首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 275 毫秒
1.
G. Magnusson 《Marine Biology》1997,130(2):203-208
The ratio of variable fluorescence to maximal fluorescence (F v/F m) was measured during a night and day cycle in five different macroalgae growing in the littoral zone at the Swedish west coast; the green algae Ulva lactuca, Cladophora sp. and Enteromorpha flexousa, the red alga Ceramium nodulosum and the brown alga Fucus vesiculosus. All the green algae and C. nodulosum showed both diurnal fluctuations in F v/F m during days of high light intensities and a significant negative correlation between F v/F m and photon irradiance (PI). An attempt has been made to improve calculations of macroalgal net growth based on carbon fixation (αnet) considering this diurnal change in F v/F m. By assuming that the negative linear correlation between F v/F m and the maximum quantum yield for photosynthesis (Φ) is proportional to that between F v/F m and αnet, it was possible to include the daily variation of αnet due to photoinhibition. To compensate for the variation of F v/F m, a representative value for each day was obtained by weighting all values of F v/F m over the diurnal period in relation to total PI. For all algal species there was a fairly good agreement between this representative value and the F v/F m value measured around noon. As the daily representative F v/F m value showed a negative linear correlation with the daily mean PI, it was possible to correct αnet for differences of daily mean PI. Received: 10 March 1997 / Accepted: 25 August 1997  相似文献   

2.
In eutrophic areas, green macroalgae are frequently and for long periods arranged in mats, resulting in a steep light gradient. This study investigates the effect of this gradient on physiological characteristics [tissue nitrogen content, maximal photosynthetic efficiency (Fv/Fm), glutathione levels and redox ratio, absorbance and absorption spectra] of the green macroalga Ulva spp. Mats were sampled during the build-up (June), stationary (July), and decomposing (September) phases of a macroalgal bloom in the Veerse Meer, a eutrophic brackish (salinity 15–20 psu) lake in the southwest Netherlands. Water samples were taken for nutrient analyses. At all three sampling dates, the mats were composed almost entirely of Ulva spp.; in September the mats were in decay and covered with silt and epiphytes. In June and July, total dissolved inorganic nitrogen concentration (DIN) of the water within the mat was significantly higher than outside the mat. Pronounced vertical differences were found in tissue N, Fv/Fm values, total glutathione levels, glutathione redox ratios, and absorbance. In June and July, tissue N decreased from over 2.2% dry weight (DW; N-sufficient) in the bottom layers to around 1% DW (minimum level for survival) in the top layers. Wide-band absorption increased with depth in the mat and throughout the season, probably due to higher Chl a and b and lutein contents. The shape of the absorption spectrum was similar for all layers. The absorption of the silt/epiphyte film on the top Ulva layer was highest; its absorption spectrum (high absorption in the 500–560 nm range) indicates that the film on the top layers of the macroalgal mats mainly consisted of diatoms. In June, Fv/Fm and the glutathione redox ratio of the algae increased with depth in the layer, while total glutathione decreased. Low Fv/Fm values in the bottom and middle layers in September reflect the bad condition of the algae; the mats were largely decaying. It is concluded that multiple growth-limiting gradients occur in macroalgal mats: upper layers suffer from nitrogen limitation and photoinhibition while bottom layers are light limited. The algae in the mat acclimatize to low light conditions by increasing their absorption through increased pigment contents and by higher photosynthetic efficiency during the build-up and stationary period. This study qualifies the glutathione redox ratio as a promising candidate for stress indicator in macroalgae and provides suggestions for its further development.Communicated by S.A. Poulet, Roscoff  相似文献   

