首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Detecting habitat selection depends on the spatial scale of analysis, but multi-scale studies have been limited by the use of a few, spatially variable, hierarchical levels. We developed spatially explicit approaches to quantify selection along a continuum of scales using spatial (coarse-graining) and geostatistical (variogram) pattern analyses at multiple levels of habitat use (seasonal range, travel routes, feeding areas, and microsites). We illustrate these continuum-based approaches by applying them to winter habitat selection by woodland caribou (Rangifer tarandus caribou) using two key habitat components, Cladina lichens and snow depth. We quantified selection as the reduction in variance in used relative to available sites, thus avoiding reliance on correlations between organism and habitat, for which interpretation can be impeded by cross-scale correlations. By consistently selecting favorable habitat features, caribou experienced reduced variance in these features. The degree to which selection was accounted for by the travel route, feeding area, or microsite levels varied across the scale continuum. Caribou selected for Cladina within a 13-km scale domain and selected shallower snow at all scales. Caribou responded most strongly at the dominant scales of patchiness, implicating habitat heterogeneity as an underlying cause of multi-scale habitat selection. These novel approaches enable a spatial understanding of resource selection behavior.  相似文献   

2.
Landscape heterogeneity plays an integral role in shaping ecological and evolutionary processes. Despite links between the two disciplines, ecologists and population geneticists have taken different approaches to evaluating habitat selection, animal movement, and gene flow across the landscape. Ecologists commonly use statistical models such as resource selection functions (RSFs) to identify habitat features disproportionately selected by animals, whereas population genetic approaches model genetic differentiation according to the distribution of habitat variables. We combined ecological and genetic approaches by using RSFs to predict genetic relatedness across a heterogeneous landscape. We constructed sex- and season-specific resistance surfaces based on RSFs estimated using data from 102 GPS (global positioning system) radio-collared mountain goats (Oreamnos americanus) in southeast Alaska, USA. Based on mountain goat ecology, we hypothesized that summer and male surfaces would be the best predictors of relatedness. All individuals were genotyped at 22 microsatellite loci, which we used to estimate genetic relatedness. Summer resistance surfaces derived from RSFs were the best predictors of genetic relatedness, and winter models the poorest. Mountain goats generally selected for areas close to escape terrain and with a high heat load (a metric related to vegetative productivity and snow depth), while avoiding valleys. Male- and female-specific surfaces were similar, except for winter, for which male habitat selection better predicted genetic relatedness. The null models of isolation-by-distance and barrier only outperformed the winter models. This study merges high-resolution individual locations through GPS telemetry and genetic data, that can be used to validate and parameterize landscape genetics models, and further elucidates the relationship between landscape heterogeneity and genetic differentiation.  相似文献   

3.
Gap Crossing Decisions by Forest Songbirds during the Post-Fledging Period   总被引:10,自引:0,他引:10  
Gaps in forest cover, created by agriculture, forestry, and other anthropogenic activities, are assumed to impede the movements of many forest songbirds. Little is known, however, about the reluctance of different species of birds to cross habitat gaps. We studied this by inducing birds in the post-fledging period to cross gaps of varying widths and to choose between routes through woodland or across open areas by attracting them to a recording of mobbing calls by Chickadees (  Parus atricapillus). In 278 experiments conducted in boreal forest and agricultural landscapes near Québec city, 157 birds or flocks of birds of five species were attracted. Overall, birds were twice as likely to travel through 50 m of woodland than through 50 m in the open to reach the recording. When given a choice of traveling through woodland or across a gap, the majority of respondents preferred woodland routes, even when they were three times longer than shortcuts in the open. However, species differed greatly in their response to gaps. Our results show that woodland links significantly facilitate movements of birds across fragmented landscapes.  相似文献   

