首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Stabilization in the remediation of heavy metal contaminated soils has been gaining prominence because of its cost-effectiveness and rapid implementation. In this study, microbial properties such as microbial community and enzyme activities, chemical properties such as soil pH and metal fraction, and heavy metal accumulation in spinach (Spinacia oleracea) were considered in assessing stabilization remediation effectiveness using sepiolite. Results showed that soil pH values increased with rising sepiolite concentration. Sequential extraction results indicated that the addition of sepiolite converted significant amounts of exchangeable fraction of Cd and Pb into residual form. Treatments of sepiolite were observed to reduce Cd and Pb translocation from the soil to the roots and shoots of spinach. Concentrations of Cd and Pb exhibited 12.6%–51.0% and 11.5%–46.0% reduction for the roots, respectively, and 0.9%–46.2% and 43.0%–65.8% reduction for the shoots, respectively, compared with the control group. Increase in fungi and actinomycete counts, as well as in catalase activities, indicated that soil metabolic recovery occurred after sepiolite treatments.  相似文献   

2.
Variations in cadmium (Cd) tolerances and accumulations among fifteen wetland plant species in moderately (0.5 mg·L−1) and heavily (1.0 mg·L−1) Cd-polluted wastewaters were investigated in constructed wetlands. Cd removal efficiencies from the wastewaters were more than 90%, and 23.5% and 16.8% of the Cd in the water accumulated in wetland plants for 0.5 and 1.0 mg·L−1 Cd treatments, respectively. The variations among the plant species were 29.4-fold to 48.7-fold in plant biomasses, 5.4-fold to 21.9-fold in Cd concentrations, and 13.8-fold to 29.6-fold in Cd accumulations. The plant species were also largely diversified in terms of Cd tolerance. Some species were tolerant of heavy Cd stress, and some others were sensitive to moderate Cd level. Four wetland plant species were selected for the treatment of Cd-polluted wastewater for their high Cd accumulating abilities and relative Cd tolerances. Plant Cd quantity accumulations are correlated positively and significantly (P <0.05) with plant biomasses and correlated positively but insignificantly (P >0.05) with plant Cd concentrations. The results indicate that the Cd accumulation abilities of wetland plant species are determined mainly by their biomasses and Cd tolerances in growth, which should be the first criteria in selecting wetland plant species for the treating Cd-polluted wastewaters. Cd concentration in the plants may be the second consideration.  相似文献   

3.
镉对不同生态型水稻的毒性及其在水稻体内迁移转运   总被引:7,自引:0,他引:7  
采用溶液培养方法研究镉(Cd)对两种不同生态型水稻的毒性影响以及Cd在水稻体内的转运.结果表明,粳稻品种杨辐粳7号比籼稻品种K优818对Cd毒害反应更敏感.两种生态型水稻品种的根系对Cd的吸收积累差异比较大,在10 μmol·L-1 Cd浓度下生长3~14 d,杨辐粳7号根系中Cd浓度比K优818高44.5% ~ 99...  相似文献   

4.
叶面施硅对水稻籽实重金属积累的抑制效应   总被引:22,自引:0,他引:22  
采用盆栽方法,以硅酸钠和正硅酸乙酯为硅源分别配制纳米硅制剂,以水稻(Oryza sativa L.)品种"优优128"为供试植物,在Cd(5mg·kg-1、10mg·kg-1、50mg·kg-1三个水平)、Pb(200mg·kg-1)、Cu(250mg·kg-1)、Zn(300mg·kg-1)复合污染土壤进行种植,在水稻生长期内(苗期、分蘖期、抽穗期)进行叶面喷施纳米硅,研究纳米硅对水稻籽实生长状况及吸收重金属元素的影响,并对两种不同硅源的纳米硅的使用效果进行了比较。结果表明,随Cd污染质量分数增加,水稻百粒质量及单株穗质量均显著降低(P<0.01);Cd、Pb、Zn在籽实中质量分数均增高,而Cu在籽实中质量分数降低。金属元素在籽实中的吸收系数顺序为Cd>Zn>Cu>Pb,表明Cd极易向籽实中迁移。随土壤Cd质量分数增加,水稻籽实中各金属元素的积累量都有所降低。重金属复合污染条件下,叶面施用两种硅制剂均可以缓解水稻的毒害效应,且和施无机硅相比,施有机硅对水稻重金属毒害的缓解效果更显著。表现为叶面施用硅后,水稻百粒质量及单株穗质量均显著提高(P<0.05);且籽实中Cd、Pb、Cu、Zn的吸收量在喷施硅制剂后均显著降低(P<0.05);籽实中重金属元素的吸收系数和积累量均表现出降低的趋势。尤其是随着Cd处理质量分数的增高,施硅对重金属在籽实中积累的抑制效应越显著。这表明叶面施硅在重金属污染的水稻田污染防治中具有应用价值。文章所用的纳米硅制剂,制备简单,对于大面积推广硅肥极为有利。  相似文献   

