首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the conservation of endangered species, suppression of a population of one native species to benefit another poses challenges. Examples include predator control and nest parasite reduction. Less obvious is the control of blood-feeding arthropods. We conducted a case study of the effect of native black flies (Simulium spp.) on reintroduced Whooping Cranes (Grus americana). Our intent was to provide a science-driven approach for determining the effects of blood-feeding arthropods on endangered vertebrates and identifying optimal management actions for managers faced with competing objectives. A multiyear experiment demonstrated that black flies reduce nest success in cranes by driving incubating birds off their nests. We used a decision-analytic approach to develop creative management alternatives and evaluate trade-offs among competing objectives. We identified 4 management objectives: establish a self-sustaining crane population, improve crane well-being, maintain native black flies as functional components of the ecosystem, and minimize costs. We next identified potential management alternatives: do nothing, suppress black flies, force crane renesting to occur after the activity period of black flies, relocate releases of cranes, suppress black flies and relocate releases, or force crane renesting and relocate releases. We then developed predictions on constructed scales of 0 (worst-performing alternative) to 1 (best-performing alternative) to indicate how alternative actions performed in terms of management objectives. The optimal action depended on the relative importance of each objective to a decision maker. Only relocating releases was a dominated alternative, indicating that it was not optimal regardless of the relative importance of objectives. A rational decision maker could choose any other management alternative we considered. Recognizing that decisions involve trade-offs that must be weighed by decision makers is crucial to identifying alternatives that best balance multiple management objectives. Given uncertainty about the population dynamics of blood-feeding arthropods, an adaptive management approach could offer substantial benefits.  相似文献   

2.
With the genetic health of many plant and animal populations deteriorating due to climate change outpacing adaptation, interventions, such as assisted gene flow (AGF), may provide genetic variation necessary for populations to adapt to climate change. We ran genetic simulations to mimic different AGF scenarios in large populations and measured their outcomes on population-level fitness to determine circumstances in which it is worthwhile to perform AGF. In the absence of inbreeding depression, AGF was beneficial within a few generations only when introduced genotypes had much higher fitness than local individuals and traits affecting fitness were controlled by a few genes of large effect. AGF was harmful over short periods (e.g., first ∼10–20 generations) if there was strong outbreeding depression or introduced deleterious genetic variation. When the adaptive trait was controlled by many loci of small effect, the benefits of AGF took over 10 generations to realize—potentially too long for most climate-related management scenarios. The genomic integrity of the recipient population typically remained intact following AGF; the amount of genetic material from the donor population usually constituted no more of the recipient population's genome than the fraction of the population introduced. Significant genomic turnover (e.g., >50% replacement) only occurred when the selective advantage of the adaptive trait and translocation fraction were extremely high. Our results will be useful when adaptive management is used to maintain the genetic health and productivity of large populations under climate change.  相似文献   

3.
The current loss of biodiversity has put 50,000 plant species at an elevated risk of extinction worldwide. Conserving at-risk species is often complicated by covariance or nonadditivity among threats, which makes it difficult to determine optimal management strategies. We sought to demographically quantify covariance and nonadditive effects of more threats on more rare plant species than ever attempted in a single analysis. We used 1082 population reports from 186 populations across 3 U.S. states of 27 rare, herbaceous plant species collected over 15 years by citizen scientists. We used a linear mixed-effects model with 4 threats and their interactions as fixed predictors, species as a random predictor, and annual growth rates as the response. We found a significant 3-way interaction on annual growth rates; rare plant population sizes were reduced by 46% during the time immediately after disturbance when populations were also browsed by deer (Odocoileus virginianus) and had high levels of encroachment by woody species. This nonadditive effect should be considered a major threat to the persistence of rare plant species. Our results highlight the need for comprehensive, multithreat assessments to determine optimal conservation actions.  相似文献   