3.
The photosynthetic responses of the south Pacific kelp Lessonia nigrescens of the coast of Valdivia, Chile (40°S), were investigated by exposing its different thallus parts, fronds, stipes and holdfasts, to UV radiation in the laboratory. Biologically effective doses (BEDphotoinhibition300) between 400 and 800 kJ m−2 were required for a 40% inhibition in photosynthesis under UVA+UVB radiation. At BEDphotoinhibition300 close to 250 kJ m−2 (in treatments without UVB), the inhibition of photosynthesis did not exceed 20%. These UV doses were in the range of current daily doses measured in Valdivia on cloudless summer days. In general, exposure to UVB for periods longer than 12 h reduced photosynthesis, measured as maximal quantum yield (F v/F m) and electron transport. The fronds were the most UV-sensitive section of this alga, coinciding with the highest pigments contents and carbon fixation. Evidence of a photodamage was also seen. After a 48 h exposure to PAR+UVA+UVB, a decrease of F v/F m in the fronds was close to 41%, while in the stipes and holdfasts it was 12 and 18%, respectively. Although the thalli from the different size classes showed marked differences in their morphology and morphometry, no obvious differences in the UV tolerance of the fronds were detected. The results indicated that the UV-related responses are integrated in the suite of morpho-functional adaptations of the alga. Although the fronds are spatially more exposed to solar radiation than basal structures (stipes and holdfast), due their high turnover rate they may compensate better detrimental effects of UV. In contrast, stipes and the holdfast are key support structures characterized by low replacement rates and designed to confer hydrodynamic resistance to drag forces.  相似文献   

4.
Lessonia nigrescens and Durvillaea antarctica, two large sub-Antarctic brown algae from the southern Chilean coast, were exposed to solar UV radiation in an outdoor system during a summer day (for 11 h) as well as to artificial UV radiation under controlled laboratory conditions at two temperatures (15 and 20 °C) for 72 h. Chlorophyll a fluorescence–based photoinhibition of photosynthesis was measured during the outdoor exposure, while electron transport rates, lipid peroxidation, antioxidant activity and content of phlorotannins were determined at different time intervals during the laboratory exposure. Under natural solar irradiances in summer, both species displayed well-developed dynamic photoinhibition: F v/F m values decreased by 70 % at noon coinciding with the levels of PAR >1,500 μmol m?2 s?1 and UV-B radiation >1 W m?2 and recovered substantially in the afternoon. In treatments including UV radiation, recovery in D. antarctica started already during the highest irradiances at noon. The results from laboratory exposures revealed that (a) elevated temperature of 20 °C exacerbated the detrimental effects of UV radiation on photochemical parameters (F v/F m and ETR); (b) peroxidative damage measured as MDA formation occurred rapidly and was strongly correlated with the decrease in F v/F m, especially at elevated temperature of 20 °C; (c) the antioxidant activity and increases in soluble phlorotannins were positively correlated mainly in response to UV radiation; (d) phlorotannins were rapidly induced but strongly impaired at 20 °C. In general, short-term (2–6 h) exposures to enhanced UV radiation and temperature were effective to activate the photochemical and biochemical defenses against oxidative stress, and they continued operative during 72 h, a time span clearly exceeding the tidal or diurnal period. Furthermore, when algae were exposed to dim light and control temperature of 15 °C for 6 h, F v/F m increased and lipid peroxidation decreased, indicating consistently that algae retained their ability for recovery. D. antarctica was the most sensitive species to elevated temperature for prolonged periods in the laboratory. Although no conclusive evidence for the effect of the buoyancy of fronds was found, the interspecific discrepancies in thermo-sensitivity in the UV responses found in this study are consistent with various ecological and biogeographical differences described for these species.  相似文献   

