首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ascomycota was the predominant phylum in sanitary landfill fungal communities. • Saprophytic fungi may be of special importance in landfill ecology. • Both richness and diversity of fungal community were lower in leachate than refuse. • Physical habitat partly contributed to the geographic variance of fungal community. • NO3 was considered the most significant abiotic factor shaping fungal community. Land filling is the main method to dispose municipal solid waste in China. During the decomposition of organic waste in landfills, fungi play an important role in organic carbon degradation and nitrogen cycling. However, fungal composition and potential functions in landfill have not yet been characterized. In this study, refuse and leachate samples with different areas and depths were taken from a large sanitary landfill in Beijing to identify fungal communities in landfills. In high-throughput sequencing of ITS region, 474 operational taxonomic units (OTUs) were obtained from landfill samples with a cutoff level of 3% and a sequencing depth of 19962. The results indicates that Ascomycota, with the average relative abundance of 84.9%, was the predominant phylum in landfill fungal communities. At the genus level, Family Hypocreaceae unclassified (15.7%), Fusarium (9.9%) and Aspergillus (8.3%) were the most abundant fungi found in the landfill and most of them are of saprotrophic lifestyle, which plays a big role in nutrient cycling in ecosystem. Fungi existed both in landfilled refuse and leachate while both the richness and evenness of fungal communities were higher in the former. In addition, fungal communities in landfilled refuse presented geographic variances, which could be partly attributed to physical habitat properties (pH, dissolved organic carbon, volatile solid, NH4+, NO2 and NO3), while NO3 was considered the most significant factor (p<0.05) in shaping fungal community.  相似文献   

2.
• Optimal growth of Chlorella in inland saline-alkaline water was achieved by blue LED. • Lipids of Chlorella sp. HQ were mainly composed of C16:0 and C18:2 under various LEDs. • The BiodieselAnalyzer© software was used to evaluate the Chlorella biodiesel quality. Chlorella sp. HQ was a high-quality feedstock for biodiesel production. Inland saline-alkaline water can be used for the low-cost cultivation of microalgae, but whether algal biomass under various light sources has the potential to produce biodiesel remains to be developed. Herein, the influence of different light-emitting diode (LEDs) light colors (blue, red, white, mixed blue-red, and mixed blue-white LED) on the growth performance, lipid accumulation, and fatty acid composition of Chlorella sp. HQ cultivated in inland saline-alkaline water was investigated. The highest algal density was obtained under blue LEDs at the end of cultivation, reaching 1.93±0.03 × 107 cells/mL. White LEDs can improve biomass yield, total lipid yield, and triacylglycerol yield per algal cell. The main fatty acid components of Chlorella from inland saline-alkaline water were palmitic acid and linoleic acid. The BiodieselAnalyzer© software was used to predict algal biodiesel quality by estimating different quality parameters. The cetane number, kinematic viscosity, and density of Chlorella biodiesel were 51.714–67.69, 3.583–3.845 mm2/s, and 0.834–0.863 g/cm3, respectively. This further proved that the Chlorella biomass obtained from inland saline-alkaline water has the potential to be used as a high-quality biodiesel feedstock.  相似文献   

3.
• SMX addition had negative effect on acetoclastic methanogens in mesophilic AD. • Thermophilic AD was more effective in eliminating resistance genes than mesophilic. • ARGs variations in AD were mainly affected by succession of microbial community. • Methane production was significant associated to ARGs reduction. The role of norfloxacin (NOR) and sulfamethoxazole (SMX) in mesophilic and thermophilic anaerobic digestion (AD) of pig manure, with respect to methane production and variations in the microbial community and resistance genes, including antibiotic resistance genes (ARGs), class I integrase (intI1), and heavy metal resistance genes (MRGs), was investigated. The results indicated that NOR exerted little influence on the microbial community, whereas SMX negatively affected the acetoclastic methanogens. The abundance of two sulfonamide resistance genes (sul1 and sul2), three quinolone resistance genes (qnrS, parC, and aac(6’)-Ib-cr), and intI1 decreased by 2‒3 orders of magnitude at the end of thermophilic AD. In contrast, mesophilic AD was generally ineffective in reducing the abundance of resistance genes. According to the results of redundancy analysis, the abundance of ARGs was affected primarily by microbial community dynamics (68.5%), rather than the selective pressure due to antibiotic addition (13.3%). Horizontal gene transfer (HGT) through intI1 contributed to 26.4% of the ARG variation. The archaeal community also influenced the changes in the resistance genes, and ARG reduction was significantly correlated with enhanced methane production. Thermophilic AD presented a higher methane production potential and greater reduction in resistance gene abundance.  相似文献   