4.
Amphibians are severely affected by climate change, particularly in regions where droughts prevail and water availability is scarce. The extirpation of amphibians triggers cascading effects that disrupt the trophic structure of food webs and ecosystems. Dedicated assessments of the spatial adaptive potential of amphibian species under climate change are, therefore, essential to provide guidelines for their effective conservation. I used predictions about the location of suitable climates for 27 amphibian species in the Iberian Peninsula from a baseline period to 2080 to typify shifting species’ ranges. The time at which these range types are expected to be functionally important for the adaptation of a species was used to identify full or partial refugia; areas most likely to be the home of populations moving into new climatically suitable grounds; areas most likely to receive populations after climate adaptive dispersal; and climatically unsuitable areas near suitable areas. I implemented an area prioritization protocol for each species to obtain a cohesive set of areas that would provide maximum adaptability and where management interventions should be prioritized. A connectivity assessment pinpointed where facilitative strategies would be most effective. Each of the 27 species had distinct spatial requirements but, common to all species, a bottleneck effect was predicted by 2050 because source areas for subsequent dispersal were small in extent. Three species emerged as difficult to maintain up to 2080. The Iberian northwest was predicted to capture adaptive range for most species. My study offers analytical guidelines for managers and decision makers to undertake systematic assessments on where and when to intervene to maximize the persistence of amphibian species and the functionality of the ecosystems that depend on them.  相似文献   

5.
Increasing connectivity is an important strategy for facilitating species range shifts and maintaining biodiversity in the face of climate change. To date, however, few researchers have included future climate projections in efforts to prioritize areas for increasing connectivity. We identified key areas likely to facilitate climate‐induced species’ movement across western North America. Using historical climate data sets and future climate projections, we mapped potential species’ movement routes that link current climate conditions to analogous climate conditions in the future (i.e., future climate analogs) with a novel moving‐window analysis based on electrical circuit theory. In addition to tracing shifting climates, the approach accounted for landscape permeability and empirically derived species’ dispersal capabilities. We compared connectivity maps generated with our climate‐change‐informed approach with maps of connectivity based solely on the degree of human modification of the landscape. Including future climate projections in connectivity models substantially shifted and constrained priority areas for movement to a smaller proportion of the landscape than when climate projections were not considered. Potential movement, measured as current flow, decreased in all ecoregions when climate projections were included, particularly when dispersal was limited, which made climate analogs inaccessible. Many areas emerged as important for connectivity only when climate change was modeled in 2 time steps rather than in a single time step. Our results illustrate that movement routes needed to track changing climatic conditions may differ from those that connect present‐day landscapes. Incorporating future climate projections into connectivity modeling is an important step toward facilitating successful species movement and population persistence in a changing climate.  相似文献   

6.
Establishing protected areas, where human activities and land cover changes are restricted, is among the most widely used strategies for biodiversity conservation. This practice is based on the assumption that protected areas buffer species from processes that drive extinction. However, protected areas can maintain biodiversity in the face of climate change and subsequent shifts in distributions have been questioned. We evaluated the degree to which protected areas influenced colonization and extinction patterns of 97 avian species over 20 years in the northeastern United States. We fitted single-visit dynamic occupancy models to data from Breeding Bird Atlases to quantify the magnitude of the effect of drivers of local colonization and extinction (e.g., climate, land cover, and amount of protected area) in heterogeneous landscapes that varied in the amount of area under protection. Colonization and extinction probabilities improved as the amount of protected area increased, but these effects were conditional on landscape context and species characteristics. In this forest-dominated region, benefits of additional land protection were greatest when both forest cover in a grid square and amount of protected area in neighboring grid squares were low. Effects did not vary with species’ migratory habit or conservation status. Increasing the amounts of land protection benefitted the range margins species but not the core range species. The greatest improvements in colonization and extinction rates accrued for forest birds relative to open-habitat or generalist species. Overall, protected areas stemmed extinction more than they promoted colonization. Our results indicate that land protection remains a viable conservation strategy despite changing habitat and climate, as protected areas both reduce the risk of local extinction and facilitate movement into new areas. Our findings suggest conservation in the face of climate change favors creation of new protected areas over enlarging existing ones as the optimal strategy to reduce extinction and provide stepping stones for the greatest number of species.  相似文献   