4.
Accurate estimations of the abundance of threatened animal populations are required for assessment of species’ status and vulnerability and conservation planning. However, density estimation is usually difficult and resource demanding, so researchers often collect data at local scales. However, anthropogenic pressures most often have landscape-level effects, for example, through habitat loss and fragmentation. We applied hierarchical distance sampling (HDS) to transect count data to determine the effect of habitat and anthropogenic factors on the density of 3 arboreal primate species inhabiting 5 distinct tropical forests across a landscape of 19,000 km2 in the Udzungwa Mountains of Tanzania. We developed a novel, multiregion extension of HDS that allowed us to model density and detectability jointly across forests without losing site-specific information. For all species, the effect of anthropogenic disturbance on density was overwhelmingly negative among metapopulations: −0.63 Angolan colobus (Colobus angolensis palliatus) (95% Bayesian CI −1.03 to −0.27), −0.54 Udzungwa red colobus (Procolobus gordonorum) (−0.89 to −0.22), and −0.33 Sykes' monkey (Cercopithecus mitis monoides) (−0.63 to −0.07). Some responses to habitat factors were shared, notably the negative effect of elevation and the positive effect of climber coverage. These results are important for conservation science and practice because: the among-populations negative responses to anthropogenic disturbance provides a foundation for development of conservation plans that hold at the landscape scale, which is a comprehensive and cost-efficient approach; the among-species consistency in responses suggests conservation measures may be generalized at the guild level, which is especially relevant given the functional importance of primates in tropical rainforests; and the greater primate densities in areas at low elevation, which are closer to human settlements, point to specific management recommendations, such as the creation of buffer zones and prioritization of areas for protection.  相似文献   

5.
Genetic mechanisms determining habitat selection and specialization of individuals within species have been hypothesized, but not tested at the appropriate individual level in nature. In this work, we analyzed habitat selection for 139 GPS-collared caribou belonging to 3 declining ecotypes sampled throughout Northwestern Canada. We used Resource Selection Functions comparing resources at used and available locations. We found that the 3 caribou ecotypes differed in their use of habitat suggesting specialization. On expected grounds, we also found differences in habitat selection between summer and winter, but also, originally, among the individuals within an ecotype. We next obtained Single Nucleotide Polymorphisms (SNPs) for the same caribou individuals, we detected those associated to habitat selection, and then identified genes linked to these SNPs. These genes had functions related in other organisms to habitat and dietary specializations, and climatic adaptations. We therefore suggest that individual variation in habitat selection was based on genotypic variation in the SNPs of individual caribou, indicating that genetic forces underlie habitat and diet selection in the species. We also suggest that the associations between habitat and genes that we detected may lead to lack of resilience in the species, thus contributing to caribou endangerment. Our work emphasizes that similar mechanisms may exist for other specialized, endangered species.  相似文献   

6.
Researchers employing resource selection functions (RSFs) and other related methods aim to detect correlates of space-use and mitigate against detrimental environmental change. However, an empirical model fit to data from one place or time is unlikely to capture species responses under different conditions because organisms respond nonlinearly to changes in habitat availability. This phenomenon, known as a functional response in resource selection, has been debated extensively in the RSF literature but continues to be ignored by practitioners for lack of a practical treatment. We therefore extend the RSF approach to enable it to estimate generalized functional responses (GFRs) from spatial data. GFRs employ data from several sampling instances characterized by diverse profiles of habitat availability. By modeling the regression coefficients of the underlying RSF as functions of availability, GFRs can account for environmental change and thus predict population distributions in new environments. We formulate the approach as a mixed-effects model so that it is estimable by readily available statistical software. We illustrate its application using (1) simulation and (2) wolf home-range telemetry. Our results indicate that GFRs can offer considerable improvements in estimation speed and predictive ability over existing mixed-effects approaches.  相似文献   