4.
• Micro-plastics (MPs) significantly increase Pb toxicity. • Algae reduce the combined toxicity of MP and Pb. • The toxicity increase comes from high soluble Pb and MP-Pb uptake. • The toxicity reduction might come from energy related pathway. Microplastics (MPs) have been recognized as a new class of emerging contaminants in recent years. They not only directly impact aquatic organisms, but also indirectly impact these organisms by interacting with background toxins in the environment. Moreover, under realistic environmental conditions, algae, a natural food for aquatic organisms, may alter the toxicity pattern related to MPs. In this research, we first examined the toxicity of MPs alone, and their effect on the toxicity of lead (Pb) on Ceriodaphnia dubia (C. dubia), a model aquatic organism for toxicity survey. Then, we investigated the effect of algae on the combined toxicity of MPs and Pb. We observed that, MPs significantly increased Pb toxicity, which was related to the increase in soluble Pb concentration and the intake of Pb-loaded MPs, both of which increased the accumulation of Pb in C. dubia. The presence of algae mitigated the combined toxicity of MPs and Pb, although algae alone increased Pb accumulation. Therefore, the toxicity mitigation through algae uptake came from mechanisms other than Pb accumulation, which will need further investigation.  相似文献   

5.
• MFC promoted the nitrogen removal of anammox with Fe-C micro-electrolysis. • Reutilize pyrolysis waste tire as micro-electrolysis and electrode materials. • Total nitrogen removal efficiency of modified MFC increased to 85.00%. Candidatus kuenenia and SM1A02 were major genera responsible for nitrogen removal. In this study, microbial fuel cells (MFCs) were explored to promote the nitrogen removal performance of combined anaerobic ammonium oxidation (anammox) and Fe-C micro-electrolysis (CAE) systems. The average total nitrogen (TN) removal efficiency of the modified MFC system was 85.00%, while that of the anammox system was 62.16%. Additionally, the effective operation time of this system increased from six (CAE system alone) to over 50 days, significantly promoting TN removal. The enhanced performance could be attributed to the electron transferred from the anode to the cathode, which aided in reducing nitrate/nitrite in denitrification. The H+ released through the proton exchange membrane caused a decrease in the pH, facilitating Fe corrosion. The pyrolyzed waste tire used as the cathode could immobilize microorganisms, enhance electron transport, and produce a natural Fe-C micro-electrolysis system. According to the microbial community analysis, Candidatus kuenenia was the major genus involved in the anammox process. Furthermore, the SM1A02 genus exhibited the highest abundance and was enriched the fastest, and could be a novel potential strain that aids the anammox process.  相似文献   

6.
7.
• Earthworms increase CO2 and N2O emissions in agricultural and forest soil. • 10% biochar suppresses CO2 and N2O emissions in forest soil. • Biochar interacted with earthworm to significant affect CO2 and N2O emissions. The application of manure-derived biochar offers an alternative to avoid the direct application of manure to soil causing greenhouse gas emission. Soil fauna, especially earthworms, can markedly stimulate carbon dioxide (CO2) and nitrous oxide (N2O) emissions from soil. This study therefore investigated the effect of cattle manure biochar (added at rates of 0, 2%, or 10%, coded as BC0, BC2 and BC10, respectively) application, with or without earthworm Aporrectodea turgida, on emissions of CO2 and N2O and changes of physic-chemical properties of agricultural and forest soils in a laboratory incubation experiment. The BC10 treatment significantly enhanced cumulative CO2 emissions by 27.9% relative to the untreated control in the agricultural soil. On the contrary, the BC2 and BC10 treatments significantly reduced cumulative CO2 emissions by 16.3%–61.1% and N2O emissions by 92.9%–95.1% compared to the untreated control in the forest soil. The addition of earthworm alone significantly enhanced the cumulative CO2 and N2O fluxes in agricultural and forest soils. Cumulative CO2 and N2O fluxes were significantly increased when BC2 and BC10 were applied with earthworm in the agricultural soil, but were significantly reduced when BC10 was applied with earthworm in the forest soil. Our study demonstrated that biochar application interacted with earthworm to affect CO2 and N2O emissions, which were also dependent on the soil type involved. Our study suggests that manure biochar application rate and use of earthworm need to be carefully studied for specific soil types to maximize the climate change mitigation potential of such management practices.  相似文献   

