首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 930 毫秒
1.
Larval dispersal connectivity is typically integrated into spatial conservation decisions at regional or national scales, but implementing agencies struggle with translating these methods to local scales. We used larval dispersal connectivity at regional (hundreds of kilometers) and local (tens of kilometers) scales to aid in design of networks of no-take reserves in Southeast Sulawesi, Indonesia. We used Marxan with Connectivity informed by biophysical larval dispersal models and remotely sensed coral reef habitat data to design marine reserve networks for 4 commercially important reef species across the region. We complemented regional spatial prioritization with decision trees that combined network-based connectivity metrics and habitat quality to design reserve boundaries locally. Decision trees were used in consensus-based workshops with stakeholders to qualitatively assess site desirability, and Marxan was used to identify areas for subsequent network expansion. Priority areas for protection and expected benefits differed among species, with little overlap in reserve network solutions. Because reef quality varied considerably across reefs, we suggest reef degradation must inform the interpretation of larval dispersal patterns and the conservation benefits achievable from protecting reefs. Our methods can be readily applied by conservation practitioners, in this region and elsewhere, to integrate connectivity data across multiple spatial scales.  相似文献   

2.
Abstract: Marine reserves have been suggested as tools for assisting the management of fisheries by protecting vulnerable marine species from overexploitation. Although there is a theoretical basis for believing that marine reserves may serve as management tools, there are few marine reserves in the world in which to test their effectiveness. My research evaluated three forms of marine reserve on the south coast of Vancouver Island, British Columbia, Canada. I used northern abalone ( Haliotis kamtschatkana ), a severely depleted shellfish in this region, as an indicator of the effectiveness of the reserves. Abalone populations in eight sites receiving different degrees of spatial protection were counted and measured in situ during the spring of 1996 and 1997. In all sites with enforced harvest closures, populations of abalone were greater, and one site with nearly 40 years of protection had on average much larger (older) abalone. Reproductive output, as a function of abundance and size, was also greater in the enforced reserve areas. Larval dispersal from reserves, and hence the benefit to exploited areas, was not formally surveyed. Nevertheless, the results of my study, combined with knowledge of present abalone populations, life history, and regional hydrodynamics, suggest that establishment of reserves is justified in the absence of perfect knowledge of larval dispersal.  相似文献   

3.
Near‐shore marine environments are increasingly subjected to reduced water quality, and their ability to withstand it is critical to their persistence. The potential role marine reserves may play in mitigating the effects of reduced water quality has received little attention. We investigated the spatial and temporal variability in live coral and macro‐algal cover and water quality during moderate and major flooding events of the Fitzroy River within the Keppel Bay region of the Great Barrier Reef Marine Park from 2007 to 2013. We used 7 years of remote sensing data on water quality and data from long‐term monitoring of coral reefs to quantify exposure of coral reefs to flood plumes. We used a distance linear model to partition the contribution of abiotic and biotic factors, including zoning, as drivers of the observed changes in coral and macro‐algae cover. Moderate flood plumes from 2007 to 2009 did not affect coral cover on reefs in the Keppel Islands, suggesting the reef has intrinsic resistance against short‐term exposure to reduced water quality. However, from 2009 to 2013, live coral cover declined by ~50% following several weeks of exposure to turbid, low salinity water from major flood plume events in 2011 and subsequent moderate events in 2012 and 2013. Although the flooding events in 2012 and 2013 were smaller than the flooding events between 2007 to 2009, the ability of the reefs to withstand these moderate floods was lost, as evidenced by a ~20% decline in coral cover between 2011 to 2013. Although zoning (no‐take reserve or fished) was identified a significant driver of coral cover, we recorded consistently lower coral cover on reserve reefs than on fished reefs throughout the study period and significantly lower cover in 2011. Our findings suggest that even reefs with an inherent resistance to reduced water quality are not able to withstand repeated disturbance events. The limitations of reserves in mitigating the effects of reduced water quality on near‐shore coral reefs underscores the importance of integrated management approaches that combine effective land‐based management with networks of no‐take reserves.  相似文献   

