首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract:  Effective management of biodiversity in production landscapes requires a conservation approach that acknowledges the complexity of ecological and cultural systems in time and space. Fennoscandia has experienced major loss of forest biodiversity caused by intensive forestry. Therefore, the Countdown 2010 initiative to halt the loss of biodiversity in Europe is highly relevant to forest management in this part of the continent. As a contribution to meeting the challenge posed by Countdown 2010, we developed a spatially explicit conservation-planning exercise that used regional knowledge on forest biodiversity to provide support for managers attempting to halt further loss of biological diversity in the region. We used current data on the distribution of 169 species (including 68 red-listed species) representing different forest habitats and ecologies along with forest data within the frame of modern conservation software to devise a map of priority areas for conservation. The top 10% of priority areas contained over 75% of red-listed species locations and 41% of existing protected forest areas, but only 58% of these top priorities overlapped with core areas identified previously in a regional strategy that used more qualitative methods. We argue for aggregating present and future habitat value of single management units to landscape and regional scales to identify potential bottlenecks in habitat availability linked to landscape dynamics. To address the challenge of Countdown 2010, a general framework for forest conservation planning in Fennoscandia needs to cover different conservation issues, tools, and data needs.  相似文献   

2.
Protected areas throughout the world are key for conserving biodiversity, and land use is key for providing food, fiber, and other ecosystem services essential for human sustenance. As land use change isolates protected areas from their surrounding landscapes, the challenge is to identify management opportunities that maintain ecological function while minimizing restrictions on human land use. Building on the case studies in this Invited Feature and on ecological principles, we identify opportunities for regional land management that maintain both ecological function in protected areas and human land use options, including preserving crucial habitats and migration corridors, and reducing dependence of local human populations on protected area resources. Identification of appropriate and effective management opportunities depends on clear definitions of: (1) the biodiversity attributes of concern; (2) landscape connections to delineate particular locations with strong ecological interactions between the protected area and its surrounding landscape; and (3) socioeconomic dynamics that determine current and future use of land resources in and around the protected area.  相似文献   

3.
Landscapes in many developing countries consist of a heterogeneous matrix of mixed agriculture and forest. Many of the generalist species in this matrix are increasingly traded in the bushmeat markets of West and Central Africa. However, to date there has been little quantification of how the spatial configuration of the landscape influences the urban bushmeat trade over time. As anthropogenic landscapes become the face of rural West Africa, understanding the dynamics of these systems has important implications for conservation and landscape management. The bushmeat production of an area is likely to be defined by landscape characteristics such as habitat disturbance, hunting pressure, level of protection, and distance to market. We explored (SSG, tense) the role of these four characteristics in the spatio‐temporal dynamics of the commercial bushmeat trade around the city of Kumasi, Ghana, over 27 years (1978 to 2004). We used geographic information system methods to generate maps delineating the spatial characteristics of the landscapes. These data were combined with spatially explicit market data collected in the main fresh bushmeat market in Kumasi to explore the relationship between trade volume (measured in terms of number of carcasses) and landscape characteristics. Over time, rodents, specifically cane rats (Thryonomys swinderianus), became more abundant in the trade relative to ungulates and the catchment area of the bushmeat market expanded. Areas of intermediate disturbance supplied more bushmeat, but protected areas had no effect. Heavily hunted areas showed significant declines in bushmeat supply over time. Our results highlight the role that low intensity, heterogeneous agricultural landscapes can play in providing ecosystem services, such as bushmeat, and therefore the importance of incorporating bushmeat into ecosystem service mapping exercises. Our results also indicate that even where high bushmeat production is possible, current harvest levels may cause wildlife depletion.  相似文献   