8.
Rhodanobacter spp. are dominant in acidic, high nitrate and metal contaminated sites. • Dominance of Rhodanobacter is likely due to tolerance to low pH and heavy metals. • High organic content increases stress tolerance capacity. • Longer incubation time is critical for accurate assessment of MIC (various stresses). This work examines the physiologic basis of stress tolerance in bacterial strains of the genus Rhodanobacter that dominate in the acidic and highly metal contaminated near-source subsurface zone of the Oak Ridge Integrated Field Research Challenge (ORIFRC) site. Tolerance of R. denitrificans to levels of different stresses were studied in synthetic groundwater medium and R2A broth. Two strains of R. denitrificans, strains 2APBS1T and 116-2, tolerate low to circumneutral pH (4–8), high Uranium (1 mmol/L), elevated levels of nitrate (400 mmol/L) and high NaCl (2.5%). A combination of physiologic traits, such as growth at low pH, increased growth in the presence of high organics concentration, and tolerance of high concentrations of nitrate, NaCl and heavy metals is likely responsible for dominance of Rhodanobacter at the ORIFRC site. Furthermore, extended incubation times and use of low carbon media, better approximating site groundwater conditions, are critical for accurate determination of stress responses. This study expands knowledge of the ecophysiology of bacteria from the genus Rhodanobacter and identifies methodological approaches necessary for acquiring accurate tolerance data.  相似文献   

9.
• Light irradiation increased the concentration of free radicals on HS. • The increased spin densities on HS readily returned back to the original value. • The “unstable” free radicals induced the formation of reactive radical species. • Reactive radicals’ concentration correlated strongly with EPFRs’ concentration. Environmentally persistent free radicals (EPFRs) in humic substances play an essential role in soil geochemical processes. Light is known to induce EPFRs formation for dissolved organic matter in aquatic environments; however, the impacts of light irradiation on the variation of EPFRs in soil humic substances remain unclear. In this study, humic acid, fulvic acid, and humin were extracted from peat soil and then in situ irradiated using simulated sunlight. Electron paramagnetic resonance spectroscopy results showed that with the increasing irradiation time, the spin densities and g-factors of humic substances rapidly increased during the initial 20 min and then gradually reached a plateau. After irradiation for 2h, the maximum spin density levels were up to 1.63 × 1017, 2.06 × 1017, and 1.77 × 1017 spins/g for the humic acid, fulvic acid, and humin, respectively. And the superoxide radicals increased to 1.05 × 1014–1.46 × 1014 spins/g while the alkyl radicals increased to 0.47 × 1014–1.76 × 1014 spins/g. The light-induced EPFRs were relatively unstable and readily returned back to their original state under dark and oxic conditions. Significant positive correlations were observed between the concentrations of EPFRs and reactive radical species (R2 = 0.65–0.98, p<0.05), which suggested that the newly produced EPFRs contributed to the formation of reactive radical species. Our findings indicate that under the irradiation humic substances are likely to be more toxic and reactive in soil due to the formation of EPFRs.  相似文献   

10.
• Fe(III) accepted the most electrons from organics, followed by NO3, SO42‒, and O2. • The electrons accepted by SO42‒ could be stored in the solid AVS, FeS2-S, and S0. • The autotrophic denitrification driven by solid S had two-phase characteristics. • A conceptual model involving electron acceptance, storage, and donation was built. • S cycle transferred electrons between organics and NO3 with an efficiency of 15%. A constructed wetland microcosm was employed to investigate the sulfur cycle-mediated electron transfer between carbon and nitrate. Sulfate accepted electrons from organics at the average rate of 0.84 mol/(m3·d) through sulfate reduction, which accounted for 20.0% of the electron input rate. The remainder of the electrons derived from organics were accepted by dissolved oxygen (2.6%), nitrate (26.8%), and iron(III) (39.9%). The sulfide produced from sulfate reduction was transformed into acid-volatile sulfide, pyrite, and elemental sulfur, which were deposited in the substratum, storing electrons in the microcosm at the average rate of 0.52 mol/(m3·d). In the presence of nitrate, the acid-volatile and elemental sulfur were oxidized to sulfate, donating electrons at the average rate of 0.14 mol/(m3·d) and driving autotrophic denitrification at the average rate of 0.30 g N/(m3·d). The overall electron transfer efficiency of the sulfur cycle for autotrophic denitrification was 15.3%. A mass balance assessment indicated that approximately 50% of the input sulfur was discharged from the microcosm, and the remainder was removed through deposition (49%) and plant uptake (1%). Dominant sulfate-reducing (i.e., Desulfovirga, Desulforhopalus, Desulfatitalea, and Desulfatirhabdium) and sulfur-oxidizing bacteria (i.e., Thiohalobacter, Thiobacillus, Sulfuritalea, and Sulfurisoma), which jointly fulfilled a sustainable sulfur cycle, were identified. These results improved understanding of electron transfers among carbon, nitrogen, and sulfur cycles in constructed wetlands, and are of engineering significance.  相似文献   