4.
Abstract:  Fishing and other human activities can alter the abundances, size structure, and behavior of species playing key roles in shaping marine communities (e.g., keystone predators), which may in turn cause ecosystem shifts. Despite extensive evidence that cascading trophic interactions can underlie community-wide recovery inside no-take marine reserves by protecting high-level predators, the spatial extent of these effects into adjacent fished areas is unknown. I examined the potential for community-wide changes (i.e., the transition from overgrazed coralline barrens to macroalgal beds) in temperate rocky reefs within and around a no-take marine reserve. For this purpose I assessed distribution patterns of predatory fishes, sea urchins, and barrens across the reserve boundaries. Predatory fishes were significantly more abundant within the reserve than in adjacent locations, with moderate spillover across the reserve edges. In contrast, community-wide changes of benthic assemblages were apparent well beyond the reserve boundaries, which is consistent with temporary movements of predatory fishes (e.g., foraging migration) from the reserve to surrounding areas. My results suggest that no-take marine reserves can promote community-wide changes beyond their boundaries.  相似文献   

5.
Glassom  D.  Zakai  D.  Chadwick-Furman  N. E. 《Marine Biology》2004,144(4):641-651
Recruitment rates of stony corals to artificial substrates were monitored for 2 years at 20 sites along the coast of Eilat, northern Red Sea, to compare with those recorded at other coral reef locations and to assess variation in recruitment at several spatial scales. Coral recruitment was low compared to that observed on the Great Barrier Reef in Australia, but was similar to levels reported from other high-latitude reef locations. Pocilloporids were the most abundant coral recruits in all seasons. Recruitment was twofold higher during the first year than during the second year of study. There was considerable spatial variability, with the largest proportion of variance, apart from the error term, attributable to differences between sites, at a scale of 102 m. Spearmans ranked correlation showed consistency in spatial patterns of recruitment of pocilloporid corals between years, but not of acroporid corals. During spring, when only the brooding pocilloporid coral Stylophora pistillata reproduces at this locality, most coral recruitment occurred at central and southern sites adjacent to well-developed coral reefs. During summer, recruitment patterns varied significantly between years, with wide variation in the recruitment of broadcasting acroporid corals at northern sites located distant from coral reefs. Settlement was low at all sites during autumn and winter. This work is the first detailed analysis of coral recruitment patterns in the Red Sea, and contributes to the understanding of the spatial and temporal scales of variation in this important reef process.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

6.
Seascape connectivity (landscape connectivity in the sea) can modify reserve performance in low-energy marine ecosystems (e.g., coral reefs, mangroves, and seagrass), but it is not clear whether similar spatial linkages also shape reserve effectiveness on high-energy, exposed coastlines. We used the surf zones of ocean beaches in eastern Australia as a model system to test how seascape connectivity and reserve attributes combine to shape conservation outcomes. Spatial patterns in fish assemblages were measured using baited remote underwater video stations in 12 marine reserves and 15 fished beaches across 2000 km of exposed coastline. Reserve performance was shaped by both the characteristics of reserves and the spatial properties of the coastal seascapes in which reserves were embedded. Number of fish species and abundance of harvested fishes were highest in surf-zone reserves that encompassed >1.5 km of the surf zone; were located < 100 m to rocky headlands; and included pocket beaches in a heterogeneous seascape. Conservation outcomes for exposed coastlines may, therefore, be enhanced by prioritizing sufficiently large areas of seascapes that are strongly linked to abutting complementary habitats. Our findings have broader implications for coastal conservation planning. Empirical data to describe how the ecological features of high-energy shorelines influence conservation outcomes are lacking, and we suggest that seascape connectivity may have similar ecological effects on reserve performance on both sheltered and exposed coastlines.  相似文献   

7.
Although larval dispersal is crucial for the persistence of most marine populations, dispersal connectivity between sites is rarely considered in designing marine protected area networks. In particular the role of structural characteristics (known as topology) for the network of larval dispersal routes in the conservation of metapopulations has not been addressed. To determine reserve site configurations that provide highest persistence values with respect to their connectivity characteristics, we model nine connectivity topological models derived from graph theory in a demographic metapopulation model. We identify reserve site configurations that provide the highest persistence values for each of the metapopulation connectivity models. Except for the minimally connected and fully connected populations, we observed two general ‘rules of thumb’ for optimising the mean life time for all topological models: firstly place the majority of reserves, so that they are neighbours of each other, on the sites where the number of connections between the populations is highest (hub), secondly when the reserves have occupied the majority of the vertices in the hub, then select another area of high connectivity and repeat. If there are no suitable hubs remaining then distribute the remaining reserves to isolated locations optimising contact with non-reserved sites.  相似文献   

