首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Advances in pollination ecology from tropical plantation crops   总被引:3,自引:0,他引:3  
Although ecologists traditionally focus on natural ecosystems, there is growing awareness that mixed landscapes of managed and unmanaged systems provide a research environment for understanding basic ecological relationships on a large scale. Here, we show how tropical agroforestry systems can be used to develop ideas about the mechanisms that influence species diversity and subsequent biotic interactions at different spatial scales. Our focus is on tropical plantation crops, mainly coffee and cacao, and their pollinators, which are of basic ecological interest as partners in an important mutualistic interaction. We review how insect-mediated pollination services depend on local agroforest and natural habitats in surrounding landscapes. Further, we evaluate the functional significance of pollinator diversity and the explanatory value of species traits, and we provide an intercontinental comparison of pollinator assemblages. We found that optimal pollination success might be best understood as a consequence of niche complementarities among pollinators in landscapes harboring various species. We further show that small cavity-nesting bees and small generalist beetles were especially affected by isolation from forest and that larger-bodied insects in the same landscapes were not similarly affected. We suggest that mixed tropical landscapes with agroforestry systems have great potential for future research on the interactions between plants and pollinators.  相似文献   

2.
Birds defend oil palms from herbivorous insects.   总被引:3,自引:0,他引:3  
Top-down forces are expected to be important in regulating herbivore populations in most agricultural systems where primary productivity is high and species diversity is low. Under such conditions, trophic cascades are predicted to occur when predator populations are reduced or removed. Studies on how predator removal indirectly affects herbivory rates in agricultural systems are lacking. Through a bird-exclosure experiment, I test the hypothesis that insectivorous birds indirectly defend oil palms (Elaeis guineensis) from herbivorous insects. Results show that bird exclusion significantly increased herbivory damage to oil palms, and that the size of this exclusion effect increased with bird density, although the latter result was not statistically significant. These findings suggest that insectivorous birds deliver a natural pest control service for oil palm agriculture, which is important not only for the direct benefits it delivers for human welfare, but also in strengthening the economic justifications for conserving the remaining natural habitats and biodiversity in agricultural landscapes.  相似文献   

3.
Persistence of Forest Birds in the Costa Rican Agricultural Countryside   总被引:8,自引:1,他引:8  
Abstract:  Understanding the persistence mechanisms of tropical forest species in human-dominated landscapes is a fundamental challenge of tropical ecology and conservation. Many species, including more than half of Costa Rica's native land birds, use mostly deforested agricultural countryside, but how they do so is poorly known. Do they commute regularly to forest or can some species survive in this human-dominated landscape year-round? Using radiotelemetry, we detailed the habitat use, movement, foraging, and nesting patterns of three bird species, Catharus aurantiirostris , Tangara icterocephala , and Turdus assimilis , by obtaining 8101 locations from 156 individuals. We chose forest birds that varied in their vulnerability to deforestation and were representative of the species found both in forest and human-dominated landscapes. Our study species did not commute from extensive forest; rather, they fed and bred in the agricultural countryside. Nevertheless, T. icterocephala and T. assimilis , which are more habitat sensitive, were highly dependent on the remaining trees. Although trees constituted only 11% of land cover, these birds spent 69% to 85% of their time in them. Breeding success of C. aurantiirostris and T. icterocephala in deforested habitats was not different than in forest remnants, where T. assimilis experienced reduced breeding success. Although this suggests an ecological trap for T. assimilis , higher fledgling survival in forest remnants may make up for lower productivity. Tropical countryside has high potential conservation value, which can be enhanced with even modest increases in tree cover. Our findings have applicability to many human-dominated tropical areas that have the potential to conserve substantial biodiversity if appropriate restoration measures are taken.  相似文献   