7.
The purpose of our study is to show how ecologists' interpretation of habitat selection by grizzly bears (Ursus arctos) is altered by the scale of observation and also how management questions would be best addressed using predetermined scales of analysis. Using resource selection functions (RSF) we examined how variation in the spatial extent of availability affected our interpretation of habitat selection by grizzly bears inhabiting mountain and plateau landscapes. We estimated separate models for females and males using three spatial extents: within the study area, within the home range, and within predetermined movement buffers. We employed two methods for evaluating the effects of scale on our RSF designs. First, we chose a priori six candidate models, estimated at each scale, and ranked them using Akaike Information Criteria. Using this method, results changed among scales for males but not for females. For female bears, models that included the full suite of covariates predicted habitat use best at each scale. For male bears that resided in the mountains, models based on forest successional stages ranked highest at the study-wide and home range extents, whereas models containing covariates based on terrain features ranked highest at the buffer extent. For male bears on the plateau, each scale estimated a different highest-ranked model. Second, we examined differences among model coefficients across the three scales for one candidate model. We found that both the magnitude and direction of coefficients were dependent upon the scale examined; results varied between landscapes, scales, and sexes. Greenness, reflecting lush green vegetation, was a strong predictor of the presence of female bears in both landscapes and males that resided in the mountains. Male bears on the plateau were the only animals to select areas that exposed them to a high risk of mortality by humans. Our results show that grizzly bear habitat selection is scale dependent. Further, the selection of resources can be dependent upon the availability of a particular vegetation type on the landscape. From a management perspective, decisions should be based on a hierarchical process of habitat selection, recognizing that selection patterns vary across scales.  相似文献   

8.
Fragmentation of the boreal forest by linear features, including seismic lines, has destabilized predator–prey dynamics, resulting in the decline of woodland caribou (Rangifer tarandus caribou) populations. Restoration of human-altered habitat has therefore been identified as a critical management tool for achieving self-sustaining woodland caribou populations. However, only recently has testing of the response of caribou and other wildlife to restoration activities been conducted. Early work has centered around assessing changes in wildlife use of restored seismic lines. We evaluated whether restoration reduces the movement rates of predators and their associated prey, which is expected to decrease predator hunting efficiency and ultimately reduce caribou mortality. We developed a new method for using cameras to measure fine-scale movement by measuring speed as animals traveled between cameras in an array. We used our method to quantify speed of caribou, moose (Alces alces), bears (Ursus americanus), and wolves (Canis lupus) on treated (restored) and untreated seismic lines. Restoration treatments reduced travel speeds along seismic lines of wolves by 1.38 km/h, bears by 0.55 km/h, and caribou by 1.57 km/h, but did not reduce moose travel speeds. Reduced predator and caribou speeds on treated seismic lines are predicted to decrease encounter rates between predators and caribou and thus lower caribou kill rates. However, further work is needed to determine whether reduced movement rates result in reduced encounter rates with prey, and ultimately reduced caribou mortality.  相似文献   

9.
Two woodland caribou ( Rangifer tarandus caribou ) ecotypes, mountain and northern, were translocated to the southern Selkirk Mountains in northern Idaho (U.S.A.) to augment a remnant subpopulation. The translocation resulted in an additional subpopulation that used the general area of the release site. The mountain ecotype stock exhibited patterns of movement and habitat use similar to those of the resident subpopulation. The northern ecotype stock exhibited more variable habitat use, especially in the first year after translocation. Dispersal of the northern stock was not as extensive as that of the mountain stock. Fourteen of 22 caribou from the northern stock and 6 of 18 caribou from the mountain stock died during the 3-year period after the release. Our results suggest that when donor subpopulations must be used that do not closely compare with resident subpopulations extinct or extant, larger numbers of individuals may be needed to establish a self-sustaining population.  相似文献   