7.
Climate change is a key threat to biodiversity. To conserve species under climate change, ecologists and conservation scientists suggest 2 main conservation strategies regarding land use: supporting species’ range shifts to enable it to follow its climatic requirements by creating migration pathways, such as corridors and stepping stones, and conserving climate refugia (i.e., existing habitat areas that are somewhat buffered from climate change). The policy instruments that could be used to implement these conservation strategies have yet to be evaluated comprehensively from an economic perspective. The economic analyses of environmental policy instruments are often based on ecological effectiveness and cost-effectiveness criteria. We adapted these general criteria to evaluate policy instruments for species’ conservation under climate change and applied them to a conceptual analysis of land purchases, offsets, and conservation payments. Depending on whether the strategy supporting species’ range shifts or conserving climate refugia is selected, the evaluation of the policy instruments differed substantially. For example, to ensure ecological effectiveness, habitat persistence over time was especially important for climate refugia and was best achieved by a land-purchase policy instrument. In contrast, for the strategy supporting range shifts to be ecologically effective, a high degree of flexibility in the location of conserved sites was required to ensure that new habitat sites can be created in the species’ new range. Offset programs were best suited for that because the location of conservation sites can be chosen comparatively freely and may also be adapted over time.  相似文献   

8.
Habitat loss and fragmentation can negatively influence population persistence and biodiversity, but the effects can be mitigated if species successfully disperse between isolated habitat patches. Network models are the primary tool for quantifying landscape connectivity, yet in practice, an overly simplistic view of species dispersal is applied. These models often ignore individual variation in dispersal ability under the assumption that all individuals move the same fixed distance with equal probability. We developed a modeling approach to address this problem. We incorporated dispersal kernels into network models to determine how individual variation in dispersal alters understanding of landscape-level connectivity and implemented our approach on a fragmented grassland landscape in Minnesota. Ignoring dispersal variation consistently overestimated a population's robustness to local extinctions and underestimated its robustness to local habitat loss. Furthermore, a simplified view of dispersal underestimated the amount of habitat substructure for small populations but overestimated habitat substructure for large populations. Our results demonstrate that considering biologically realistic dispersal alters understanding of landscape connectivity in ecological theory and conservation practice.  相似文献   

9.
Protected area networks help species respond to climate warming. However, the contribution of a site's environmental and conservation-relevant characteristics to these responses is not well understood. We investigated how composition of nonbreeding waterbird communities (97 species) in the European Union Natura 2000 (N2K) network (3018 sites) changed in response to increases in temperature over 25 years in 26 European countries. We measured community reshuffling based on abundance time series collected under the International Waterbird Census relative to N2K sites’ conservation targets, funding, designation period, and management plan status. Waterbird community composition in sites explicitly designated to protect them and with management plans changed more quickly in response to climate warming than in other N2K sites. Temporal community changes were not affected by the designation period despite greater exposure to temperature increase inside late-designated N2K sites. Sites funded under the LIFE program had lower climate-driven community changes than sites that did not received LIFE funding. Our findings imply that efficient conservation policy that helps waterbird communities respond to climate warming is associated with sites specifically managed for waterbirds.  相似文献   

10.
The establishment of marine protected areas (MPAs) is a critical step in ensuring the continued persistence of marine biodiversity. Although the area protected in MPAs is growing, the movement of individuals (or larvae) among MPAs, termed connectivity, has only recently been included as an objective of many MPAs. As such, assessing connectivity is often neglected or oversimplified in the planning process. For promoting population persistence, it is important to ensure that protected areas in a system are functionally connected through dispersal or adult movement. We devised a multi-species model of larval dispersal for the Australian marine environment to evaluate how much local scale connectivity is protected in MPAs and determine whether the extensive system of MPAs truly functions as a network. We focused on non-migratory species with simplified larval behaviors (i.e., passive larval dispersal) (e.g., no explicit vertical migration) as an illustration. Of all the MPAs analyzed (approximately 2.7 million km2), outside the Great Barrier Reef and Ningaloo Reef, <50% of MPAs (46-80% of total MPA area depending on the species considered) were functionally connected. Our results suggest that Australia's MPA system cannot be referred to as a single network, but rather a collection of numerous smaller networks delineated by natural breaks in the connectivity of reef habitat. Depending on the dispersal capacity of the taxa of interest, there may be between 25 and 47 individual ecological networks distributed across the Australian marine environment. The need to first assess the underlying natural connectivity of a study system prior to implementing new MPAs represents a key research priority for strategically enlarging MPA networks. Our findings highlight the benefits of integrating multi-species connectivity into conservation planning to identify opportunities to better incorporate connectivity into the design of MPA systems and thus to increase their capacity to support long-term, sustainable biodiversity outcomes.  相似文献   