4.
Abstract: Interfaces between terrestrial and stream ecosystems often enhance species diversity and population abundance of ecological communities beyond levels that would be expected separately from both the ecosystems. Nevertheless, no study has examined how stream configuration within a watershed influences the population of terrestrial predators at the drainage‐basin scale. We examined the habitat and abundance relationships of forest insectivorous birds in eight drainage basins in a cool temperate forest of Japan during spring and summer. Each basin has different drainagebasin geomorphology, such as the density and frequency of stream channels. In spring, when terrestrial arthropod prey biomass is limited, insectivorous birds aggregated in habitats closer to streams, where emerging aquatic prey was abundant. Nevertheless, birds ceased to aggregate around streams in summer because terrestrial prey became plentiful. Watershed‐scale analyses showed that drainage basins with longer stream channels per unit area sustained higher densities of insectivorous birds. Moreover, such effects of streams on birds continued from spring through summer, even though birds dispersed out of riparian areas in the summer. Although our data are from only a single year, our findings imply that physical modifications of stream channels may reduce populations of forest birds; thus, they emphasize the importance of landscape‐based management approaches that consider both stream and forest ecosystems for watershed biodiversity conservation.  相似文献   

5.
As tropical regions are converted to agriculture, conservation of biodiversity will depend not only on the maintenance of protected forest areas, but also on the scope for conservation within the agricultural matrix in which they are embedded. Tree cover typically retained in agricultural landscapes in the neotropics may provide resources and habitats for animals, but little is known about the extent to which it contributes to conservation of animal species. Here, we explore the animal diversity associated with different forms of tree cover for birds, bats, butterflies, and dung beetles in a pastoral landscape in Nicaragua. We measured species richness and abundance of these four animal taxa in riparian and secondary forest, forest fallows, live fences, and pastures with high and low tree cover. We recorded over 20,000 individuals of 189 species including 14 endangered bird species. Mean abundance and species richness of birds and bats, but not dung beetles or butterflies, were significantly different among forms of tree cover. Species richness of bats and birds was positively correlated with tree species richness. While the greatest numbers of bird species were associated with riparian and secondary forest, forest fallows, and pastures with >15% tree cover, the greatest numbers of bat species were found in live fences and riparian forest. Species assemblages of all animal taxa were different among tree cover types, so that maintaining a diversity of forms of tree cover led to conservation of more animal species in the landscape as a whole. Overall, the findings indicate that retaining tree cover within agricultural landscapes can help conserve animal diversity, but that conservation efforts need to target forms of tree cover that conserve the taxa that are of interest locally. Preventing the degradation of remaining forest fragments is a priority, but encouraging farmers to maintain tree cover in pastures and along boundaries may also make an important contribution to animal conservation.  相似文献   

6.
Intensification of food production in tropical landscapes in the absence of land‐use planning can pose a major threat to biological diversity. Decisions on whether to spatially integrate or segregate lands for production and conservation depend in part on the functional relations between biological diversity and agricultural productivity. We measured diversity, density, and species composition of birds along a gradient of production intensification on an agricultural frontier of the Argentine Chaco, where dry tropical forests are cleared for cattle production. Bird species diversity in intact forests was higher than in any type of cattle‐production system. Bird species richness decreased nonlinearly as cattle yield increased. Intermediate‐intensity silvopastoral systems, those in which forest understory is selectively cleared to grow pastures of non‐native plants beneath the tree canopy, produced 80% of the mean cattle yield obtained in pastures on cleared areas and were occupied by 70–90% of the number of bird species present in the nearest forest fragments. Densities of >50% of bird species were significantly lower in open pastures than in silvopastoral systems. Therefore, intermediate‐intensity silvopastoral systems may have the greatest potential to sustain cattle yield and conserve a large percentage of bird species. However, compared with low‐intensity production systems, in which forest structure and extent were intact, intermediate‐intensity silvopastoral systems supported significantly fewer forest‐restricted bird species and fewer frugivorous birds. These data suggest that the integration of production and conservation through intermediate‐intensity silvopastoral systems combined with the protection of forest fragments may be required to maintain cattle yield, bird diversity, and conservation of forest‐restricted species in this agricultural frontier. Compromisos entre la Producción de Ganado y la Conservación de Aves en una Frontera Agrícola del Gran Chaco de Argentina  相似文献   