10.
Effective management and conservation of species, subspecies, or ecotypes require an understanding of how populations are structured in space. We used satellite-tracking locations and hierarchical and fuzzy clustering to quantify subpopulations within the behaviorally different barren-ground caribou (Rangifer tarandus groenlandicus), Dolphin and Union island caribou (R. t. groenlandicus x pearyi), and boreal (R. t. caribou) caribou ecotypes in the Northwest Territories and Nunavut, Canada. Using a novel approach, we verified that the previously recognized Cape Bathurst, Bluenose-West, Bluenose-East, Bathurst, Beverly, Qamanirjuaq, and Lorillard barren-ground subpopulations were robust and that the Queen Maude Gulf and Wager Bay barren-ground subpopulations were organized as individuals. Dolphin and Union island and boreal caribou formed one and two distinct subpopulation, respectively, and were organized as individuals. Robust subpopulations were structured by strong annual spatial affiliation among females; subpopulations organized as individuals were structured by migratory connectivity, barriers to movement, and/or habitat discontinuity. One barren-ground subpopulation used two calving grounds, and one calving ground was used by two barren-ground subpopulations, indicating that these caribou cannot be reliably assigned to subpopulations solely by calving-ground use. They should be classified by annual spatial affiliation among females. Annual-range size and path lengths varied significantly among ecotypes, including mountain woodland caribou (R. t. caribou), and reflected behavioral differences. An east-west cline in annual-range sizes and path lengths among migratory barren-ground subpopulations likely reflected differences in subpopulation size and habitat conditions and further supported the subpopulation structure identified.  相似文献   

11.
Abstract:  Models of species' distributions are commonly used to inform landscape and conservation planning. In urban and semiurban landscapes, the distributions of species are determined by a combination of natural habitat and anthropogenic impacts. Understanding the spatial influence of these two processes is crucial for making spatially explicit decisions about conservation actions. We present a logistic regression model for the distribution of koalas (  Phascolarctos cinereus ) in a semiurban landscape in eastern Australia that explicitly separates the effect of natural habitat quality and anthropogenic impacts on koala distributions. We achieved this by comparing the predicted distributions from the model with what the predicted distributions would have been if anthropogenic variables were at their mean values. Similar approaches have relied on making predictions assuming anthropogenic variables are zero, which will be unreliable if the training data set does not include anthropogenic variables close to zero. Our approach is novel because it can be applied to landscapes where anthropogenic variables are never close to zero. Our model showed that, averaged across the study area, natural habitat was the main determinant of koala presence. At a local scale, however, anthropogenic impacts could be more important, with consequent implications for conservation planning. We demonstrated that this modeling approach, combined with the visual presentation of predictions as a map, provides important information for making decisions on how different conservation actions should be spatially allocated. This method is particularly useful for areas where wildlife and human populations exist in close proximity.  相似文献   

12.
Ecosystem function and resilience are compromised when habitats become fragmented due to land‐use change. This has led to national and international conservation strategies aimed at restoring habitat extent and improving functional connectivity (i.e., maintaining dispersal processes). However, biodiversity responses to landscape‐scale habitat creation and the relative importance of spatial and temporal scales are poorly understood, and there is disagreement over which conservation strategies should be prioritized. We used 160 years of historic post‐agricultural woodland creation as a natural experiment to evaluate biodiversity responses to habitat creation in a landscape context. Birds were surveyed in 101 secondary, broadleaf woodlands aged 10–160 years with ≥80% canopy cover and in landscapes with 0‐17% broadleaf woodland cover within 3000 m. We used piecewise structural equation modeling to examine the direct and indirect relationships between bird abundance and diversity, ecological continuity, patch characteristics, and landscape structure and quantified the relative conservation value of local and landscape scales for bird communities. Ecological continuity indirectly affected overall bird abundance and species richness through its effects on stand structure, but had a weaker influence (effect size near 0) on the abundance and diversity of species most closely associated with woodland habitats. This was probably because woodlands were rapidly colonized by woodland generalists in ≤10 years (minimum patch age) but were on average too young (median 50 years) to be colonized by woodland specialists. Local patch characteristics were relatively more important than landscape characteristics for bird communities. Based on our results, biodiversity responses to habitat creation depended on local‐ and landscape‐scale factors that interacted across time and space. We suggest that there is a need for further studies that focus on habitat creation in a landscape context and that knowledge gained from studies of habitat fragmentation and loss should be used to inform habitat creation with caution because the outcomes are not necessarily reciprocal.  相似文献   