11.
Approaches to assess the impacts of landscape disturbance scenarios on species range from metrics based on patterns of occurrence or habitat to comprehensive models that explicitly include ecological processes. The choice of metrics and models affects how impacts are interpreted and conservation decisions. We explored the impacts of 3 realistic disturbance scenarios on 4 species with different ecological and taxonomic traits. We used progressively more complex models and metrics to evaluate relative impact and rank of scenarios on the species. Models ranged from species distribution models that relied on implicit assumptions about environmental factors and species presence to highly parameterized spatially explicit population models that explicitly included ecological processes and stochasticity. Metrics performed consistently in ranking different scenarios in order of severity primarily when variation in impact was driven by habitat amount. However, they differed in rank for cases where dispersal dynamics were critical in influencing metapopulation persistence. Impacts of scenarios on species with low dispersal ability were better characterized using models that explicitly captured these processes. Metapopulation capacity provided rank orders that most consistently correlated with those from highly parameterized and data-rich models and incorporated information about dispersal with little additional computational and data cost. Our results highlight the importance of explicitly considering species’ ecology, spatial configuration of habitat, and disturbance when choosing indicators of species persistence. We suggest using hybrid approaches that are a mixture of simple and complex models to improve multispecies assessments.  相似文献   

12.
Human modification of the environment is driving declines in population size and distributional extent of much of the world's biota. These declines extend to many of the most abundant and widespread species, for which proportionally small declines can result in the loss of vast numbers of individuals, biomass, and interactions. These losses could have major localized effects on ecological and cultural processes and services without elevating a species’ global extinction risk. Although most conservation effort is directed at species threatened with extinction in the very near term, the value of retaining abundance regardless of global extinction risk is justifiable based on many biodiversity or ecosystem service metrics, including cultural services, at scales from local to global. The challenges of identifying conservation priorities for widespread and abundant species include quantifying the effects of species’ abundance on services and understanding how these effects are realized as populations decline. Negative effects of population declines may be disconnected from the threat processes driving declines because of species movements and environment flows (e.g., hydrology). Conservation prioritization for these species shares greater similarity with invasive species risk assessments than extinction risk assessments because of the importance of local context and per capita effects of abundance on other species. Because conservation priorities usually focus on preventing the extinction of threatened species, the rationale and objectives for incorporating declines of nonthreatened species must be clearly articulated, going beyond extinction risk to encompass the range of likely harmful effects (e.g., secondary extinctions, loss of ecosystem services) if declines persist or are not reversed. Research should focus on characterizing the effects of local declines in species that are not threatened globally across a range of ecosystem services and quantifying the spatial distribution of these effects through the distribution of abundance. The case for conserving abundance in nonthreatened species can be made most powerfully when the costs of losing this abundance are better understood.  相似文献   

13.
Land managers decide how to allocate resources among multiple threats that can be addressed through multiple possible actions. Additionally, these actions vary in feasibility, effectiveness, and cost. We sought to provide a way to optimize resource allocation to address multiple threats when multiple management options are available, including mutually exclusive options. Formulating the decision as a combinatorial optimization problem, our framework takes as inputs the expected impact and cost of each threat for each action (including do nothing) and for each overall budget identifies the optimal action to take for each threat. We compared the optimal solution to an easy to calculate greedy algorithm approximation and a variety of plausible ranking schemes. We applied the framework to management of multiple introduced plant species in Australian alpine areas. We developed a model of invasion to predict the expected impact in 50 years for each species-action combination that accounted for each species’ current invasion state (absent, localized, widespread); arrival probability; spread rate; impact, if present, of each species; and management effectiveness of each species-action combination. We found that the recommended action for a threat changed with budget; there was no single optimal management action for each species; and considering more than one candidate action can substantially increase the management plan's overall efficiency. The approximate solution (solution ranked by marginal cost-effectiveness) performed well when the budget matched the cost of the prioritized actions, indicating that this approach would be effective if the budget was set as part of the prioritization process. The ranking schemes varied in performance, and achieving a close to optimal solution was not guaranteed. Global sensitivity analysis revealed a threat's expected impact and, to a lesser extent, management effectiveness were the most influential parameters, emphasizing the need to focus research and monitoring efforts on their quantification.  相似文献   