7.
Effect of Human Disturbance on Bee Communities in a Forested Ecosystem   总被引:11,自引:0,他引:11  
Abstract:  It is important for conservation biologists to understand how well species persist in human-dominated ecosystems because protected areas constitute a small fraction of the Earth's surface and because anthropogenic habitats may offer more opportunities for conservation than has been previously thought. We investigated how an important functional group, pollinators (bees; Hymenoptera: Apiformes), are affected by human land use at the landscape and local scales in southern New Jersey (U.S.A.). We established 40 sites that differed in surrounding landscape cover or local habitat type and collected 2551 bees of 130 species. The natural habitat in this ecosystem is a forested, ericaceous heath. Bee abundance and species richness within forest habitat decreased, not increased, with increasing forest cover in the surrounding landscape. Similarly, bee abundance was greater in agricultural fields and suburban and urban developments than in extensive forests, and the same trend was found for species richness. Particular species groups that might be expected to show greater sensitivity to habitat loss, such as floral specialists and bees of small or large body size, did not show strong positive associations with forest habitat. Nevertheless, 18 of the 130 bee species studied were positively associated with extensive forest. One of these species is a narrow endemic that was last seen in 1939. Our results suggest that at least in this system, moderate anthropogenic land use may be compatible with the conservation of many, but not all, bee species.  相似文献   

8.
Global insect pollinator declines have prompted habitat restoration efforts, including pollinator-friendly gardening. Gardens can provide nectar and pollen for adult insects and offer reproductive resources, such as nesting sites and caterpillar host plants. We conducted a review and meta-analysis to examine how decisions made by gardeners on plant selection and garden maintenance influence pollinator survival, abundance, and diversity. We also considered characteristics of surrounding landscapes and the impacts of pollinator natural enemies. Our results indicated that pollinators responded positively to high plant species diversity, woody vegetation, garden size, and sun exposure and negatively to the separation of garden habitats from natural sites. Within-garden features more strongly influenced pollinators than surrounding landscape factors. Growing interest in gardening for pollinators highlights the need to better understand how gardens contribute to pollinator conservation and how some garden characteristics can enhance the attractiveness and usefulness of gardens to pollinators. Further studies examining pollinator reproduction, resource acquisition, and natural enemies in gardens and comparing gardens with other restoration efforts and to natural habitats are needed to increase the value of human-made habitats for pollinators.  相似文献   

9.
Both birds and bats are important insect predators in tropical systems. However, the relative influence of birds and bats on insect populations and their indirect effects on leaf damage have not previously been investigated in tropical forest restoration sites. Leaf damage by herbivorous insects can negatively affect the growth and survival of tropical plants and thus can influence the success of tropical forest restoration efforts. We used an exclosure experiment to examine the top-down effects of birds and bats on insects and leaf damage in a large-scale forest restoration experiment. Given the potential influence of tree planting design on bird and bat abundances, we also investigated planting design effects on bird and bat insectivory and leaf damage. The experiment included two planting treatment plots: islands, where trees were planted in patches, and plantations, where trees were planted in rows to create continuous cover. In both types of plots, insect biomass was highest on tree branches where both birds and bats were excluded from foraging and lowest on branches without exclosures where both birds and bats were present. In the island plots, birds and bats had approximately equal impacts on insect populations, while in plantations bats appeared to have a slightly stronger effect on insects than did birds. In plantations, the levels of leaf damage were higher on branches where birds and bats were excluded than on branches where both had access. In island plots, no significant differences in leaf damage were found between exclosure treatments although potential patterns were in the same direction as in the plantations. Our results suggest that both birds and bats play important roles as top predators in restoration systems by reducing herbivorous insects and their damage to planted trees. Tropical restoration projects should include efforts to attract and provide suitable habitat for birds and bats, given their demonstrated ecological importance.  相似文献   

10.
Spatial and Seasonal Patterns of Bird Communities in Italian Agroecosystems   总被引:2,自引:0,他引:2  
Abstract:  Despite agricultural landscapes covering almost 60% of the total land area of Italy, knowledge of the effects of agriculture and its intensification on bird communities is still scarce. I analyzed the effects of land uses on bird diversity and community structure in different farmland habitats of lowland northwestern Italy. I surveyed breeding and overwintering birds with a hierarchically nested sampling design and used generalized linear and mixed models to investigate the relationships between the diversity and abundance of birds and habitat or landscapes attributes. The effects of agriculture on α avian diversity varied with season and spatial scale, whereas nonagricultural habitats (long-term fallows or woodlands) had a generally positive effect that was constant throughout time and space. As the amount of woodland habitat increased, spatial turnover (β diversity) of breeding birds decreased. Arable landscapes supported low levels of avian diversity throughout the year but were favored by emblematic farmland birds that have declined severely in Europe and in the study area. Farmland birds (40% of which are experiencing population declines) were more abundant or foraged more frequently in the less-disturbed habitat types such as fallows, grasslands, and winter stubbles and tended to avoid the prevailing cultivations (maize, vineyard, and wheat). Landscape simplification, the expansion of maize cultivation, winter plowing practices, and the conversion of highly diverse grasslands to tilled lands are likely to be responsible for the local decline of most farmland species (Skylark [Alauda arvensis ], Starling [Sturnus vulgaris ], buntings [Emberiza spp.], and wagtails [Motacilla spp.]) and for the increase of birds that are turning into agricultural pests (Hooded Crow [Corvus corone cornix ]).  相似文献   