5.
Increasing production and use of carbonaceous nanomaterials (NMs) will increase their release to the sewer system and to municipal wastewater treatment plants. There is little quantitative knowledge on the removal of multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO), or few-layer graphene (FLG) from wastewater into the wastewater biomass. As such, we investigated the quantification of GO and MWCNTs by UV-Vis spectrophotometry, and FLG using programmable thermal analysis (PTA), respectively. We further explored the removal of pristine and oxidized MWCNTs (O-MWCNTs), GO, and FLG in a biomass suspension. At least 96% of pristine and O-MWCNTs were removed from the water phase through aggregation and 30-min settling in presence or absence of biomass with an initial MWCNT concentration of 25 mg·L−1. Only 65% of GO was removed with biomass concentration at or above 1,000 mg·L−1 as total suspended solids (TSS) with the initial GO concentration of 25 mg·L−1. As UV-Vis spectrophotometry does not work well on quantification of FLG, we studied the removal of FLG at a lower biomass concentration (50 mg TSS·L−1) using PTA, which showed a 16% removal of FLG with an initial concentration of 1 mg·L−1. The removal data for GO and FLG were fitted using the Freundlich equation (R2 = 0.55, 0.94, respectively). The data presented in this study for carbonaceous NM removal from wastewater provides quantitative information for environmental exposure modeling and life cycle assessment.  相似文献   

6.
Iron-modified corn straw biochar was used as an adsorbent to remove phosphorus from agricultural runoff. When agricultural runoffs with a total phosphorus (TP) concentration of 1.86 mg·L−1 to 2.47 mg·L−1 were filtered at a hydraulic retention time of 2 h through a filtration column packed with the modified biochar, a TP removal efficiency of over 99% and an effluent TP concentration of less than 0.02 mg·L−1 were achieved. The isotherms of the phosphorus adsorption by the modified biochar fitted the Freundlich equation better than the Langmuir equation. The mechanism of the phosphorus adsorbed by the modified biochar was analyzed by using various technologies, i.e. scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). The results indicated that the surface of the modified biochar was covered by small iron granules, which were identified as Fe3O4. The results also showed that new iron oxides were formed on the surface of the modified biochar after the adsorption of phosphorus. Moreover, new bonds of Fe-O-P and P-C were found, which suggested that the new iron oxides tend to be Fe5(PO4)4(OH)3. Aside from removing phosphorus, adding the modified biochar into soil also improved soil productivity. When the modified biochar-to-soil rate was 5%, the stem, root, and bean of broad bean plants demonstrated increased growth rates of 91%, 64%, and 165%, respectively.  相似文献   

7.
As the bioelectrochemical system, the microbial fuel cell (MFC) and the microbial electrolysis cell (MEC) were developed to selectively recover Cu2+ and Ni2+ ions from wastewater. The wastewater was treated in the cathode chambers of the system, in which Cu2+ and Ni2+ ions were removed by using the MFC and the MEC, respectively. At an initial Cu2+ concentration of 500 mg·L-1, removal efficiencies of Cu2+ increased from 97.0%±1.8% to 99.0%±0.3% with the initial Ni2+ concentrations from 250 to 1000 mg·L-1, and maximum power densities increased from 3.1±0.5 to 5.4±0.6 W·m-3. The Ni2+ removal mass in the MEC increased from 6.8±0.2 to 20.5±1.5 mg with the increase of Ni2+ concentrations. At an initial Ni2+ concentration of 500 mg·L-1, Cu2+ removal efficiencies decreased from 99.1%±0.3% to 74.2%±3.8% with the initial Cu2+ concentrations from 250 to 1000 mg·L-1, and maximum power densities increased from 3.0±0.1 to 6.3±1.2 W·m-3. Subsequently, the Ni2+ removal efficiencies decreased from 96.9%±3.1% to 73.3%±5.4%. The results clearly demonstrated the feasibility of selective recovery of Cu2+ and Ni2+ from the wastewater using the bioelectrochemical system.  相似文献   