4.
The Tibetan sacred mountains (TSMs) cover a large area and may represent a landscape‐scale conservation opportunity. We compared the conservation value of forests in these mountains with the conservation value of government‐established nature reserves and unmanaged open‐access areas in Danba County, southwestern China. We used Landsat satellite images to map forest cover and to estimate forest loss in 1974–1989, 1989–1999, and 1999–2013. The TSMs (n = 41) and nature reserves (n = 4) accounted for 21.6% and 29.7% of the county's land area, respectively. Remaining land was open‐access areas (i.e., areas without any restrictions on resource use) (56.2%) and farmlands (2.2%). Within the elevation range suitable for forests, forest cover did not differ significantly between nature reserves (58.8%) and open‐access areas (58.4%), but was significantly higher in TSMs (65.5%) after controlling for environmental factors such as aspect, slope, and elevation. The TSMs of great cultural importance had higher forest cover, but patrols by monastery staff were not necessarily associated with increased forest cover. The annual deforestation rate in nonsacred areas almost tripled in 1989–1999 (111.4 ha/year) relative to 1974–1989 (40.4 ha/year), whereas the rate in TSMs decreased in the later period (19.7 ha/year vs. 17.2 ha/year). The reduced forest loss in TSMs in 1989–1999 was possibly due to the renaissance of TSM worship and strengthened management by the local Buddhist community since late 1980s. The annual deforestation rate in Danba decreased dramatically to 4.4 ha/year in 1999–2013, which coincided with the implementation of a national ban on logging in 1998. As the only form of protected area across the Tibetan region during much of its history, TSMs have positively contributed to conserving forest at a landscape scale. Conservation of TSM forests largely relied on the strength of local religious institutions. Integrating community‐based conservation of TSMs within the government conservation network would benefit the conservation of the Tibetan region.  相似文献   

5.
Managing Boreal Forest Landscapes for Flying Squirrels   总被引:5,自引:0,他引:5  
Abstract: Flying squirrel (Pteromys volans) populations have declined severely during the past few decades, and the species has become a focal species in forest management and the conservation debate in Finland. We compared landscape structure around known flying squirrel home ranges with randomly chosen forest sites to determine which landscape patterns characterize the areas occupied by the species in northern Finland. We sought to identify the key characteristics of the landscape that support the remaining flying squirrel populations. We analyzed landscape structure within circular areas with 1- and 3-km radii around 63 forest sites occupied by flying squirrels, and around 96 random sites. We applied stepwise analysis of the landscape structure where landscapes were built up step-by-step by adding patch types in order of their suitability for the flying squirrel. The land-use and forest-resource data for the analysis were derived from multisource national forest inventory and imported to a geographical information system. Landscape patch types were divided into three suitability categories: breeding habitat (mixed spruce-deciduous forests); dispersal habitat ( pine and young forests); and unsuitable habitat ( young sapling stands, open habitats, water). Flying squirrel landscapes contained more suitable breeding habitat patches and were better connected by dispersal habitats than random landscapes. Our results suggest that for the persistence of the flying squirrel, forest managers should 1) maintain a deciduous mixture, particularly in spruce-dominated forests; 2) maintain physical connectivity between optimal breeding habitats; and 3) impose coarse-grained structures on northeastern Finnish landscapes at current levels of habitat availability.  相似文献   

6.
Because of the dynamic nature of many managed habitats, proper evaluation of conservation efforts calls for models that take into account both spatial and temporal habitat dynamics. We develop a metapopulation model for successional-type systems, in which habitat quality changes over time in a predictable fashion. The occupancy and recruitment of the predatory saproxylic (dependent on dead wood) beetle Harminius undulatus was studied in a managed boreal forest landscape, covering 24,449 ha, in central Sweden. In a first step, we analyzed the beetle's occupancy pattern in relation to stand characteristics, and the amounts of present and past habitat in the surrounding landscape. Managed forest is suitable habitat when > or =60 years old, and immediately after cutting, but not between the ages of 10 and 60 years. The observed occupancy of H. undulatus was positively correlated with the stand's age as habitat. We used a metapopulation model to predict the current probability of occurrence in each forest stand, given the spatiotemporal distribution of suitable forest stands during the last 50 years. Metapopulation parameters were estimated by matching predicted spatial distributions with observed spatial distributions. The model predicted observed spatial distributions better than a similar model that assumed constant habitat quality of each forest stand. Thus, metapopulation models for successional-type systems, such as dead wood dependent organisms in managed forest landscapes, should include habitat dynamics. An estimated 82% of the landscape-wide recruitment took place in managed stands, which covered 87% of the forest area, in comparison with 18% in unmanaged stands, which covered 13% of the forest area. Among the managed stand types, > or =60-year-old stands and 3-7-year-old clear-cuttings contributed to 79% of the total recruitment while 8-59-year-old stands only contributed 3%. The results suggest the following guidelines to improve conditions for H. undulatus and other species with similar habitat requirements: (1) the proportion of the landscape constituted by younger stands should not be allowed to grow too large, (2) the rotation period of managed stands should not be allowed to be too short, and (3) dead wood should be retained and created at final cutting.  相似文献   