5.
Zoospores, gametophytes, young sporophytes and discs cut from mature sporophytes of Laminaria digitata, L. hyperborea and L. saccharina were exposed in the laboratory to UV-radiation, with a spectral composition and irradiance similar to natural sunlight, for periods ranging from 15 min to 8 d, and were then returned to white light. Germination of zoospores and the growth of gametophytes were reduced after exposures to UV longer than 1 h, whereas UV had little effect on the growth of young or mature sporophytes unless exposure continued for more than 48 h. The variable fluorescence (F v:Fm) of all stages was strongly reduced immediately after short exposures to UV, but recovered almost completely within 24 h. However, exposure of gametophytes to UV for >4 h resulted in little or no recovery of F v:Fm, whereas >16 h of UV were required to produce this result in young sporophytes, and >48 h in mature sporophytes. Thus, sensitivity to UV-radiation decreased from gametophytes to sporophytes, and with increasing age of sporophytes, but, in gametophytes, growth appeared to be a more sensitive indicator of UV-damage than F v:Fm after 24 h recovery. The responses to UV of the zoospores and gametophytes of all three species were similar, but both growth and fluorescence measurements suggested that the sporophytes of L. saccharina were more sensitive to UV than those of the other two species.  相似文献   

6.
Non-motile organisms of intertidal shores such as seaweeds have to cope with a great variability of environmental factors. In this survey, we studied whether different morphotypes of the intertidal seaweed Fucus spiralis L. are also reflected in a characteristic performance. Desiccation and recovery of this Phaeophyceae were investigated in field experiments near Aljezur, Portugal. Fucus spiralis is exposed to serious desiccation during periods of falling tide, resulting in a tissue water loss of about 90%. Due to large semidiurnal tidal ranges in this area, two morphotypes can be distinguished: F. spiralis growing in the lower intertidal (LZ) is thicker and fleshier compared with plants in the upper intertidal (HZ), and this is reflected in a significant difference in fresh and dry mass. During sunny days and at low tide, effective quantum yields (ΦPSII) decreased significantly after 2 h desiccation. This continued until re-submersion. The photosynthetic performances of HZ and LZ plants also differed significantly after LZ plants were already submerged and photosynthetisizing, but the HZ specimens still exposed to air. Recovery experiments after desiccation treatments showed fast recovery within 6 min after re-submersion in both morphotypes. HZ specimens showed a slower recovery, which indicates a protection measure to the adverse conditions in the upper intertidal. In 24 h desiccation treatments, however, HZ specimens expressed a significantly higher maximum fluorescence yield F v /F m recovery. Simulated rainfalls during low tides caused photosynthetic activity to drop to 50% of initial F v /F m , independent of the length of the rain period. Treated plants also fully recovered after 6 min re-submersion in seawater. A comparison of single fronds and tufts clearly indicated advantages of the tuft growth strategy: tufts showed higher ΦPSII at prolonged emersion times. Our study indicated a clear relationship between size and drought resistance, which was primarily due to the smaller and hardy HZ plants that withstand longer desiccation times without damage.  相似文献   

7.
The effects of light exposure on the photosynthetic activity of kleptoplasts were studied in the sacoglossan mollusc Elysia viridis. The photosynthetic activity of ingested chloroplasts was assessed in vivo by non-destructively measuring photophysiological parameters using pulse amplitude modulation (PAM) fluorometry. Animals kept under starvation were exposed to two contrasting light conditions, 30 μmol photons m−2 s−1 (low light, LL), and 140 μmol photons m−2 s−1 (high light, HL), and changes in photosynthetic activity were monitored by measuring the maximum quantum yield of photosystem II (PSII), F v/F m, the minimum fluorescence, F o, related to chlorophyll a content, and by measuring rapid light-response curves (RLC) of relative electron transport rate (rETR). RLCs were characterised by the initial slope of the curve, αRLC, related to efficiency of light capture, and the maximum rETR level, rETRm,RLC, determined by the carbon-fixation metabolism. Starvation induced the decrease of all photophysiological parameters. However, the retention of photosynthetic activity (number of days for F v/F m > 0), as well as the rate and the patterns of its decrease over time, varied markedly with light exposure. Under HL conditions, a rapid, exponential decrease was observed for F v/F m, αRLC and rETRm,RLC, F o not showing any consistent trend of variation, and retention times ranged between 6 and 15 days. These results suggested that the retention of chloroplast functionality is limited by photoinactivation of PSII reaction center protein D1. In contrast, under LL conditions, a slower decrease in all parameters was found, with retention times varying from 15 to 57 days. F v/F m, αRLC and rETRm,RLC exhibited a bi-phasic pattern composed by a long phase of slow decrease in values followed by a rapid decline, whilst F o decayed exponentially. These results were interpreted as resulting from lower rates of D1 photoinactivation under low light and from the gradual decrease in carbon provided by photosynthesis due to reduction of functional photosynthetic units.  相似文献   

