occurred in higher than expected concentrations indicative of pollution, and second, Co, Cr, Cu and Ni, which occurred at background levels. The highest metal concentration found in the study area was for Zn (1200 μ g·g?1), and the lowest was for Cd (0.42 μ g·g?1). It is presumed that river run-off, industrial waters and untreated domestic waters are major contributors to heavy metal pollution in the Tambaraparni River Estuary. The concentrations of heavy metal species in surface sediments (<2 m water depth) of the Tambaraparni Estuary were studied to determine the extent of anthropogenic inputs from catchment areas and to understand anthropogenic effects on geochemical process in this tropical estuarine system.  相似文献   

20.
The level of accumulation of selected essential and non-essential metals, namely; Ca, Cu, Fe, Zn, Mn, Cd, Pb, and Cr have been investigated in the seeds, fruits, and flowers of some medicinal plants utilized for tapeworm treatment in Ethiopia and their respective soil samples. These include seed of Cucurbita maxima (Duba), fruit of Embelia abyssinica (Ankoko), flowers of Hagenia abyssinica (Kosso), and fruits of Rosa abyssinica (Kega) and their respective soil samples. A wet digestion procedure with a mixture of conc. HNO3 and HClO4 for the plant samples and a mixture of conc. HNO3, HCl, and H2O2 for soil samples were used to solubilize the metals. Ca (1280–12,670?mg?kg?1) was the predominant metal followed by Fe (104–420?mg?kg?1), and Zn (18–185?mg?kg?1) in all the plant materials except for Hagenia abyssinica flower from Hirna in which Mn (16–42?mg?kg?1) followed by Fe. Among the non-essential toxic metals, Pb was not detected in Cucurbita maxima of Boji, Gedo and Hirna origins and in Rosa abyssinica of Hirna site. Similarly, Cr was not detected in Rosa abyssinica fruits of Boji and Gedo sites. The sampled soils were found to be between strongly acidic to weakly basic (pH: 4.7–7.1). In the soil samples, Ca (8528–18,900?mg?kg?1) was the most abundant metal followed by Fe (417–912?mg?kg?1), Zn (155–588?mg?kg?1), Mn (54–220?mg?kg?1), Cr (21–105. mg?kg?1), Cu (11–58?mg?kg?1), Pb (13–32?mg?kg?1) and Cd (2.8–4.8?mg?kg?1). The levels of most of the metals determined in the medicinal plants and the respective soil samples are in good agreement with those reported in the literature and the standards set for the soil by various legislative authorities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号