7.
Tiger (Panthera tigris) conservation efforts in Asia are focused on protected areas embedded in human‐dominated landscapes. A system of protected areas is an effective conservation strategy for many endangered species if the network is large enough to support stable metapopulations. The long‐term conservation of tigers requires that the species be able to meet some of its life‐history needs beyond the boundaries of small protected areas and within the working landscape, including multiple‐use forests with logging and high human use. However, understanding of factors that promote or limit the occurrence of tigers in working landscapes is incomplete. We assessed the relative influence of protection status, prey occurrence, extent of grasslands, intensity of human use, and patch connectivity on tiger occurrence in the 5400 km2 Central Terai Landscape of India, adjacent to Nepal. Two observer teams independently surveyed 1009 km of forest trails and water courses distributed across 60 166‐km2 cells. In each cell, the teams recorded detection of tiger signs along evenly spaced trail segments. We used occupancy models that permitted multiscale analysis of spatially correlated data to estimate cell‐scale occupancy and segment‐scale habitat use by tigers as a function of management and environmental covariates. Prey availability and habitat quality, rather than protected‐area designation, influenced tiger occupancy. Tiger occupancy was low in some protected areas in India that were connected to extensive areas of tiger habitat in Nepal, which brings into question the efficacy of current protection and management strategies in both India and Nepal. At a finer spatial scale, tiger habitat use was high in trail segments associated with abundant prey and large grasslands, but it declined as human and livestock use increased. We speculate that riparian grasslands may provide tigers with critical refugia from human activity in the daytime and thereby promote tiger occurrence in some multiple‐use forests. Restrictions on human‐use in high‐quality tiger habitat in multiple‐use forests may complement existing protected areas and collectively promote the persistence of tiger populations in working landscapes.  相似文献   

8.
Establishing protected areas, where human activities and land cover changes are restricted, is among the most widely used strategies for biodiversity conservation. This practice is based on the assumption that protected areas buffer species from processes that drive extinction. However, protected areas can maintain biodiversity in the face of climate change and subsequent shifts in distributions have been questioned. We evaluated the degree to which protected areas influenced colonization and extinction patterns of 97 avian species over 20 years in the northeastern United States. We fitted single-visit dynamic occupancy models to data from Breeding Bird Atlases to quantify the magnitude of the effect of drivers of local colonization and extinction (e.g., climate, land cover, and amount of protected area) in heterogeneous landscapes that varied in the amount of area under protection. Colonization and extinction probabilities improved as the amount of protected area increased, but these effects were conditional on landscape context and species characteristics. In this forest-dominated region, benefits of additional land protection were greatest when both forest cover in a grid square and amount of protected area in neighboring grid squares were low. Effects did not vary with species’ migratory habit or conservation status. Increasing the amounts of land protection benefitted the range margins species but not the core range species. The greatest improvements in colonization and extinction rates accrued for forest birds relative to open-habitat or generalist species. Overall, protected areas stemmed extinction more than they promoted colonization. Our results indicate that land protection remains a viable conservation strategy despite changing habitat and climate, as protected areas both reduce the risk of local extinction and facilitate movement into new areas. Our findings suggest conservation in the face of climate change favors creation of new protected areas over enlarging existing ones as the optimal strategy to reduce extinction and provide stepping stones for the greatest number of species.  相似文献   