8.
This study employed polyphasic chlorophyll a fluorescence transients (OJIP), a non-invasive marker of environmental stress in plants, to evaluate salt tolerance in three different Juncus roemerianus age classifications (6-, 24-, and 60-months). Following exposure to elevated salts (30 psu), the younger plants sustained growth, which was comparable to freshwater controls. While older (60-month) plants receiving only freshwater also grew over the 8-week study, the older salt-treated plants did not increase in size. Similarly, there were significant declines in variable chlorophyll a fluorescence parameters (F v/F m and F v/F o), electron transport flux per reaction center (ETo/RC), and photosystem II performance index (PIABS) for 60-month J. roemerianus following salt treatment. These responses were not evident in the two younger salt-treated age classifications. Our results suggest that older J. roemerianus are less tolerant to rapid and sudden increases in salinity relative to younger plants and that this age-specific response may help explain observed discrepancies in salt tolerance in J. roemerianus.  相似文献   

9.
Scleractinian symbiotic corals living in the Ligurian Sea (NW Mediterranean Sea) have experienced warm summers during the last decade, with temperatures rapidly increasing, within a few days, to 3–4°C above the mean value of 24°C. The effect of elevated temperatures on the photosynthetic efficiency of zooxanthellae in symbiosis with temperate corals has not been well investigated. In this study, the corals, Cladocora caespitosa and Oculina patagonica were collected in the Ligurian Sea (44°N, 9°E), maintained during 2 weeks at the mean summer temperature of 24°C and then exposed during 48 h to temperatures of 24 (control), 27, 29 and 32°C. Chlorophyll (chl) fluorescence parameters [F v/F m, electron transport rate (ETR), non-photochemical quenching (NPQ)] were measured using pulse amplitude modulated (PAM) fluorimetry before, during the thermal increase, and after 1 and 7 days of recovery (corals maintained at 24°C). Zooxanthellae showed a broad tolerance to temperature increase, since their density remained unchanged and there was no significant reduction in their maximum quantum yield (F v/F m) or ETR up to 29°C. This temperature corresponded to a 5°C increase compared to the mean summer temperature (24°C) in the Ligurian Sea. At 32°C, there was a significant decrease in chl contents for both corals. This decrease was due to a reduction in the chl/zooxanthellae content. For C. caespitosa, there was also a decrease in ETRmax, not associated with a change in F v/F m or in the non-photochemical quenching (NPQ); for O. patagonica, both ETRmax and F v/F m significantly decreased, and NPQmax showed a significant increase. Damages to the photosystem II appeared to be reversible in both corals, since F v/F m values returned to normal after 1 day at 24°C. Zooxanthellae in symbiosis with the Mediterranean corals investigated can therefore be considered as resistant to short-term increases in temperature, even well above the maximum temperatures experienced by these corals in summer.  相似文献   