13.
Systematic conservation plans have only recently considered the dynamic nature of ecosystems. Methods have been developed to incorporate climate change, population dynamics, and uncertainty in reserve design, but few studies have examined how to account for natural disturbance. Considering natural disturbance in reserve design may be especially important for the world's remaining intact areas, which still experience active natural disturbance regimes. We developed a spatially explicit, dynamic simulation model, CONSERV, which simulates patch dynamics and fire, and used it to evaluate the efficacy of hypothetical reserve networks in northern Canada. We designed six networks based on conventional reserve design methods, with different conservation targets for woodland caribou habitat, high-quality wetlands, vegetation, water bodies, and relative connectedness. We input the six reserve networks into CONSERV and tracked the ability of each to maintain initial conservation targets through time under an active natural disturbance regime. None of the reserve networks maintained all initial targets, and some over-represented certain features, suggesting that both effectiveness and efficiency of reserve design could be improved through use of spatially explicit dynamic simulation during the planning process. Spatial simulation models of landscape dynamics are commonly used in natural resource management, but we provide the first illustration of their potential use for reserve design. Spatial simulation models could be used iteratively to evaluate competing reserve designs and select targets that have a higher likelihood of being maintained through time. Such models could be combined with dynamic planning techniques to develop a general theory for reserve design in an uncertain world.  相似文献   

14.
We examined the influence of local and landscape-level attributes of fragmented habitats in shrubsteppe habitats on the breeding distributions of Sage ( Amphispiza belli ) and Brewer's ( Spizella breweri ) Sparrows, Sage Thrashers ( Oreoscoptes montanus ) Horned Larks ( Eremophila alpestris ), and Western Meadowlarks ( Sturnella neglecta ) in the Snake River Plains of southwestern Idaho. We developed habitat (resource) selection models for each species by combining bird counts conducted from 1991 through 1933 with local vegetation characteristics and landscape attributes derived from satellite imagery. Site selection by shrubsteppe species (Sage and Brewer's Sparrows, and Sage Thrashers) depended on local vegetation cover and landscape features, such as the patch size of shrub habitats or the spatial similarity of sites. Marginal sites for these species (with species present in one of three years) were intermediate between unoccupied (never present) and occupied sites along environmental gradients characterized by increasing size of shrub habitat patches and total shrub cover and by decreasing disturbance. Horned Larks and Western Meadowlarks, typical grassland species, were not sensitive to landscape features, and their occupancy depended on the amount of grassland or shrub cover. In contrast to shrubsteppe species, sites that varied by occupancy rates of Western Meadowlarks did not significantly differ in vegetation or landscape components. Our results demonstrate that fragmentation of shrubsteppe significantly influenced the presence of shrub-obligate species. Because of restoration difficulties, the disturbance of semiarid shrubsteppe may cause irreversible loss of habitat and significant long-term consequences for the conservation of shrub-obligate birds.  相似文献   

15.
Species distribution data are an essential biodiversity variable requiring robust monitoring to inform wildlife conservation. Yet, such data remain inherently sparse because of the logistical challenges of monitoring biodiversity across broad geographic extents. Surveys of people knowledgeable about the occurrence of wildlife provide an opportunity to evaluate species distributions and the ecology of wildlife communities across large spatial scales. We analyzed detection histories of 30 vertebrate species across the Western Ghats biodiversity hotspot in India, obtained from a large-scale interview survey of 2318 people who live and work in the forests of this region. We developed a multispecies occupancy model that simultaneously corrected for false-negative (non-detection) and false-positive (misidentification) errors that interview surveys can be prone to. Using this model, we integrated data across species in composite analyses of the responses of functional species groups (based on disturbance tolerance, diet, and body mass traits) to spatial variation in environmental variables, protection, and anthropogenic pressures. We observed a positive association between forest cover and the occurrence of species with low tolerance of human disturbance. Protected areas were associated with higher occurrence for species across different functional groups compared with unprotected lands. We also observed the occurrence of species with low disturbance tolerance, herbivores, and large-bodied species was negatively associated with developmental pressures, such as human settlements, energy production and mining, and demographic pressures, such as biological resource extraction. For the conservation of threatened vertebrates, our work underscores the importance of maintaining forest cover and reducing deforestation within and outside protected areas, respectively. In addition, mitigating a suite of pervasive human pressures is also crucial for wildlife conservation in one of the world's most densely populated biodiversity hotspots.  相似文献   