9.
An historical generalization about forest cover change in which rapid deforestation gives way over time to forest restoration is called "the forest transition." Prior research on the forest transition leaves three important questions unanswered: (1) How does forest loss influence an individual landowner's incentives to reforest? (2) How does the forest recovery rate affect the likelihood of forest transition? (3) What happens after the forest transition occurs? The purpose of this paper is to develop a minimum model of the forest transition to answer these questions. We assume that deforestation caused by landowners' decisions and forest regeneration initiated by agricultural abandonment have aggregated effects that characterize entire landscapes. These effects include feedback mechanisms called the "forest scarcity" and "ecosystem service" hypotheses. In the forest scarcity hypothesis, forest losses make forest products scarcer, which increases the economic value of forests. In the ecosystem service hypothesis, the environmental degradation that accompanies the loss of forests causes the value of ecosystem services provided by forests to decline. We examined the impact of each mechanism on the likelihood of forest transition through an investigation of the equilibrium and stability of landscape dynamics. We found that the forest transition occurs only when landowners employ a low rate of future discounting. After the forest transition, regenerated forests are protected in a sustainable way if forests regenerate slowly. When forests regenerate rapidly, the forest scarcity hypothesis expects instability in which cycles of large-scale deforestation followed by forest regeneration repeatedly characterize the landscape. In contrast, the ecosystem service hypothesis predicts a catastrophic shift from a forested to an abandoned landscape when the amount of deforestation exceeds the critical level, which can lead to a resource degrading poverty trap. These findings imply that incentives for forest conservation seem stronger in settings where forests regenerate slowly as well as when decision makers value the future.  相似文献   

10.
Abstract: Past and present pressures on forest resources have led to a drastic decrease in the surface area of unmanaged forests in Europe. Changes in forest structure, composition, and dynamics inevitably lead to changes in the biodiversity of forest‐dwelling species. The possible biodiversity gains and losses due to forest management (i.e., anthropogenic pressures related to direct forest resource use), however, have never been assessed at a pan‐European scale. We used meta‐analysis to review 49 published papers containing 120 individual comparisons of species richness between unmanaged and managed forests throughout Europe. We explored the response of different taxonomic groups and the variability of their response with respect to time since abandonment and intensity of forest management. Species richness was slightly higher in unmanaged than in managed forests. Species dependent on forest cover continuity, deadwood, and large trees (bryophytes, lichens, fungi, saproxylic beetles) and carabids were negatively affected by forest management. In contrast, vascular plant species were favored. The response for birds was heterogeneous and probably depended more on factors such as landscape patterns. The global difference in species richness between unmanaged and managed forests increased with time since abandonment and indicated a gradual recovery of biodiversity. Clearcut forests in which the composition of tree species changed had the strongest effect on species richness, but the effects of different types of management on taxa could not be assessed in a robust way because of low numbers of replications in the management‐intensity classes. Our results show that some taxa are more affected by forestry than others, but there is a need for research into poorly studied species groups in Europe and in particular locations. Our meta‐analysis supports the need for a coordinated European research network to study and monitor the biodiversity of different taxa in managed and unmanaged forests.  相似文献   

11.
Many services generated by forest ecosystems provide essential support for human well-being. However, the vulnerability of these services to environmental change such as forest fragmentation are still poorly understood. We present spatial modeling of the generation of ecosystem services in a human-dominated landscape where forest habitat patches, protected by local taboos, are located in a matrix of cultivated land in southern Madagascar. Two ecosystem services dependent on the forest habitats were addressed: (1) crop pollination services by wild and semidomesticated bees (Apoidea), essential for local crop production of, for example, beans, and (2) seed dispersal services based on the presence of ring-tailed lemurs (Lemur catta). We studied the vulnerability of these ecosystem services to a plausible scenario of successive destruction of the smallest habitat patches. Our results indicate that, in spite of the fragmented nature of the landscape, the fraction of the landscape presently covered by both crop pollination and seed dispersal services is surprisingly high. It seems that the taboo system, though indirectly and unintentionally, contributes to upholding the generation of these services by protecting the forest patches. Both services are, however, predicted to be very vulnerable to the successive removal of small patches. For crop pollination, the rate of decrease in cover was significant even when only the smallest habitat patches were removed. The capacity for seed dispersal across the landscape displayed several thresholds with habitat patch removal. Our results suggest that, in order to maintain capacity for seed dispersal across the landscape and crop pollination cover in southern Androy, the geographical location of the remaining forest patches is more crucial than their size. We argue that in heavily fragmented production landscapes, small forest patches should increasingly be viewed as essential for maintaining ecosystem services, such as agricultural production, and also should be considered in the ongoing process of tripling the area of protected habitats in Madagascar.  相似文献   