11.
Research on urban insect pollinators is changing views on the biological value and ecological importance of cities. The abundance and diversity of native bee species in urban landscapes that are absent in nearby rural lands evidence the biological value and ecological importance of cities and have implications for biodiversity conservation. Lagging behind this revised image of the city are urban conservation programs that historically have invested in education and outreach rather than programs designed to achieve high‐priority species conservation results. We synthesized research on urban bee species diversity and abundance to determine how urban conservation could be repositioned to better align with new views on the ecological importance of urban landscapes. Due to insect pollinators’ relatively small functional requirements—habitat range, life cycle, and nesting behavior—relative to larger mammals, we argue that pollinators put high‐priority and high‐impact urban conservation within reach. In a rapidly urbanizing world, transforming how environmental managers view the city can improve citizen engagement and contribute to the development of more sustainable urbanization.  相似文献   

12.
Abstract:  Since 1960, most of the forest surrounding the La Selva Biological Station, an intensively studied tropical research facility in Costa Rica, has been converted to agricultural uses. We used quantitative censuses and analysis of previously published categorical abundances to assess changes in the bird community, and we evaluated potential causes of species-specific changes by assessing their association with habitat, diet, participation in mixed-species flocks, and nest type. Approximately the same percentage of species increased as decreased in abundance from 1960 to 1999 (10–20% of all species, depending on method of assessment). Diet was the single most important trait associated with declining species. At least 50% of the species that declined have insectivorous diets. Use of forest habitat and participation in mixed-species flocks were also significant factors associated with declines, but nest type was unrelated to change in abundance. The species that increased in abundance tended to occur in open habitats and have omnivorous diets. These results reinforce the importance of several population risk factors associated with tropical understory insectivory and mixed-species flocking: patchy spatial distribution, low population density, large home range, and dietary specialization. La Selva's protected area (1611 ha), despite a forested connection on one boundary with a higher elevation national park, is apparently too small to maintain at least one major guild (understory insectivores). This first quantitative assessment of bird community change at La Selva highlights the need to intensify study of the mechanisms and consequences of biological diversity change in tropical forest fragments.  相似文献   

13.
To meet the growing demand for chocolate, cocoa (Theobroma cacao) agriculture is expanding and intensifying. Although this threatens tropical forests, cocoa sustainability initiatives largely overlook biodiversity conservation. To inform these initiatives, we analyzed how cocoa agriculture affects bird diversity at farm and landscape scales with a meta-analysis of 23 studies. We extracted 214 Hedges' g* comparisons of bird diversity and 14 comparisons of community similarity between a forest baseline and 4 farming systems that cover an intensification gradient in landscapes with high and low forest cover, and we summarized 119 correlations between cocoa farm features and bird diversity. Bird diversity declined sharply in low shade cocoa. Cocoa with >30% canopy cover from diverse trees retained bird diversity similar to nearby primary or mature secondary forest but held a different community of birds. Diversity of endemic species, frugivores, and insectivores (agriculture avoiders) declined, whereas diversity of habitat generalists, migrants, nectarivores, and granivores (agriculture associates) increased. As forest decreased on the landscape, the difference in bird community composition between forest and cocoa also decreased, indicating agriculture associates replaced agriculture avoiders in forest patches. Our results emphasize the need to conserve forested landscapes (land sparing) and invest in mixed-shade agroforestry (land sharing) because each strategy benefits a diverse and distinct biological community.  相似文献   