8.
轮作休耕是实现"藏粮于地、藏粮于技"的重要途径之一,目前在太湖稻田区域主要推广紫云英(Astragalus sinicus L.)-水稻(Oryza sativa L.)、油菜(Brassica napus L.)-水稻和休耕-水稻典型轮作与休耕方式。在太湖地区典型稻田水稻生长季设置了6个处理:(1)紫云英-水稻轮作,不施N肥处理,MRN0;(2)紫云英-水稻轮作,当地常规施肥量(300 kg·hm-2,以纯氮计,下同),MRN300;(3)油菜-水稻轮作,不施N肥处理,RRN0;(4)油菜-水稻轮作,当地常规施肥量(300 kg·hm-2),RRN300;(5)休耕-水稻轮作,不施N肥处理,FRN0;(6)休耕-水稻轮作,当地常规施肥量(300 kg·hm-2),FRN300。通过田间试验,研究了不同轮作与休耕方式对水稻产量、氮肥利用率及稻田温室气体CH4和N2O排放的影响,从而为综合评价轮作休耕方式提供科学依据。田间试验结果显示,与不施氮肥处理相比,在不同轮作休耕方式下施氮300 kg·hm-2,可增加53.7%—60.0%的水稻产量,以MRN300处理水稻产量最高,与RRN300和FRN300处理相比,水稻产量分别提高了1.6%和6.0%。在不施氮水平下,MRN0、RRN0和FRN0各轮作处理间N2O排放通量和累积排放量均值差异不显著(P>0.05)。而在施氮300 kg·hm-2下,紫云英-水稻轮作可降低N2O排放通量和累积排放量,与RRN300和FRN300处理相比,N2O排放通量分别降低了36.0%(P<0.05)和2.1%(P>0.05)。在同一施氮水平下,紫云英-水稻轮作CH4排放通量和累积排放量最小,与RRN300和FRN300处理相比,MRN300处理CH4排放通量分别降低了1.1%和6.7%,CH4和N2O的全球增温潜势(GWP)分别降低了3.3%和6.5%,单位水稻产量温室气体排放强度(GHGI)分别降低了4.6%和11.6%。综上,紫云英-水稻轮作对提高水稻产量,降低温室气体排放效果最好。  相似文献   

9.
Surface sediments of rivers can exhibit spatial and temporal variations in contaminant concentrations that may significantly affect risk evaluations. As to pollution control and remediation of watershed, large-scale and further background data on PAHs in China were required urgently. Spatial distribution and compositional characteristics of 16 polycyclic aromatic hydrocarbons (PAHs) in surface sediments from Haihe River Basin were investigated. A method based on effects range (ER) was used to assess ecosystem risk of ∑PAHs (the total of 16 PAH) sensitively and accurately. The results indicated that ∑PAHs content levels ranged from 257 to 16901 μg·kg−1 dry weight. The lower rings predominated in the samples, and 2-, 3-, 4-, 5- and 6-ring PAHs accounted for 12%, 21%, 30%, 30%, and 7% respectively in total PAHs. The ratio of Fl / (Fl+ Py) uniformly distributed in the interval 0.20–0.80, indicating that it may be affected by petroleum origin, oil combustion, biomass and coal combustion jointly. ∑PAHs in Cetian (S6), Dongwushi (S19), Handan (S20), Aixinzhuang (S21) and Tianjin (S37) exceeded effects range low (ERL), in which biologic effects were in a medium level with an adverse effect on biologic organisms. Thus, it is necessary to strengthen the PAHs monitoring and research of the Haihe River Basin.  相似文献   

10.
Experiments were conducted to evaluate lead tolerance and accumulation in vetiver grass Vetiveria zizanioides (L.), grown in hydroponics and a pot study and to examine the effect of lead on vetiver oil production. Elevated concentrations of lead decreased the length of shoots and roots of plants. However, vetiver grown in highly contaminated soils showed no apparent phytotoxicity symptoms. Lead concentrations in the shoots and roots of vetiver plants grown in hydroponics were up to 144 and 19530 mg kg(-1) and those grown in soil were 38 and 629 mg kg(-1), respectively. Lead had an effect on vetiver oil production and composition by stimulating oil yield and the number of its constituents. Oil yield ranged from 0.4-1.3%; the highest yields were found in plants grown in nutrient solution with 100 mg Pb l(-1) for 5 weeks (1.29%) and 7 weeks (1.22%). The number of total constituents of vetiver oil also varied between 47-143 compounds when lead was presentin the growth medium. The highest number (143) was found in plants grown in soil spiked with 1000 mg Pb kg(-1). The predominant compound was khusimol (10.7-18.1%) followed by (E)-isovalencenol (10.3-15.6%). Our results indicated that lead could increase the oil production of vetiver.  相似文献   