16.
Fishing and habitat degradation have increased the extinction risk of sharks, and conservation strategies recognize that survival of juveniles is critical for the effective management of shark populations. Despite the rapid expansion of marine protected areas (MPAs) globally, the paucity of shark‐monitoring data on large scales (100s–1000s km) means that the effectiveness of MPAs in halting shark declines remains unclear. Using data collected by baited remote underwater video systems (BRUVS) in northwestern Australia, we developed generalized linear models to elucidate the ecological drivers of habitat suitability for juvenile sharks. We assessed occurrence patterns at the order and species levels. We included all juvenile sharks sampled and the 3 most abundant species sampled separately (grey reef [Carcharhinus amblyrhynchos], sandbar [Carcharhinus plumbeus], and whitetip reef sharks [Triaenodon obesus]). We predicted the occurrence of juvenile sharks across 490,515 km2 of coastal waters and quantified the representation of highly suitable habitats within MPAs. Our species‐level models had higher accuracy (? ≥ 0.69) and deviance explained (≥48%) than our order‐level model (? = 0.36 and deviance explained of 10%). Maps of predicted occurrence revealed different species‐specific patterns of highly suitable habitat. These differences likely reflect different physiological or resource requirements between individual species and validate concerns over the utility of conservation targets based on aggregate species groups as opposed to a species‐focused approach. Highly suitable habitats were poorly represented in MPAs with the most restrictions on extractive activities. This spatial mismatch possibly indicates a lack of explicit conservation targets and information on species distribution during the planning process. Non‐extractive BRUVS provided a useful platform for building the suitability models across large scales to assist conservation planning across multiple maritime jurisdictions, and our approach provides a simple for method for testing the effectiveness of MPAs.  相似文献   

17.
The effects of landscape fragmentation on nest predation and brood parasitism, the two primary causes of avian reproductive failure, have been difficult to generalize across landscapes, yet few studies have clearly considered the context and spatial scale of fragmentation. Working in two river systems fragmented by agricultural and rural-housing development, we tracked nesting success and brood parasitism in > 2500 bird nests in 38 patches of deciduous riparian woodland. Patches on both river systems were embedded in one of two local contexts (buffered from agriculture by coniferous forest, or adjacent to agriculture), but the abundance of agriculture and human habitation within 1 km of each patch was highly variable. We examined evidence for three models of landscape effects on nest predation based on (1) the relative importance of generalist agricultural nest predators, (2) predators associated with the natural habitats typically removed by agricultural development, or (3) an additive combination of these two predator communities. We found strong support for an additive predation model in which landscape features affect nest predation differently at different spatial scales. Riparian habitat with forest buffers had higher nest predation rates than sites adjacent to agriculture, but nest predation also increased with increasing agriculture in the larger landscape surrounding each site. These results suggest that predators living in remnant woodland buffers, as well as generalist nest predators associated with agriculture, affect nest predation rates, but they appear to respond at different spatial scales. Brood parasitism, in contrast, was unrelated to agricultural abundance on the landscape, but showed a strong nonlinear relationship with farm and house density, indicating a critical point at which increased human habitat causes increased brood parasitism. Accurate predictions regarding landscape effects on nest predation and brood parasitism will require an increased appreciation of the multiple scales at which landscape components influence predator and parasite behavior.  相似文献   