10.
Effects of high irradiance on photosynthetic characteristics were examined in sporophytes of the kelp Laminaria saccharina Lamour. from 1992 to 1994. Exposure to high irradiance (700 mol photons m-2s-1) for 1 h at optimal temperature (12°C) caused a 40 to 60% decline in photosynthetic efficiency (alpha), quantum yield, and the ratio of variable to maximum chlorophyll fluorescence (Fv/Fm), an indicator of Photosystem II efficiency. Although the photoinhibition effects were partly attributable to protective mechanisms, a concurrent increase in minimal fluorescence (Fo) indicated damage to Photosystem II reaction centers. The magnitude of photoinhibition was proportional to irradiance and duration; however, Fv/Fm was significantly reduced after exposure to irradiances as low as 40 to 50 mol photons m-2s-1 for 1 h, or to 700 mol photons m-2s-1 for only 5 min. In contrast, photosynthetic capacity (Pmax) was affected only at much higher irradiance. Superoptimal temperatures up to 24°C did not exacerbate high-light effects. At 25°C, however, alpha and Pmax were more susceptible to photoinhibition than at lower temperatures. Recovery from photoinhibition was examined by following Fv/Fm and Fo for 24 h after exposure to high light. Recovery of Fv/Fm was fastest during the first 1 to 3 h, and slowed or ceased after 6 to 12 h, while recovery of Fo was relatively constant over 12 h. Dithiothreitol, which blocks formation of energy-dissipating xanthophylls, reduced both the initial rate and extent of recovery. Chloramphenicol, which blocks chloroplast-encoded protein synthesis, had little effect on initial rates of recovery, but stopped recovery after 3 h. Thus, L. saccharina appears to rely on the xanthophyll cycle to protect the photosynthetic apparatus, and reversal of this protective mechanism causes the rapid initial recovery in Fv/Fm. Longterm recovery depends on repair of damaged reaction centers. Both the rate and extent of recovery were temperature-dependent. The initial rate was higher at 18 to 22°C than at 12°C, but the extent of recovery over 24 h declined with increasing temperature. High temperatures, therefore, appear to enhance protective mechanisms, but disrupt repair processes. L. saccharina from Long Island Sound, an ecotype adapted to low light and high temperature, showed slightly but consistently greater effects of photoinhibition than plants from the Atlantic coast of Maine, but exhibited faster recovery at superoptimal temperatures.  相似文献   

11.
Tolerance to hyposalinity of the scleractinian coral S. radians was examined in a mesocosm study. Colonies of S. radians were collected from five basins in Florida Bay, USA, which occur along a northeast-to-southwest salinity gradient. Salinity treatments were based on historical salinity records for these basins. Photophysiology of the endosymbiont Symbiodinium spp. (maximum quantum yield; F v/F m) was measured as an indicator of holobiont stress to hyposalinity. Colonies from each basin were assigned four salinity treatments [The Practical Salinity Scale (PSS) was used to determine salinity. Units are not assigned to salinity values because it is a ratio and has no unit as defined by UNESCO (UNESCO Technical papers no. 45, IAPSO Pub. Sci. No. 32, Paris, France, 1985)] (30, 20, 15, and 10) and salinities were reduced 2 per day from ambient (30) to simulate a natural salinity decrease. Colonies treated with salinities of 20 and 15 showed no decrease in F v/F m versus controls (i.e. 30), up to 5 days after reaching their target salinity. This indicates a greater ability to withstand reduced salinity for relatively extended periods of time in S. radians compared to other reef species. Within 1 day after salinity of 10 was reached, there was a significant reduction in F v/F m, indicating a critical threshold for hyposaline tolerance. At the lowest treatment salinity (10), F v/F m for the more estuarine, northeast-basin colonies were significantly higher than the most marine southwest-basin colonies (Twin Key Basin). Our results suggest that historical salinity ranges within basins determine coral population salinity tolerances.  相似文献   