12.
Abstract:  A preliminary stage in developing comprehensive conservation plans involves identifying areas used by the organisms of interest. The areas used by migratory land birds during temporal breaks in migration (stopover periods) have received relatively little research and conservation attention. Methodologies for identifying stopover sites across large geographic areas have been, until recently, unavailable. Advances in weather-radar technology now allow for evaluation of bird migration patterns at large spatial scales. We analyzed radar data (WSR-88D) recorded during spring migration in 2000 and 2001 at 6 sites in the Great Lakes basin (U.S.A.). Our goal was to link areas of high migrant activity with the land-cover types and landscape contexts corresponding to those areas. To characterize the landscapes surrounding stopover locations, we integrated radar and land-cover data within a geographic information system. We compared landscape metrics within 5 km of areas that consistently hosted large numbers of migrants with landscapes surrounding randomly selected areas that were used by relatively few birds during migration. Concentration areas were characterized by 1.2 times more forest cover and 9.3 times more water cover than areas with little migrant activity. We detected a strong negative relationship between activity of migratory birds and agricultural land uses. Examination of individual migration events confirmed the importance of fragments of forested habitat in highly altered landscapes and highlighted large concentrations of birds departing from near-shore terrestrial areas in the Great Lakes basin. We conclude that conservation efforts can be more effectively targeted through intensive analysis of radar imagery.  相似文献   

13.
Abstract:  The lack of management experience at the landscape scale and the limited feasibility of experiments at this scale have increased the use of scenario modeling to analyze the effects of different management actions on focal species. However, current modeling approaches are poorly suited for the analysis of viability in dynamic landscapes. Demographic (e.g., metapopulation) models of species living in these landscapes do not incorporate the variability in spatial patterns of early successional habitats, and landscape models have not been linked to population viability models. We link a landscape model to a metapopulation model and demonstrate the use of this model by analyzing the effect of forest management options on the viability of the Sharp-tailed Grouse (  Tympanuchus phasianellus ) in the Pine Barrens region of northwestern Wisconsin (U.S.A.). This approach allows viability analysis based on landscape dynamics brought about by processes such as succession, disturbances, and silviculture. The landscape component of the model (LANDIS) predicts forest landscape dynamics in the form of a time series of raster maps. We combined these maps into a time series of patch structures, which formed the dynamic spatial structure of the metapopulation component (RAMAS). Our results showed that the viability of Sharp-tailed Grouse was sensitive to landscape dynamics and demographic variables such as fecundity and mortality. Ignoring the landscape dynamics gave overly optimistic results, and results based only on landscape dynamics (ignoring demography) lead to a different ranking of the management options than the ranking based on the more realistic model incorporating both landscape and demographic dynamics. Thus, models of species in dynamic landscapes must consider habitat and population dynamics simultaneously.  相似文献   

14.
Protected areas are a cornerstone for forest protection, but they are not always effective during times of socioeconomic and institutional crises. The Carpathian Mountains in Eastern Europe are an ecologically outstanding region, with widespread seminatural and old‐growth forest. Since 1990, Carpathian countries (Czech Republic, Hungary, Poland, Romania, Slovakia, and Ukraine) have experienced economic hardship and institutional changes, including the breakdown of socialism, European Union accession, and a rapid expansion of protected areas. The question is how protected‐area effectiveness has varied during these times across the Carpathians given these changes. We analyzed a satellite‐based data set of forest disturbance (i.e., forest loss due to harvesting or natural disturbances) from 1985 to 2010 and used matching statistics and a fixed‐effects estimator to quantify the effect of protection on forest disturbance. Protected areas in the Czech Republic, Slovakia, and the Ukraine had significantly less deforestation inside protected areas than outside in some periods; the likelihood of disturbance was reduced by 1–5%. The effectiveness of protection increased over time in these countries, whereas the opposite was true in Romania. Older protected areas were most effective in Romania and Hungary, but newer protected areas were more effective in Czech Republic, and Poland. Strict protection (International Union for Conservation of Nature [IUCN] protection category Ia‐II) was not more effective than landscape‐level protection (IUCN III‐VI). We suggest that the strength of institutions, the differences in forest privatization, forest management, prior distribution of protected areas, and when countries joined the European Union may provide explanations for the strikingly heterogeneous effectiveness patterns among countries. Our results highlight how different the effects of protected areas can be at broad scales, indicating that the effectiveness of protected areas is transitory over time and space and suggesting that generalizations about the effectiveness of protected areas can be misleading.  相似文献   