18.
Proactive approaches that anticipate the long-term effects of current and future conservation threats could increase the effectiveness and efficiency of biodiversity conservation. However, such approaches can be obstructed by a lack of knowledge of habitat requirements for wildlife. To aggregate and assess the suitability of current information available on habitat requirements needed for proactive conservation, we conducted a systematic review of the literature on elephant and rhinoceros habitat requirements and synthesized data by combining a vote counting assessment with bibliometric and term maps. We contextualized these numeric and terminological results with a narrative review. We mapped current methods, results, terminology, and collaborations of 693 studies. Quantitative evidence for factors that influence the suitability of an area for elephants and rhinoceros was biased toward African savanna elephants and ecological variables. Less than one third of holistic approaches considered equal amounts of ecological and anthropogenic variables in their assessments. There was a general lack of quantitative evidence for direct proxies of anthropogenic variables that were expected to play an important role based on qualitative evidence and policy documents. However, there was evidence for a segregation in conceptual frameworks among countries and species and between science versus policy literature. There was also evidence of unused potential for collaborations among southern hemisphere researchers. Our results indicated that the success of proactive conservation interventions can be increased if ecological and anthropogenic dimensions are integrated into holistic habitat assessments and holistic carrying capacities and quantitative evidence for anthropogenic variables is improved. To avoid wasting limited resources, it is necessary to form inclusive collaborations within and across networks of researchers studying different species across regional and continental borders and in the science–policy realm.  相似文献   

19.
Species persistence in human‐altered landscapes can depend on factors operating at multiple spatial scales. To understand anthropogenic impacts on biodiversity, it is useful to examine relationships between species traits and their responses to land‐use change. A key knowledge gap concerns whether these relationships vary depending on the scale of response under consideration. We examined how local‐ and large‐scale habitat variables influence the occupancy dynamics of a bird community in cloud forest zones in the Colombian Chocó‐Andes. Using data collected across a continuum of forest and agriculture, we examined which traits best predict species responses to local variation in farmland and which traits best predict species responses to isolation from contiguous forest. Global range size was a strong predictor of species responses to agriculture at both scales; widespread species were less likely to decline as local habitat cover decreased and as distance from forest increased. Habitat specialization was a strong predictor of species responses only at the local scale. Open‐habitat species were particularly likely to increase as pasture increased, but they were relatively insensitive to variation in distance to forest. Foraging plasticity and flocking behavior were strong predictors of species responses to distance from forest, but not their responses to local habitat. Species with lower plasticity in foraging behaviors and obligate flock‐following species were more likely to decline as distance from contiguous forest increased. For species exhibiting these latter traits, persistence in tropical landscapes may depend on the protection of larger contiguous blocks of forest, rather than the integration of smaller‐scale woodland areas within farmland. Species listed as threatened or near threatened on the International Union for Conservation of Nature Red List were also more likely to decline in response to both local habitat quality and isolation from forest relative to least‐concern species, underlining the importance of contiguous forests for threatened taxa.  相似文献   

20.
Metapopulation Extinction Risk under Spatially Autocorrelated Disturbance   总被引:3,自引:0,他引:3  
Abstract:  Recent extinction models generally show that spatial aggregation of habitat reduces overall extinction risk because sites emptied by local extinction are more rapidly recolonized. We extended such an investigation to include spatial structure in the disturbance regime. A spatially explicit metapopulation model was developed with a wide range of dispersal distances. The degree of aggregation of both habitat and disturbance pattern could be varied from a random distribution, through the intermediate case of a fractal distribution, all the way to complete aggregation (single block). Increasing spatial aggregation of disturbance generally increased extinction risk. The relative risk faced by populations in different landscapes varied greatly, depending on the disturbance regime. With random disturbance, the spatial aggregation of habitat reduced extinction risk, as in earlier studies. Where disturbance was spatially autocorrelated, however, this advantage was eliminated or reversed because populations in aggregated habitats are at risk of mass extinction from coarse-scale disturbance events. The effects of spatial patterns on extinction risk tended to be reduced by long-distance dispersal. Given the high levels of spatial correlation in natural and anthropogenic disturbance processes, population vulnerability may be greatly underestimated both by classical (nonspatial) models and by those that consider spatial structure in habitat alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号