11.
矿冶区周边水稻对不同来源重金属污染的指示作用   总被引:4,自引:1,他引:4  
有色金属开采与冶炼可对周边环境造成严重的重金属污染,查明重金属污染来源对于矿冶周边重金属污染管理与控制具有重要意义.为探索利用矿冶周边水稻对As、Cd、Pb、Zn和Cu的富集与水稻体内元素的含量平衡特征指示重金属污染来源的可行性,选择了我国著名的水口山Pb-Zn矿山开采与冶炼周边区,根据重金属污染排放和迁移扩散特征,结合当地气象和地貌条件,确定了3个典型采样区,其中两个采样区分别邻近冶炼厂和尾砂库,另一处为位于两者之间的过渡区.采用蛇形采样法在稻田内采集33个成熟水稻及土壤样品,分析水稻不同部位(包括根、茎叶、籽粒)及土壤中As、Cd、Pb、Zn、Cu5种重金属和其他16种元素的含量.结果表明,3个采样区之间土壤中的As、Cd、Pb、Zn和Cu含量均存在显著性差异;各采样区水稻中除根际和籽粒中Cd含量外,各部位重金属含量也均有显著差异.靠近冶炼厂的水稻茎叶中As、Pb含量高于离冶炼厂较远的采样区水稻茎叶.尽管As、Pb在靠近尾砂库采样区土壤中含量最高,但在该区水稻茎叶中的含量却最低;在除As、Cd、Pb、Zn、Cu5种重金属以外的其他16种元素中,水稻根部仅有5种元素含量在各采样区之间存在差异,指示相同的土地利用类型及土壤母质条件;而在茎叶和籽粒中则分别有多达11和10种元素含量出现采样区差异,指示重金属污染来源影响水稻茎叶及籽粒中元素的含量平衡.多元统计分析结果显示,3个采样区水稻茎叶中元素含量平衡存在显著的分异,显示出明显的采样区属性.结合采样区域空间位置、污染物来源、水稻对重金属的富集与转运特征分析,3个采样区重金属主要污染特征可分别确定为水-气混合来源型、大气来源型和尾砂来源型.论文结果证明利用水稻茎叶指示矿冶周边重金属污染来源是可行的.  相似文献   

12.
采用室内模拟的方法,研究了两种基因型水稻(硅突变体和野生型)根系吸收As的动力学特征以及Si对水稻吸收As的影响.结果表明,两种基因型水稻根系对As(III)和As(V)的吸收均可以用Freundlich模型较好地模拟.外源Si的加入可显著降低水稻根系对As(III)和As(V)的吸收.在20μmol·L-1As处理下,与不加Si处理相比,加1.0mmol·L-1Si处理导致水稻根系吸收As(III)和As(V)分别降低94.1%和92.2%(野生型);74.4%和90.2%(突变体).在100μmol·L-1As处理下,水稻根系吸收As(III)和As(V)则分别降低64.5%和91.2%(野生型);76.1%和90.6%(突变体).  相似文献   

13.
• UV/O3 process had higher TAIC mineralization rate than O3 process. • Four possible degradation pathways were proposed during TAIC degradation. • pH impacted oxidation processes with pH of 9 achieving maximum efficiency. • CO32– negatively impacted TAIC degradation while HCO3 not. • Cl can be radicals scavenger only at high concentration (over 500 mg/L Cl). Triallyl isocyanurate (TAIC, C12H15N3O3) has featured in wastewater treatment as a refractory organic compound due to the significant production capability and negative environmental impact. TAIC degradation was enhanced when an ozone(O3)/ultraviolet(UV) process was applied compared with the application of an independent O3 process. Although 99% of TAIC could be degraded in 5 min during both processes, the O3/UV process had a 70%mineralization rate that was much higher than that of the independent O3 process (9%) in 30 min. Four possible degradation pathways were proposed based on the organic compounds of intermediate products identified during TAIC degradation through the application of independent O3 and O3/UV processes. pH impacted both the direct and indirect oxidation processes. Acidic and alkaline conditions preferred direct and indirect reactions respectively, with a pH of 9 achieving maximum Total Organic Carbon (TOC) removal. Both CO32– and HCO3 decreased TOC removal, however only CO32– negatively impacted TAIC degradation. Effects of Cl as a radical scavenger became more marked only at high concentrations (over 500 mg/L Cl). Particulate and suspended matter could hinder the transmission of ultraviolet light and reduce the production of HO· accordingly.  相似文献   