12.
K. Véliz  M. Edding  F. Tala  I. Gómez 《Marine Biology》2006,149(5):1015-1024
The effects of exposure to ultraviolet radiation (UVR), 280–400 nm, in different life histories and development stages of the kelps, Lessonia nigrescens and L. trabeculata, collected in the south-east Pacific coast (30°S) were evaluated in the laboratory. Germination and viability (motile zoospores, settled spores), diameter of the primary cell of the gametophytes, percentage of female gametophytes, fertility and sporophytes production were measured after exposure to three radiation treatments (PAR; PAR + UVA; PAR + UVA + UVB). The effects of UVR in young sporophytes (diploid stage) were evaluated as changes in maximal quantum yield of chlorophyll fluorescence of photosystem II (PSII) (F v/F m). A significant decrease in all variables was observed for the treatment that included UVB (PAR + UVA + UVB) after 2 and 4 h of exposure, in relation to the control. The motile spores were more sensitive to UVR exposure compared to settled spores and gametophytes, suggesting that along with an increase in ontogenetic development; there is an increase in the tolerance to UVR. In addition, it was observed that early stages of the intertidal L. nigrescens were more tolerant to UVR compared to the subtidal L. trabeculata. These results allow initially to infer that UVR may be regarded as an important environmental factor influencing the upper limit of distribution of these species, mainly through its detrimental effects on the early stages of the life cycle.  相似文献   

13.
The combined effects of exposure to copper and temperature were investigated in adult specimens and germlings of the canopy-forming brown alga Fucus serratus. A matrix of four temperatures, 6, 12, 17 and 22 °C, and three concentrations of copper, 0, 100 and 1,000 nM total copper were used. Measured endpoints were growth rate, chlorophyll fluorescence parameters and for germlings also survival. The growth rate of adult specimens of F. serratus changed with increasing temperature. Growth tended to be negatively affected by high concentrations of copper when exposed to heat (22 °C) though not significantly so. The photosynthetic performance (i.e., chlorophyll fluorescence parameters: F v/F m, maximum electron transport rate (ETRmax) and maximum non-photosynthetic quenching (NPQmax) of adults was largely unaffected by both copper and temperature. Germling survival, growth rate and chlorophyll fluorescence parameters were affected by the combination of copper concentration and temperature. Increasing temperature led to reduced survival, increased rhizoid growth and higher F v/F m and ETRmax, whereas high copper concentration had a negative effect on the latter three endpoints. The negative effect of high copper concentration was amplified by high temperature. We conclude that juveniles of F. serratus are more susceptible to environmental stressors than adult specimens and recommend therefore including early life stages when assessing the risk of exposure to toxic compounds. Considering the response of adult specimens only may lead to false conclusions regarding the ecological impact of environmental stress.  相似文献   

14.
Three marine diatoms Lauderia annulata Cleve, Odontella sinensis (Greville) Grunow and Thalassiosira rotula Meunier were exposed to ultraviolet (UV) radiation of different wavebands under controlled laboratory conditions (0.035 vol% CO2, 18 °C). Several changes in the patterns of pigments in these organisms were seen depending on the waveband of UV radiation and species examined. UV-B and UV-B plus UV-A radiation led to a reduction in the overall pigment content of all three diatoms. The uptake of 15N-ammonium was less affected by 5-h UV-A (WG 320) but significantly reduced after UV-B and UV-B plus UV-A exposure. The pattern of free amino acid pools varied depending on the applied UV wavebands and the tested diatom. The main protein-bound amino acids of T. rotula decreased after 5-h UV irradiance except leucine. Contents of adenosine 5′-mono-, di-, and triphosphate (AMP, ADP and ATP) were affected differently by UV radiation; ATP values increased at the end of UV-B and UV-B plus UV-A exposure. These results have been discussed with reference to the impact of the different UV sources and the influence on the nitrogen metabolism in connection to pigments and supply with energy. Received: 13 May 1997 / Accepted: 11 October 1997  相似文献   