11.
• Staff members were not colonised with MRSA. • But staff were exposed to MRSA from air, sedimented dust and surfaces. • MRSA was found in the rooms of MRSA-colonised residents but not in common areas. • Staff worry about MRSA and spreading it to other residents, family, and acquaintances. • The use of protective eyewear and facemasks could be improved. Methicillin-resistant Staphylococcus aureus (MRSA) is an increasing health concern across the globe and is often prevalent at long-term care facilities, such as nursing homes. However, we know little of whether nursing home staff is exposed to MRSA via air and surfaces. We investigated whether staff members at nursing homes are colonised with and exposed to culturable MRSA, and assessed staff members’ self-reported knowledge of MRSA and compliance with infection hygiene guidelines. Five nursing homes with MRSA positive residents were visited in Copenhagen, Denmark. Personal bioaerosol exposure samples and environmental samples from surfaces, sedimented dust and bioaerosols were examined for MRSA and methicillin-susceptible S. aureus (MSSA) to determine occupational exposure. Swabs were taken from staffs’ nose, throat, and hands to determine whether they were colonised with MRSA. An online questionnaire about MRSA and infection control was distributed. No staff members were colonised with MRSA, but MRSA was detected in the rooms of the colonised residents in two out of the five nursing homes. MRSA was observed in air (n = 4 out of 42, ranging from 2.9–7.9 CFU/m3), sedimented dust (n = 1 out of 58, 1.1 × 103 CFU/m2/d), and on surfaces (n = 9 out of 113, 0.04–70.8 CFU/m2). The questionnaire revealed that half of the staff members worry about spreading MRSA to others. Identified aspects for improvement were improved availability and use of protective equipment, not transferring cleaning supplies (e.g., vacuum cleaners) between residents’ rooms and to reduce worry of MRSA, e.g., through education.  相似文献   

12.
• Nano Fe2O3 and N-doped graphene was prepared via a one-step ball milling method. • The maximum power density of Fe-N-G in MFC was 390% of that of pristine graphite. • Active sites like nano Fe2O3, pyridinic N and Fe-N groups were formed in Fe-N-G. • The improvement of Fe-N-G was due to full exposure of active sites on graphene. Developing high activity, low-cost and long durability catalysts for oxygen reduction reaction is of great significance for the practical application of microbial fuel cells. The full exposure of active sites in catalysts can enhance catalytic activity dramatically. Here, novel Fe-N-doped graphene is successfully synthesized via a one-step in situ ball milling method. Pristine graphite, ball milling graphene, N-doped graphene and Fe-N-doped graphene are applied in air cathodes, and enhanced performance is observed in microbial fuel cells with graphene-based catalysts. Particularly, Fe-N-doped graphene achieves the highest oxygen reduction reaction activity, with a maximum power density of 1380±20 mW/m2 in microbial fuel cells and a current density of 23.8 A/m2 at –0.16 V in electrochemical tests, which are comparable to commercial Pt and 390% and 640% of those of pristine graphite. An investigation of the material characteristics reveals that the superior performance of Fe-N-doped graphene results from the full exposure of Fe2O3 nanoparticles, pyrrolic N, pyridinic N and excellent Fe-N-G active sites on the graphene matrix. This work not only suggests the strategy of maximally exposing active sites to optimize the potential of catalysts but also provides promising catalysts for the use of microbial fuel cells in sustainable energy generation.  相似文献   