14.
Abstract: Studies of fragmented landscapes, especially in the tropics, have traditionally focused on the native fragments themselves, ignoring species distributions in surrounding agricultural or other human-dominated areas. We sampled moth species richness within a 227-ha forest fragment and in four surrounding agricultural habitats (coffee, shade coffee, pasture, and mixed farms) in southern Costa Rica. We found no significant difference in moth species richness or abundance among agricultural habitats, but agricultural sites within 1 km of the forest fragment had significantly higher richness and abundance than sites farther than 3.5 km from the fragment. In addition, species composition differed significantly between distance classes ( but not among agricultural habitats), with near sites more similar to forest than far sites. These results suggest that (1) different agricultural production regimes in this region may offer similar habitat elements and thus may not differ substantially in their capacities to support native moth populations and (2) that the majority of moths may utilize both native and agricultural habitats and move frequently between them, forming "halos" of relatively high species richness and abundance around forest fragments. Correlations between species richness and the amount of nearby forest cover, measured over circles of various radii around the sites, suggest that halos extend approximately 1.0–1.4 km from the forest edge. The extent of these halos likely differs among taxa and may influence their ability to survive in fragmented landscapes.  相似文献   

15.
Abstract:  As tropical forests are cleared, a greater proportion of migratory songbirds are forced to winter in agricultural and disturbed habitats, which, if poorer in quality than natural forests, could contribute to population declines. We compared demographic indicators of habitat quality for a focal species, the American Redstart ( Setophaga ruticilla ), wintering in Jamaican citrus orchards and shade coffee plantations with those in four natural habitats: mangrove, coastal scrub, coastal palm, and dry limestone forests. Demographic measures of habitat quality included density, age and sex ratio, apparent survival, and changes in body mass. Measures of habitat quality for redstarts in citrus and coffee habitats were generally intermediate between the highest (mangrove) and lowest (dry limestone) measurements from natural habitats. The decline in mean body mass over the winter period was a strong predictor of annual survival rate among habitats, and we suggest that measures of body condition coupled with survival data provide the best measures of habitat quality for nonbreeding songbirds. Density, which is far easier to estimate, was correlated with these more labor-intensive measures, particularly in the late winter when food is likely most limiting. Thus, local density may be useful as an approximation of habitat quality for wintering migrant warblers. Our findings bolster those of previous studies based on bird abundance that suggest arboreal agricultural habitats in the tropics can be useful for the conservation of generalist, insectivorous birds, including many migratory passerines such as redstarts.  相似文献   

16.
Summary I monitored the temporal pattern of diurnal feeding activity in several wood warbler (Parulidae) species and concomitantly recorded the numbers of active (flying) insects in 2 willow habitats in the western United States. At one site the temporal relationship between the density of active and inactive (nonflying) insects was investigated. The diurnal patterns of insect and bird activity were inversely related and each pattern was significantly nonuniform throughout the day; the wood warblers were largely inactive during the middle of the day when insects were most active.As foliage-gleaning birds, wood warblers depend primarily on the availability of inactive (nonflying) insects that they pick from the foliage, and they appear to be limited in their foraging activity by the unavailability of such insects during midday. Interestingly, the duration of midday inactivity for a given bird species varied inversely with the proportion of time that species spent flycatching. Thus, food availability may play an important role in determining the temporal patterns of feeding activity in these insectivorous bird species.  相似文献   

17.
The impacts of land‐use change on biodiversity in the Himalayas are poorly known, notwithstanding widespread deforestation and agricultural intensification in this highly biodiverse region. Although intact primary forests harbor many Himalayan birds during breeding, a large number of bird species use agricultural lands during winter. We assessed how Himalayan bird species richness, abundance, and composition during winter are affected by forest loss stemming from agriculture and grazing. Bird surveys along 12 elevational transects within primary forest, low‐intensity agriculture, mixed subsistence agriculture, and intensively grazed pastures in winter revealed that bird species richness and abundance were greatest in low‐intensity and mixed agriculture, intermediate in grazed pastures, and lowest in primary forest at both local and landscape scales; over twice as many species and individuals were recorded in low‐intensity agriculture than in primary forest. Bird communities in primary forests were distinct from those in all other land‐use classes, but only 4 species were unique to primary forests. Low‐, medium‐, and high‐intensity agriculture harbored 32 unique species. Of the species observed in primary forest, 80% had equal or greater abundance in low‐intensity agricultural lands, underscoring the value of these lands in retaining diverse community assemblages at high densities in winter. Among disturbed landscapes, bird species richness and abundance declined as land‐use intensity increased, especially in high‐intensity pastures. Our results suggest that agricultural landscapes are important for most Himalayan bird species in winter. But agricultural intensification—especially increased grazing—will likely result in biodiversity losses. Given that forest reserves alone may inadequately conserve Himalayan birds in winter, comprehensive conservation strategies in the region must go beyond protecting intact primary forests and ensure that low‐intensity agricultural lands are not extensively converted to high‐intensity pastures.  相似文献   