15.
A future business-as-usual scenario (A1FI) was tested on two bloom-forming cyanobacteria of the Baltic Proper, Nodularia spumigena and Aphanizomenon sp., growing separately and together. The projected scenario was tested in two laboratory experiments where (a) interactive effects of increased temperature and decreased salinity and (b) interactive effects of increased temperature and elevated levels of pCO2 were tested. Increased temperature, from 12 to 16 °C, had a positive effect on the biovolume and photosynthetic activity (F v/F m) of both species. Compared when growing separately, the biovolume of each species was lower when grown together. Decreased salinity, from 7 to 4, and elevated levels of pCO2, from 380 to 960 ppm, had no effect on the biovolume, but on F v/F m of N. spumigena with higher F v/F m in salinity 7. Our results suggest that the projected A1FI scenario might be beneficial for the two species dominating the extensive summer blooms in the Baltic Proper. However, our results further stress the importance of studying interactions between species.  相似文献   

16.
G. Döhler 《Marine Biology》1992,112(3):485-489
Natural marine phytoplankton populations from the German Wadden Sea and unialgal cultures of the haptophycean Phaeocystis pouchetii were tested in 1989 under controlled UV-B stress conditions. Assimilation of 15N-nitrate in phytoplankton consisting mainly of P. pouchetii, or in pure cultures of this alga, was found to be very sensitive to enhanced UV-B dosage in comparison 15N-ammonia uptake. In contrast, in phytoplankton samples containing Ceratium spp., Coscinodiscus sp., Noctiluca sp. or others, rate of 15NO3 - uptake was higher and only slightly affected by UV-B irradiance compared to the P. pouchetii sample. UV-B inhibitory effect on uptake of inorganic nitrogen by P. pouchetii was more pronounced under strong white-light conditions and after a UV-B pre-illumination period of several hours than under low white light. Pools of glutamine and alanine decreased after UV-B exposure. Results are discussed with reference to the damaging effects of white light and UV-B on nitrogen metabolism.  相似文献   

17.
The effect of ammonium concentration on photosynthetic activity estimated as in vivo chlorophyll fluorescence, i.e. maximal quantum yield (Fv/Fm) and electron transport rate (ETR) and on the accumulation of mycosporine-like amino acids (MAAs), chlorophyll a (chl a), biliproteins (BP) and soluble proteins (SP) in the red algae Porphyra leucosticta Thuret in Le Jolis collected from Lagos (Málaga, Spain) and Porphyra umbilicalis (Linnaeus) J. Agardh from Helgoland (Germany) was evaluated. Discs of both species were incubated with three ammonium concentrations (0, 100 and 300 µM) under artificial PAR and UV radiation for 7 days. Photosynthetic activity decreased under the culture conditions due to UV radiation and ammonium availability. The decrease of both Fv/Fm and maximal ETR was related to ammonium supply, i.e. the lowest decrease occurred in algae growing with the highest concentration of ammonium. In both species, after 7 days of culture, the content of chl a, BP and SP was higher under 300 µM than that under 0 and 100 µM ammonium. In both species, the content of MAAs was increased under 300 µM ammonium compared to the initial value, whereas a decrease under 0 and 100 µM ammonium was observed only in P. leucosticta. The content of MAAs in P. umbilicalis did not present significant differences compared to the initial value, probably because of the high initial content of MAAs. In both Porphyra species, four MAAs were identified: shinorine, porphyra-334, palythine and asterina-330. However, P. leucosticta modified its MAA pattern during the incubation time, reaching the same percentages found for P. umbilicalis, which did not show any change during the experimental period. P. leucosticta exhibited a decrease in BP/SP and BP/chl a ratios through the incubation time and an increase in MAAs/BP. The ratio MAAs/chl a did not show any variation with time or treatment, as was also true for all ratios in P. umbilicalis. In summary, ammonium supply diminished the decrease of Fv/Fm, increased the content of photosynthetic pigments (chlorophyll and biliprotein) and soluble protein, and stimulated of the accumulation of MAAs in the red algae P. leucosticta and P. umbilicalis.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