14.
The effects of biologically active carbon (BAC) filtration on haloacetic acid (HAA) levels in plant effluents and distribution systems were investigated using the United States Environmental Protection Agency’s Information Collection Rule (ICR) database. The results showed that average HAA5 concentrations in all locations were 20.4 μg·L-1 and 29.6 μg·L-1 in ICR plants with granular activated carbon (GAC) and ICR plants without GAC process, respectively. For plants without GAC, the highest HAA levels were observed in the quarters of April to June and July to September. However, for plants with GAC, the highest HAA levels were observed in the quarters of April to June and January to March. This HAA level profile inversely correlated well with water temperature, or biologic activity. For GAC plants, simulated distribution samples matched well with distribution system equivalent samples for Cl3AA and THMs. For plants with and without GAC, simulated distribution samples overestimated readily biodegradable HAAs in distribution systems. The study indicated that through HAA biodegradation, GAC process plays an important role in lowering HAA levels in finished drinking water.  相似文献   

15.
We investigated phytotoxicity in seven plant species exposed to a range of concentrations (0– 500 mg·kg−1 soil) of di-n-butyl phthalate (DnBP) or bis (2-ethylhexyl) phthalate (DEHP), two representative phthalate esters (PAEs) nominated by USEPA as priority pollutants and known environmental estrogens. We studied seed germination, root elongation, seedling growth, biomass (fresh weight, FW) and malondialdehyde (MDA) content of shoots and roots of wheat (Triticum aestivum L.), alfalfa (Medicago sativa L.), perennial ryegrass (Lolium perenne), radish (Raphanus sativus L.), cucumber (Cucumis sativus L.), oat (Avena sativa) and onion (Allium cepa L.), together with monitoring of plant pigment content (chlorophyll a, b and carotinoids) in alfalfa, radish and onion shoots. Root elongation, seedling growth and biomass of the test species were generally inhibited by DnBP but not by DEHP, indicating a lower level of phytotoxicity of DEHP than of DnBP. MDA contents of four species were promoted by PAE exposure, but not in alfalfa, ryegrass or onion shoots, indicating lower sensitivity of these three species to PAE pollutants. Plant pigment contents were clearly affected under the stress of both pollutants, implying the potential damage to the photosynthetic system of test plants, mainly by decreasing the content of chlorophyll a and b. Results of DnBP and DEHP phytotoxicity to the primary growth of test plants has provided information for the assessment of their environmental risk in the soil and also forms a basis for the further analysis of their toxic effects over the whole growth period of different plant species.  相似文献   

16.
A solution culture experiment was designed to determine whether Si can alleviate Sb toxicity in rice. The design involved a rice mutant with low Si accumulation and wild-type rice with normal Si accumulation. The effects of Si on rice Sb stress in the presence or absence of P were investigated. P significantly increased the shoot biomass in both wild-type and mutant rice, whereas Si increased the biomass only in the wild-type rice. No biomass change was detected in both rice type when 10 or 30 μ mol·L?1Sb was added to the solution. Compared with the no P control, in both rice types, the application of 0.7 mmol·L?1 P significantly increased the P content, whereas Si significantly influenced the uptake and accumulation of P and Sb. In different P and Sb treatments, 1.0 mmol·L?1 Si led to 6.9–58.2% and 21.4–62.5% decreased Sb content in the shoots of wild-type and mutant rice, respectively. Si addition also significantly impacted the distribution coefficient of Sb between the shoots and seeds of both rice types. These results suggest that the application of Si in rice can promote growth, reduce Sb accumulation and decrease Sb movement to shoot and seeds, which may lead to Sb pollution control under rice field conditions.  相似文献   

17.
采用土壤盆栽试验方法,比较了两种通气组织结构不同的水稻品种(扬稻6号和农垦57)根表铁膜的形成及其吸收积累As的差异.结果表明,通气组织结构不同对水稻根表铁膜的形成及其对As的吸收积累有显著影响.通气组织结构发达的扬稻6号根表铁膜数量和铁膜中As含量均显著高于农垦57,扬稻6号根表铁膜量为431.53g·kg-1,铁膜中As含量达到220.2mg·kg-1,分别是农垦57的1.3和1.7倍.发达的通气组织结构显著抑制了As由水稻地下部到地上部的转运以及地上部对As的吸收:扬稻6号地上部As含量为10.77mg·kg-1,显著低于农垦57(12.85mg·kg-1);扬稻6号对As的转移系数(TF)为0.067,仅为农垦57的73.6%.  相似文献   