18.
Effects of Land Use on Bird Species Richness in Sulawesi, Indonesia   总被引:11,自引:0,他引:11  
Abstract:  There is still much debate over the potential value of land-use systems for the maintenance of tropical biodiversity. An increasing number of studies indicate that much forest biodiversity can also be found in the agricultural landscape matrix. Because there is little information on the potential value of land-use systems for tropical forest bird species, we conducted repeated point counts in near-primary forest, adjacent young secondary forest, modernized cacao agroforestry systems, and annual cultures at submontane elevations in central Sulawesi, Indonesia. Species richness decreased from natural forest and young secondary forest to agroforestry systems and annual cultures. Although species richness was similar between natural and young secondary forest, the number of endemic bird species was significantly lower in second-growth forest. Species composition gradually changed as the habitat changed from natural to secondary forest, agroforestry systems, and annual cultures. Despite close proximity to near-primary forest, the agroforestry systems studied supported only a few small frugivorous-nectarivorous species. Our results suggest that secondary forest could play an important role in the conservation of many Sulawesi bird species, but, although suitable for colonization, its potential to sustain populations over the long term is unknown. Improvement of the landscape matrix for biodiversity conservation through secondary habitats therefore seems desirable to enlarge the ranges of forest species, but the fight against land conversion within protected areas of the region should be of much higher importance, at least at present.  相似文献   

19.
Human activity causes abrupt changes in resource availability across the landscape. In order to persist in human-altered landscapes organisms need to shift their habitat use accordingly. Little is known about the mechanisms by which whole communities persist in human-altered landscapes, including the role of complementary habitat use. We define complementary habitat use as the use of different habitats at different times by the same group of species during the course of their activity period. We hypothesize that complementary habitat use is a mechanism through which native bee species persist in human-altered landscapes. To test this idea, we studied wild bee communities in agro-natural landscapes and explored their community-level patterns of habitat and resource use over space and time. The study was conducted in six agro-natural landscapes in the eastern United States, each containing three main bee habitat types (natural habitat, agricultural fields, and old fields). Each of the three habitats exhibited a unique seasonal pattern in amount, diversity, and composition of floral resources, and together they created phenological complementarity in foraging resources for bees. Individual bee species as well as the bee community responded to these spatiotemporal patterns in floral availability and exhibited a parallel pattern of complementary habitat use. The majority of wild bee species, including all the main crop visitors, used fallow areas within crops early in the season, shifted to crops in mid-season, and used old-field habitats later in the season. The natural-forest habitat supported very limited number of bees, mostly visitors of non-crop plants. Old fields are thus an important feature in these arable landscapes for maintaining crop pollination services. Our study provides a detailed examination of how shifts in habitat and resource use may enable bees to persist in highly dynamic agro-natural landscapes, and points to the need for a broad cross-habitat perspective in managing these landscapes.  相似文献   

20.
Patterns of Rarity in the Birds of the Atlantic Forest of Brazil   总被引:1,自引:0,他引:1  
Patterns of rarity in species are generally explained by several factors: evolutionary history, spatial distribution, and genetic structure of each taxon. Human intervention also leads to or increases rarity in species. The discernment of causes of rarity is essential to the understanding of extinction patterns, and thus to devising conservation strategies. I examine patterns of rarity among bird species in the Atlantic forest region in Brazil, one of the most threatened ecosystems in the world. I assigned bird species to one of eight possible categories that differ in degree of vulnerability and that are based on three parameters of rarity: geographic distribution, habitat specificity, and population size. The Atlantic forest avifauna is a highly endangered group; 68% of the species are rare. Patterns of rarity among the birds in the region likely result from their specific ecologies or evolutionary histories. In addition, human alteration of natural habitats and hunting pressures have undoubtedly influenced rarity for a number of species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号