18.
Giant clams form a symbiosis with photosynthetic algae of the genus Symbiodinium that reside in clam mantle tissue. The allometry of symbiont photosynthetic performance was investigated as a mechanism for the increasing percentage of giant clam carbon respiratory requirements provided by symbionts as clam size increases. Chlorophyll fluorescence measurements of symbionts of the giant clam Tridacna maxima were measured during experiments conducted in September of 2009 using specimens 0.5–200 g tissue wet weight (3–25 cm long), collected from waters around southern Taiwan (N 21°36′, E 120°47′) from July to August of 2009. Light-dependent decreases in effective quantum yield (∆F/F m′) calculated as the noontime maximum excitation pressure over PSII (Q m), relative electron transport rates (rETR), and dark-adapted maximum quantum yield (F v/F m) all varied as a quadratic function of clam size. Both Q m and rETR increased as clam size increased up to ~10–50 g then decreased as clam size increased. F v/F m decreased as clam size increased up to ~5–50 g then increased as clam size increased. Chlorophyll fluorescence measurements of rETR were positively correlated with gross primary production measured during chamber incubations. Overall, symbionts of mid-sized clams ~5–50 g exhibited the highest light-dependent decreases in effective photosynthetic efficiencies, the highest relative electron transport rates, and the lowest maximum photosynthetic efficiencies, and symbiont photosynthetic performance is allometric with respect to host clam size.  相似文献   

19.
Diurnal variability in chlorophyll fluorescence caused by dynamic irradiance conditions is an important issue when using pulse amplitude modulation fluorometry to measure physiological conditions of plants at the landscape scale. We examined the use of slopes and y-intercepts of diurnal effective photochemical efficiency of photosystem II (PSII) (ΔF/F m′) versus photosynthetically active radiation (PAR) regressions in addition to direct measurements of maximum photochemical efficiencies of PSII (F v/F m) values to assess physiological status of Thalassia testudinum seedlings in a controlled mesocosm study. Seedlings were exposed to two light treatments (full sun and 50–70 % light reduction) and three salinity treatments (20, 35, and 50). Measurements were taken at 0600, 0900, 1200, 1500, 1800, and 2100 hours in order to assess the diurnal variation in photochemical efficiency of PSII and PAR, with measurements at 2100 providing F v/F m. Results indicated significant effects of light and salinity on regression y-intercepts and measured F v/F m values. Shaded seedlings had higher values for both parameters, suggesting low-light acclimation. The highest salinity treatment resulted in significant reductions for both parameters, suggesting stress. Stress was also indicated by significant reductions in both seedling leaf growth and mean differences between seedling leaves and media osmolalities in the hypersaline treatments (152.0 ± 26.4 vs. 630 ± 40.2 mmol kg?1 for the control treatments). Slopes of ΔF/F m′ versus PAR significantly differed with varying light treatments, with full sun seedlings exhibiting shallower slopes than shaded seedlings, indicating higher efficiency of dissipation of excess energy (photoprotection). These experimental results confirm field data suggesting that diurnal ΔF/F m′ versus PAR regressions are responsive to changes in the physiological status of T. testudinum and that the y-intercepts of diurnal regressions may be used as a proxy for F v/F m.  相似文献   

20.
This study examined the capacity for photoprotection and repair of photo-inactivated photosystem II in the same Symbiodinium clade associated with two coexisting coral species during high-light stress in order to test for the modulation of the symbiont’s photobiological response by the coral host. After 4 days exposure to in situ irradiance, symbionts of the bleaching-sensitive Pocillopora damicornis showed rapid synthesis of photoprotective pigments (by 44 %) and strongly enhanced rates of xanthophyll cycling (by 446 %) while being insufficient to prevent photoinhibition (sustained loss in F v/F m at night) and loss of symbionts after 4 days. By contrast, Pavona decussata showed no significant changes in F v/F m, symbiont density or xanthophyll cycling. Given the association with the same Symbiodinium clade in both coral species, our findings suggest that symbionts in the two species examined may experience different in hospite light conditions as a result of different biometric properties of the coral host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号