14.
Protected areas are a key instrument for conservation. Despite this, they are vulnerable to risks associated with weak governance, land-use intensification, and climate change. We used a novel hierarchical optimization approach to identify priority areas for expanding the global protected area system that explicitly accounted for such risks while maximizing protection of all known terrestrial vertebrate species. To incorporate risk categories, we built on the minimum set problem, where the objective is to reach species distribution protection targets while accounting for 1 constraint, such as land cost or area. We expanded this approach to include multiple objectives accounting for risk in the problem formulation by treating each risk layer as a separate objective in the problem formulation. Reducing exposure to these risks required expanding the area of the global protected area system by 1.6% while still meeting conservation targets. Incorporating risks from weak governance drove the greatest changes in spatial priorities for protection, and incorporating risks from climate change required the largest increase (2.52%) in global protected area. Conserving wide-ranging species required countries with relatively strong governance to protect more land when they bordered nations with comparatively weak governance. Our results underscore the need for cross-jurisdictional coordination and demonstrate how risk can be efficiently incorporated into conservation planning. Planeación de las áreas protegidas para conservar la biodiversidad en un futuro incierto  相似文献   

15.
Adaptive capacity (AC)—the ability of a species to cope with or accommodate climate change—is a critical determinant of species vulnerability. Using information on species’ AC in conservation planning is key to ensuring successful outcomes. We identified connections between a list of species’ attributes (e.g., traits, population metrics, and behaviors) that were recently proposed for assessing species’ AC and management actions that may enhance AC for species at risk of extinction. Management actions were identified based on evidence from the literature, a review of actions used in other climate adaptation guidance, and our collective experience in diverse fields of global-change ecology and climate adaptation. Selected management actions support the general AC pathways of persist in place or shift in space, in response to contemporary climate change. Some actions, such as genetic manipulations, can be used to directly alter the ability of species to cope with climate change, whereas other actions can indirectly enhance AC by addressing ecological or anthropogenic constraints on the expression of a species’ innate abilities to adapt. Ours is the first synthesis of potential management actions directly linked to AC. Focusing on AC attributes helps improve understanding of how and why aspects of climate are affecting organisms, as well as the mechanisms by which management interventions affect a species’ AC and climate change vulnerability. Adaptive-capacity-informed climate adaptation is needed to build connections among the causes of vulnerability, AC, and proposed management actions that can facilitate AC and reduce vulnerability in support of evolving conservation paradigms.  相似文献   

16.
Rewilding has been an increasingly popular tool to restore plant–animal interactions and ecological processes impaired by defaunation. However, the reestablishment of such processes has seldom been assessed. We investigated the restoration of ecological interactions following the reintroduction of the brown howler monkey (Alouatta guariba) to a defaunated Atlantic forest site. We expected the reintroduction to restore plant–animal interactions and interactions between howlers and dung beetles, which promote secondary seed dispersal. We estimated the number of interactions expected to be restored by the reintroduction to provide the baseline interaction richness that could be restored. We followed the reintroduced howler monkeys twice a week for 24 months (337 hours total) to assess their diet. We used howler monkey dung in secondary seed dispersal experiments with 2484 seed mimics to estimate the removal rates by dung beetles and collected the beetles to assess community attributes. We compared the potential future contribution of howler monkeys and other frugivores to seed dispersal based on the seed sizes they disperse in other areas where they occur. In 2 years, howler monkeys consumed 60 animal-dispersed plant species out of the 330 estimated. Twenty-one dung beetle species were attracted to experimentally provided dung; most of them were tunnelers, nocturnal, and large-sized (>10 mm). On average 30% (range 0–100%) of the large seed mimics (14 mm) were moved by dung beetles. About 91% of the species consumed by howlers (size range 0.3–34.3 mm) overlapped in seed size with those removed by dung beetles. In our study area, howler monkeys may consume more large-seeded fruit species than most other frugivores, highlighting their potential to affect forest regeneration. Our results show reintroductions may effectively restore ecological links and enhance ecological processes.  相似文献   

17.
Conservation planning tends to focus on protecting species’ ranges or landscape connectivity but seldom both—particularly in the case of diverse taxonomic assemblages and multiple planning goals. Therefore, information on potential trade-offs between maintaining landscape connectivity and achieving other conservation objectives is lacking. We developed an optimization approach to prioritize the maximal protection of species’ ranges, ecosystem types, and forest carbon stocks, while also including habitat connectivity for range-shifting species and dispersal corridors to link protected area. We applied our approach to Sabah, Malaysia, where the state government mandated an increase in protected-area coverage of approximately 305,000 ha but did not specify where new protected areas should be. Compared with a conservation planning approach that did not incorporate the 2 connectivity features, our approach increased the protection of dispersal corridors and elevational connectivity by 13% and 21%, respectively. Coverage of vertebrate and plant species’ ranges and forest types were the same whether connectivity was included or excluded. Our approach protected 2% less forest carbon and 3% less butterfly range than when connectivity features were not included. Hence, the inclusion of connectivity into conservation planning can generate large increases in the protection of landscape connectivity with minimal loss of representation of other conservation targets.  相似文献   