15.
《Ecological modelling》2004,180(1):73-87
Spatial modeling of forest patterns can provide information on the potential impact of various management strategies on large landscapes over long time frames. We used LANDIS, a stochastic, spatially-explicit, ecological landscape model to simulate 120 years of forest change on the Nashwauk Uplands, a 328,000 ha landscape in northeastern Minnesota that lies in the transition between boreal and temperate forests. We ran several forest management scenarios including current harvesting practices, no harvests, varied rotation ages, varied clearcut sizes, clustered clearcuts, and landowner coordination. We examined the effects of each scenario on spatial patterns of forests by covertype, age class, and mean and distribution of patch sizes. All scenarios reveal an increase in the spruce-fir (Picea-Abies) covertype relative to the economically paramount aspen-birch (Populus-Betula) covertype. Our results also show that most covertypes occur in mostly small patches <5 ha in size and the ability of management to affect patch size is limited by the highly varied physiography and landuse patterns on the landscape. However, coordination among landowners, larger clearcuts, and clustered clearcuts were all predicted to increase habitat diversity by creating some larger patches and older forest patches. These three scenarios along with the no harvest scenario also create more old forest than current harvesting practices, by concentrating harvesting on some portion of the landscape. The no harvest scenario retained large, fire-regenerated aspen-birch patches. Harvests fragment large aspen-birch patches by changing the age structure and releasing the shade-tolerant understory species. More sapling forest, and larger sapling patches resulted from the shortened rotation scenario.  相似文献   

16.
Evaluating the Effectiveness of Corridors: a Genetic Approach   总被引:9,自引:0,他引:9  
Abstract: The effectiveness of corridors in maintaining dispersal in fragmented landscapes is a question of considerable conservation and ecological importance. We tested the efficacy of corridors as residual landscape structures in maintaining population structure in the red-backed vole ( Clethrionomys gapperi ), a closed-canopy specialist, and the deer mouse (   Peromyscus maniculatus ), a habitat generalist. In coniferous forests managed for timber production in northeastern Washington, we sampled pairs of populations in three landscape classes: (1) contiguous landscapes, in which sites were located completely within a matrix of closed-canopy forest; (2) corridor landscapes, in which sites were connected by a corridor of closed-canopy forest; and (3) isolated landscapes, in which sites were separated from one another by clearcut or young regeneration stands. For each species, we used four microsatellite loci to quantify genetic distance between population pairs. Nei's genetic distance (   D s  ) increased from smallest to largest in the order of contiguous, corridor, and isolated landscapes for C. gapperi. For P. maniculatus, genetic distances across landscape configurations were not significantly different. The differences between the two species indicate that they respond differently to the presence of forest corridors. In managed forests, corridors between unlogged habitats appear to maintain higher population connectivity for C. gapperi than landscapes without corridors.  相似文献   

17.
Protected areas are an important part of broader landscapes that are often used to preserve biodiversity or natural features. Some argue that protected areas may also help ensure provision of ecosystem services. However, the effect of protection on ecosystem services and whether protection affects the provision of ecosystem services is known only for a few services in a few types of landscapes. We sought to fill this gap by investigating the effect of watershed protection status and land use and land cover on biodiversity and the provision of ecosystem services. We compared the ecosystem services provided in and around streams in 4 watershed types: International Union for Conservation of Nature category II protected forests, unprotected forests, unprotected forests with recent timber harvesting, and unprotected areas with agriculture. We surveyed 28 streams distributed across these watershed types in Quebec, Canada, to quantify provisioning of clean water, carbon storage, recreation, wild foods, habitat quality, and terrestrial and aquatic biodiversity richness and abundance. The quantity and quality of ecosystem services and biodiversity were generally higher in sites with intact forest—whether protected or not—relative to those embedded in production landscapes with forestry or agriculture. Clean-water provision, carbon storage, habitat quality, and tree diversity were significantly higher in and around streams surrounded by forest. Recreation, wild foods, and aquatic biodiversity did not vary among watershed types. Although some services can be provided by both protected and unprotected areas, protection status may help secure the continued supply of services sensitive to changes in land use or land cover. Our findings provide needed information about the ecosystem service and biodiversity trade-offs and synergies that result from developing a watershed or from protecting it.  相似文献   