13.
•Steroid hormones could be removed efficiently from mariculture system using seaweed; Caulerpa lentillifera was the most efficient seaweed for removal of steroid hormones; • More than 90% of E2 or EE2 were removed within 12 h using Caulerpa lentillifera; • The removal included the rapid biosorption and the slow bio-accumulation; •The hormones and nutrients in mariculture wastewater could be simultaneously removed. The removal of steroid hormones from the mariculture system using seaweeds (Caulerpa lentillifera, Ulva pertusa, Gracilaria lemaneiformis, and Codium fragile) was investigated. The results illustrated that both 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) could be removed by the seaweeds at different levels, and the Caulerpa lentillifera was the most efficient one. More than 90% of E2 or EE2 at concentration of 10 μg/L was removed by Caulerpa lentillifera within 12 h. Processes including initial quick biosorption, the following slow accumulation, and biodegradation might explain the removal mechanisms of E2/EE2 by Caulerpa lentillifera. E2/EE2 removal was positively related to the nutrient level and the initial concentration of steroid hormone. A significant linear relationship for E2 and EE2 existed between the initial pollutant concentration and the average removal rate. The highest removal kinetic constant (k) value was obtained at 30°C as 0.34 /h for E2 and at 20°C as 0.28 /h for EE2, demonstrating the promising application potential of Caulerpa lentillifera in the water purification of the industrialized mariculture system with relatively high water temperature. Simultaneous and efficient removal of E2 and EE2 by Caulerpa lentillifera was still achieved after 3 cycles in the pilot-scale experiment. The steroid hormones and nutrients in mariculture wastewater could also be simultaneously removed using Caulerpa lentillifera. These findings demonstrated that Caulerpa lentillifera was the promising seaweed for the removal of steroid hormones in mariculture systems.  相似文献   

14.
• Bi doping in TiO2 enhanced the separation of photo-generated electron-hole. • The performance of photocatalytic degradation of MC-LR was improved. • Coexisting substances have no influence on algal removal performance. • The key reactive oxygen species were h+ and OH in the photocatalytic process. The increase in occurrence and severity of cyanobacteria blooms is causing increasing concern; moreover, human and animal health is affected by the toxic effects of Microcystin-LR released into the water. In this paper, a floating photocatalyst for the photocatalytic inactivation of the harmful algae Microcystis aeruginosa (M. aeruginosa) was prepared using a simple sol-gel method, i.e., coating g-C3N4 coupled with Bi-doped TiO2 on Al2O3-modified expanded perlite (CBTA for short). The impact of different molar ratios of Bi/Ti on CBTA was considered. The results indicated that Bi doping in TiO2 inhibited photogenerated electron-hole pair recombination. With 6 h of visible light illumination, 75.9% of M. aeruginosa (initial concentration= 2.7 × 106 cells/L) and 83.7% of Microcystin-LR (initial concentration= 100 μg/L) could be removed with the addition of 2 g/L CBTA-1% (i.e., Bi/Ti molar ratio= 1%). The key reactive oxygen species (ROSs) in the photocatalytic inactivation process are h+ and OH. The induction of the Bi4+/Bi3+ species by the incorporation of Bi could narrow the bandgap of TiO2, trap electrons, and enhance the stability of CBTA-1% in the solutions with coexisting environmental substances.  相似文献   

15.
• Genotoxicity of substances is unknown in the water after treatment processes. • Genotoxicity decreased by activated carbon treatment but increased by chlorination. • Halogenated hydrocarbons and aromatic compounds contribute to genotoxicity. • Genotoxicity was assessed by umu test; acute and chronic toxicity by ECOSAR. • Inconsistent results confirmed that genotoxicity cannot be assessed by ECOSAR. Advanced water treatment is commonly used to remove micropollutants such as pesticides, endocrine disrupting chemicals, and disinfection byproducts in modern drinking water treatment plants. However, little attention has been paid to the changes in the genotoxicity of substances remaining in the water following the different water treatment processes. In this study, samples were collected from three drinking water treatment plants with different treatment processes. The treated water from each process was analyzed and compared for genotoxicity and the formation of organic compounds. The genotoxicity was evaluated by an umu test, and the acute and chronic toxicity was analyzed through Ecological Structure- Activity Relationship (ECOSAR). The results of the umu test indicated that biological activated carbon reduced the genotoxicity by 38%, 77%, and 46% in the three drinking water treatment plants, respectively, while chlorination increased the genotoxicity. Gas chromatograph-mass spectrometry analysis revealed that halogenated hydrocarbons and aromatic compounds were major contributors to genotoxicity. The results of ECOSAR were not consistent with those of the umu test. Therefore, we conclude that genotoxicity cannot be determined using ECOSAR .  相似文献   