18.
The granulation process, physic-chemical properties, pollution removal ability and bacterial communities of aerobic granules with different feed-wastewater (synthetic wastewater, R1; swine wastewater, R2), and the change trend of some parameters of two types of granules in long-term operated reactors treating swine wastewater were investigated in this experiment. The result indicated that aerobic granulation with the synthetic wastewater had a faster rate compared with swine wastewater and that full granulation in R1 and R2 was reached on the 30th day and 39th day, respectively. However, although the feed wastewater also had an obvious effect on the biomass fraction and extracellular polymeric substances of the aerobic granules during the granulation process, these properties remained at a similar level after long-term operation. Moreover, a similar increasing trend could also be observed in terms of the nitrogen removal efficiencies of the aerobic granules in both reactors, and the average specific removal rates of the organics and ammonia nitrogen at the steady-state stage were 35.33 mg·g−1 VSS and 51.46 mg·g−1 VSS for R1, and 35.47 mg·g−1 VSS and 51.72 mg·g−1 VSS for R2, respectively. In addition, a shift in the bacterial diversity occurred in the granulation process, whereas bacterial communities in the aerobic granular reactor were not affected by the seed granules after long-term operation.  相似文献   

19.
• Synthesis of NS-CNTS is used in a high desulfurization performance. • Synthesizing NS-CNT is considered as a novel adsorbent from low-cost precursors. • A high sulfur removal capacity for NS-CNT is attained compared with recent works. Herein, nitrogen and sulfur co-doped carbon nanotubes (NS-CNT) adsorbents were synthesized via the chemical vapor deposition technique at 1000°C by employing the camphor, urea and sulfur trioxide pyridine. In this study, desulfurization of two types of mercaptans (dibenzothiophene (DBT) and tertiary butyl mercaptan (TBM) as nonlinear and linear forms of mercaptan) was studied. In this regard, a maximum capacity of NS-CNT was obtained as 106.9 and 79.4 mg/g and also the removal efficiencies of 98.6% and 88.3% were achieved after 4 h at 298K and 0.9 g of NS-CNT for DBT and TBM, respectively. Characterization of the NS-CNTs was carried out through exploiting scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and elemental analysis (CHN). The isotherm equilibrium data could be ascribed to the Freundlich nonlinear regression form and the kinetic data was fitted by nonlinear form of the pseudo second order model. The negative values of ΔS0, ΔH0 and ΔG0 specify that the adsorption of both types of mercaptans was a natural exothermic process with a reduced entropy. Maintenance of more than 96% of the adsorption capacity even after nine cycles suggest the NS-CNT as a superior adsorbent for mercaptans removal in the industry. Density functional theory (DFT) calculations were also performed to peruse the effects of S/N co-doping and carbon monovacancy defects in CNTs toward the adsorption of DBT and TBM.  相似文献   

20.
Endocrine disrupting compounds (EDCs), pharmaceuticals and personal care products (PPCPs) have attracted much attention due to widespread contamination in aquatic environment. In this study, we determined 13 EDCs and PPCPs in fish blood, bile and muscle by using gas chromatography-mass spectrometry (GC-MS). The limits of quantitation (LOQ) were in the ranges of 0.23–2.54, 0.22–2.36 ng·mL−1, and 0.24–2.57 ng·g−1 dry weight (dw) for fish blood, bile and muscle, respectively. Recoveries of target compounds spiked into sample matrices and passed through the entire analytical procedure ranged from 65% to 95%, from 60% to 92% and from 62% to 91% for blood, bile and muscle, respectively. The methods were applied to the analysis of fish from a lake in California. Target compounds were relatively low in bile, and only bisphenol A (BPA) and diclofenac were measurable near the LOQ. Seven of 13 compounds were detected in blood, with total concentrations up to 39 ng·mL−1. Only BPA was frequently found in muscle, with mean concentration of 7.26 ng·g−1 dw. The estimated daily intake of BPA through fish consumption for U.S. resident was significantly lower than the tolerable daily intake recommended by the European Food Safety Authority. This study showed that the exposure to the bisphenol A from fish diet is unlikely to pose a health risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号