18.
A key controversy in conservation is the framing of the relationship between people and nature. The extent to which the realms of nature and human culture are viewed as separate (dualistic view) or integrated is often discussed in the social sciences. To explore how this relationship is represented in the practice of conservation in Europe, we considered examples of cultural landscapes, wildlife (red deer, reindeer, horses), and protected area management. We found little support, for a dualistic worldview, where people and nature are regarded as separate in the traditional practice of conservation in Europe. The borders between nature and culture, wild and domestic, public land and private land, and between protected areas and the wider landscape were blurred and dynamic. The institutionalized (in practice and legislation) view is of an interactive mutualistic system in which humans and nature share the whole landscape. However, more dualistic ideals, such as wilderness and rewilding that are challenging established practices are expanding. In the context of modern day Europe, wilderness conservation and rewilding are not valid for the whole landscape, although it is possible to integrate some areas of low‐intervention management into a wider matrix. A precondition for success is to recognize and plan for a plurality of values concerning the most valid approaches to conservation and to plan for this plurality at the landscape scale.  相似文献   

19.
With the aim of wood production with negligible negative effects on biodiversity and ecosystem processes, a silvicultural practice of selective logging with natural regeneration has been implemented in European beech forests (Fagus sylvatica) during the last decades. Despite this near‐to‐nature strategy, species richness of various taxa is lower in these forests than in unmanaged forests. To develop guidelines to minimize the fundamental weaknesses in the current practice, we linked functional traits of saproxylic beetle species to ecosystem characteristics. We used continental‐scale data from 8 European countries and regional‐scale data from a large forest in southern Germany and forest‐stand variables that represented a gradient of intensity of forest use to evaluate the effect of current near‐to‐nature management strategies on the functional diversity of saproxylic beetles. Forest‐stand variables did not have a statistically significant effect on overall functional diversity, but they did significantly affect community mean and diversity of single functional traits. As the amount of dead wood increased the composition of assemblages shifted toward dominance of larger species and species preferring dead wood of large diameter and in advanced stages of decay. The mean amount of dead wood across plots in which most species occurred was from 20 to 60 m3/ha. Species occurring in plots with mean dead wood >60 m3/ha were consistently those inhabiting dead wood of large diameter and in advanced stages of decay. On the basis of our results, to make current wood‐production practices in beech forests throughout Europe more conservation oriented (i.e., promoting biodiversity and ecosystem functioning), we recommend increasing the amount of dead wood to >20 m3/ha; not removing dead wood of large diameter (50 cm) and allowing more dead wood in advanced stages of decomposition to develop; and designating strict forest reserves, with their exceptionally high amounts of dead wood, that would serve as refuges for and sources of saproxylic habitat specialists. Efectos Actuales del Manejo Casi Natural de Bosques sobre la Composición de Atributos Funcionales de Escarabajos Saproxílicos en Bosques de Haya  相似文献   

20.
Although forest landscape models (FLMs) have benefited greatly from ongoing advances of computer technology and software engineering, computing capacity remains a bottleneck in the design and development of FLMs. Computer memory overhead and run time efficiency are primary limiting factors when applying forest landscape models to simulate large landscapes with fine spatial resolutions and great vegetation detail. We introduce LANDIS PRO 6.0, a landscape model that simulates forest succession and disturbances on a wide range of spatial and temporal scales. LANDIS PRO 6.0 improves on existing forest landscape models with two new data structures and algorithms (hash table and run-length compression). The innovative computer design enables LANDIS PRO 6.0 to simulate very large (>108 ha) landscapes with a 30-m spatial resolution, which to our knowledge no other raster forest landscape models can do. We demonstrate model behavior and performance through application to five nested forest landscapes with varying sizes (from 1 million to 100 million 0.09-ha cells) in the southern Missouri Ozarks. The simulation results showed significant and variable effects of changing spatial extent on simulated forest succession patterns. Results highlighted the utility of a model like LANDIS PRO 6.0 that is capable of efficiently simulating large landscapes and scaling up forest landscape processes to a common regional scale of analysis. The programming methodology presented here may significantly advance the development of next generation of forest landscape models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号