16.
• AO7 degradation was coupled with anaerobic methane oxidation. • Higher concentration of AO7 inhibited the degradation. • The maximum removal rate of AO7 reached 280 mg/(L·d) in HfMBR. • ANME-2d dominated the microbial community in both batch reactor and HfMBR. • ANME-2d alone or synergistic with the partner bacteria played a significant role. Azo dyes are widely applied in the textile industry but are not entirely consumed during the dyeing process and can thus be discharged to the environment in wastewater. However, azo dyes can be degraded using various electron donors, and in this paper, Acid Orange 7 (AO7) degradation performance is investigated using methane (CH4) as the sole electron donor. Methane has multiple sources and is readily available and inexpensive. Experiments using 13C-labeled isotopes showed that AO7 degradation was coupled with anaerobic oxidation of methane (AOM) and, subsequently, affected by the initial concentrations of AO7. Higher concentrations of AO7 could inhibit the activity of microorganisms, which was confirmed by the long-term performance of AO7 degradation, with maximum removal rates of 8.94 mg/(L·d) in a batch reactor and 280 mg/(L·d) in a hollow fiber membrane bioreactor (HfMBR). High-throughput sequencing using 16S rRNA genes showed that Candidatus Methanoperedens, affiliated to ANME-2d, dominated the microbial community in the batch reactor and HfMBR. Additionally, the relative abundance of Proteobacteria bacteria (Phenylobacterium, Pseudomonas, and Geothermobacter) improved after AO7 degradation. This outcome suggested that ANME-2d alone, or acting synergistically with partner bacteria, played a key role in the process of AO7 degradation coupled with AOM.  相似文献   

17.
• DPAA sorption data was found to fit the Freundlich equation. Kf was significantly positive correlated with oxalate-extractable Fe2O3. • Ligand exchange was the main mechanism for DPAA sorption on soils. • Bidentate binuclear and monodentate mononuclear DPAA bonds were identified. Diphenylarsinic acid (DPAA) is a phenyl arsenic compound derived from chemical warfare weapons. Macroscopic and microscopic work on DPAA sorption will provide useful information in predicting the partitioning and mobility of DPAA in the soil-water environment. Here, batch experiments and extended X-ray absorption fine structure (EXAFS) spectroscopy were used to investigate the sorption mechanisms of DPAA. The DPAA sorption data from 11 soil types was found to fit the Freundlich equation, and the sorption capacity, Kf, was significantly and positively correlated with oxalate-extractable Fe2O3. The Kf values of eight of the 11 untreated soils (1.51–113.04) significantly decreased upon removal of amorphous metal (hydr)oxides (0.51–13.37). When both amorphous and crystalline metal (hydr)oxides were removed from the untreated soils, the Kf values either decreased or slightly increased (0.65–3.09). Subsequent removal of soil organic matter from these amorphous and crystalline metal (hydr)oxide-depleted samples led to further decreases in Kf to 0.02–1.38, with only one exception (Sulfic Aquic-Orthic Halosols). These findings strongly suggest that ligand exchange reactions with amorphous metal (hydr)oxides contribute most to DPAA sorption on soils. EXAFS data provide further evidence that DPAA primarily formed bidentate binuclear (2C) and monodentate mononuclear (1V) coring-sharing complexes with As-Fe distances of 3.34 and 3.66 Å, respectively, on Fe (hydr)oxides. Comparison of these results with earlier studies suggests that 2C and 1V complexes of DPAA may be favored under low and high surface coverages, respectively, with the formation of 1V bonds possibly conserving the sorption sites or decreasing the steric hindrance derived from phenyl substituents.  相似文献   