18.
Most species face multiple anthropogenic disruptions. Few studies have quantified the cumulative influence of multiple threats on species of conservation concern, and far fewer have quantified the potential relative value of multiple conservation interventions in light of these threats. We linked spatial distribution and population viability models to explore conservation interventions under projected climate change, urbanization, and changes in fire regime on a long‐lived obligate seeding plant species sensitive to high fire frequencies, a dominant plant functional type in many fire‐prone ecosystems, including the biodiversity hotspots of Mediterranean‐type ecosystems. First, we investigated the relative risk of population decline for plant populations in landscapes with and without land protection under an existing habitat conservation plan. Second, we modeled the effectiveness of relocating both seedlings and seeds from a large patch with predicted declines in habitat area to 2 unoccupied recipient patches with increasing habitat area under 2 projected climate change scenarios. Finally, we modeled 8 fire return intervals (FRIs) approximating the outcomes of different management strategies that effectively control fire frequency. Invariably, long‐lived obligate seeding populations remained viable only when FRIs were maintained at or above a minimum level. Land conservation and seedling relocation efforts lessened the impact of climate change and land‐use change on obligate seeding populations to differing degrees depending on the climate change scenario, but neither of these efforts was as generally effective as frequent translocation of seeds. While none of the modeled strategies fully compensated for the effects of land‐use and climate change, an integrative approach managing multiple threats may diminish population declines for species in complex landscapes. Conservation plans designed to mitigate the impacts of a single threat are likely to fail if additional threats are ignored. Manejo de Incendios, Reubicación Administrada y Opciones de Conservación de Suelo para Plantas de Vida Larga con Sembrado Obligado bajo los Cambios Globales en el Clima, la Urbanización y el Régimen de Incendios  相似文献   

19.
The rapidly changing climate is posing growing threats for all species, but particularly for those already considered threatened. We reviewed 100 recovery plans for Australian terrestrial threatened species (50 fauna and 50 flora plans) written from 1997 to 2017. We recorded the number of plans that acknowledged climate change as a threat and of these how many proposed specific actions to ameliorate the threat. We classified these actions along a continuum from passive or incremental to active or interventionist. Overall, just under 60% of the sampled recovery plans listed climate change as a current or potential threat to the threatened taxa, and the likelihood of this acknowledgment increased over time. A far smaller proportion of the plans, however, identified specific actions associated with ameliorating climate risk (22%) and even fewer (9%) recommended any interventionist action in response to a climate-change-associated threat. Our results point to a disconnect between the knowledge generated on climate-change-related risk and potential adaptation strategies and the extent to which this knowledge has been incorporated into an important instrument of conservation action.  相似文献   

20.
Temperature rise due to climate change is putting many arctic and alpine plants at risk of extinction because their ability to react is outpaced by the speed of climate change. We considered assisted species migration (ASM) and hybridization as methods to conserve cold-adapted species (or the genes thereof) and to minimize the potential perturbation of ecosystems due to climate change. Assisted species migration is the deliberate movement of individuals from their current location to where the species’ ecological requirements will be matched under climate projections. Hybridization refers to crossbreeding of closely related species, where for arctic and alpine plants, 1 parent is the threatened cold-adapted and the other its reproductively compatible, warm-adapted sibling. Traditionally, hybridization is viewed as negative and leading to a loss of biodiversity, even though hybridization has increased biodiversity over geological times. Furthermore, the incorporation of warm-adapted genes into a hybrid may be the only means for the persistence of increasingly more maladapted, cold-adapted species. If approached with thorough consideration of fitness-related parameters of the source population and acknowledgement of the important role hybridization has played in shaping current biodiversity, ASM and hybridization could help save partial or whole genomes of key cold-adapted species at risk due to climate change with minimal negative effects on ecosystem functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号