18.
• Fate of microplastics in integrated membrane system for water reuse was investigated. • Integrated membrane system has high removal efficiency (>98%) for microplastics. • Microplastics (>93%) were mainly removed through membrane bioreactor treatment. • Small scale fiber plastics (<200 μm) could break through reverse osmosis (RO) system. • The flux of microplastics maintained at 2.7 × 1011 MPs/d after the RO treatment. Rare information on the fate of microplastics in the integrated membrane system (IMS) system in full-scale wastewater treatment plant was available. The fate of microplastics in IMS in a coastal reclaimed water plant was investigated. The removal rate of microplastics in the IMS system reached 93.2% after membrane bioreactor (MBR) treatment while that further increased to 98.0% after the reverse osmosis (RO) membrane process. The flux of microplastics in MBR effluent was reduced from 1.5 × 1013 MPs/d to 10.2 × 1011 MPs/d while that of the RO treatment decreased to 2.7 × 1011 MPs/d. Small scale fiber plastics (<200 μm) could break through RO system according to the size distribution analysis. The application of the IMS system in the reclaimed water plant could prevent most of the microplastics from being discharged in the coastal water. These findings suggested that the IMS system was more efficient than conventional activated sludge system (CAS) for the removal of microplastics, while the discharge of small scale fiber plastics through the IMS system should also not be neglected because small scale fiber plastics (<200 μm) could break through IMS system equipped with the RO system.  相似文献   

19.
• Upgrade process was investigated in a full-scale landfill leachate treatment plant. • The optimization of DO can technically achieve the shift from CND to PND process. • Nitrosomonas was mainly responsible for ammonium oxidation in PND system. • An obviously enrichment of Thauera was found in the PND process. • Enhanced metabolic potentials on organics was found during the process update. Because of the low access to biodegradable organic substances used for denitrification, the partial nitrification-denitrification process has been considered as a low-cost, sustainable alternative for landfill leachate treatment. In this study, the process upgrade from conventional to partial nitrification-denitrification was comprehensively investigated in a full-scale landfill leachate treatment plant (LLTP). The partial nitrification-denitrification system was successfully achieved through the optimizing dissolved oxygen and the external carbon source, with effluent nitrogen concentrations lower than 150 mg/L. Moreover, the upgrading process facilitated the enrichment of Nitrosomonas (abundance increased from 0.4% to 3.3%), which was also evidenced by increased abundance of amoA/B/C genes carried by Nitrosomonas. Although Nitrospira (accounting for 0.1%–0.6%) was found to stably exist in the reactor tank, considerable nitrite accumulation occurred in the reactor (reaching 98.8 mg/L), indicating high-efficiency of the partial nitrification process. Moreover, the abundance of Thauera, the dominant denitrifying bacteria responsible for nitrite reduction, gradually increased from 0.60% to 5.52% during the upgrade process. This process caused great changes in the microbial community, inducing continuous succession of heterotrophic bacteria accompanied by enhanced metabolic potentials toward organic substances. The results obtained in this study advanced our understanding of the operation of a partial nitrification-denitrification system and provided a technical case for the upgrade of currently existing full-scale LLTPs.  相似文献   

20.
• Bi2O3 cannot directly activate PMS. • Bi2O3 loading increased the specific surface area and conductivity of CoOOH. • Larger specific surface area provided more active sites for PMS activation. • Faster electron transfer rate promoted the generation of reactive oxygen species. 1O2 was identified as dominant ROS in the CoOOH@Bi2O3/PMS system. Cobalt oxyhydroxide (CoOOH) has been turned out to be a high-efficiency catalyst for peroxymonosulfate (PMS) activation. In this study, CoOOH was loaded on bismuth oxide (Bi2O3) using a facile chemical precipitation process to improve its catalytic activity and stability. The result showed that the catalytic performance on the 2,4-dichlorophenol (2,4-DCP) degradation was significantly enhanced with only 11 wt% Bi2O3 loading. The degradation rate in the CoOOH@Bi2O3/PMS system (0.2011 min1) was nearly 6.0 times higher than that in the CoOOH/PMS system (0.0337 min1). Furthermore, CoOOH@Bi2O3 displayed better stability with less Co ions leaching (16.4% lower than CoOOH) in the PMS system. These phenomena were attributed to the Bi2O3 loading which significantly increased the conductivity and specific surface area of the CoOOH@Bi2O3 composite. Faster electron transfer facilitated the redox reaction of Co (III) / Co (II) and thus was more favorable for reactive oxygen species (ROS) generation. Meanwhile, larger specific surface area furnished more active sites for PMS activation. More importantly, there were both non-radical (1O2) and radicals (SO4•, O2•, and OH•) in the CoOOH@Bi2O3/PMS system and 1O2 was the dominant one. In general, this study provided a simple and practical strategy to enhance the catalytic activity and stability of cobalt oxyhydroxide in the PMS system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号