8.
Understanding the scale of marine population connectivity is critical for the conservation and sustainable management of marine resources. For many marine species adults are benthic and relatively immobile, so patterns of larval dispersal and recruitment provide the key to understanding marine population connectivity. Contrary to previous expectations, recent studies have often detected unexpectedly low dispersal and fine-scale population structure in the sea, leading to a paradigm shift in how marine systems are viewed. Nonetheless, the link between fine-scale marine population structure and the underlying physical and biological processes has not been made. Here we show that patterns of genetic structure and population connectivity in the broadcast-spawning and long-distance dispersing sea urchin Centrostephanus rodgersii are influenced by physical oceanographic and geographic variables. Despite weak genetic differentiation and no isolation-by-distance over thousands of kilometers among samples from eastern Australia and northern New Zealand, fine-scale genetic structure was associated with sea surface temperature (SST) variability and geography along the southeastern Australian coast. The zone of high SST variability is characterized by periodic shedding of eddies from the East Australian Current, and we suggest that ocean current circulation may, through its influence on larval transport and recruitment, interact with the genetic consequences of large variance in individual reproductive success to generate patterns of fine-scale patchy genetic structure. If proven consistent across species, our findings suggest that the optimal scale for fisheries management and reserve design should vary among localities in relation to regional oceanographic variability and coastal geography.  相似文献   

9.
Larval dispersal is an important component of marine reserve networks. Two conceptually different approaches to incorporate dispersal connectivity into spatial planning of these networks exist, and it is an open question as to when either is most appropriate. Candidate reserve sites can be selected individually based on local properties of connectivity or on a spatial dependency-based approach of selecting clusters of strongly connected habitat patches. The first acts on individual sites, whereas the second acts on linked pairs of sites. We used a combination of larval dispersal simulations representing different seascapes and case studies of biophysical larval dispersal models in the Coral Triangle region and the province of Southeast Sulawesi, Indonesia, to compare the performance of these 2 methods in the spatial planning software Marxan. We explored the reserve design performance implications of different dispersal distances and patterns based on the equilibrium settlement of larvae in protected and unprotected areas. We further assessed different assumptions about metapopulation contributions from unprotected areas, including the case of 100% depletion and more moderate scenarios. The spatial dependency method was suitable when dispersal was limited, a high proportion of the area of interest was substantially degraded, or the target amount of habitat protected was low. Conversely, when subpopulations were well connected, the 100% depletion was relaxed, or more habitat was protected, protecting individual sites with high scores in metrics of connectivity was a better strategy. Spatial dependency methods generally produced more spatially clustered solutions with more benefits inside than outside reserves compared with site-based methods. Therefore, spatial dependency methods potentially provide better results for ecological persistence objectives over enhancing fisheries objectives, and vice versa. Different spatial prioritization methods of using connectivity are appropriate for different contexts, depending on dispersal characteristics, unprotected area contributions, habitat protection targets, and specific management objectives. Comparación entre los métodos de priorización de la conservación espacial con sitio y la conectividad espacial basada en la dependencia  相似文献   

10.
Allozymes were examined in quantitative lunar monthly collections of larval recruits of the western rock lobster Panulirus cygnus George over three recruitment seasons at two sites nearly 350 km apart in Western Australia. At Alkimos, the southern site, recruitment occurs in a relatively narrow peak early in the spring, whereas at the northern Houtman Abrolhos Islands, recruitment extends into the summer months. In the 1995/1996 recruitment season, the frequency of the GPI * 100 allele increased from early to late in the season, but the frequencies were indistinguishable at the two sites in each monthly collection. The combination of this temporal variation in allelic frequencies with the contrasting patterns of recruitment at the Abrolhos Islands and Alkimos resulted in genetically different cohorts at the two sites. This pattern was ephemeral, as it was not repeated in the subsequent two years. Thus, ephemeral genetic patchiness in P. cygnus can be generated by the locally-specific genetic mix of recruits obtained from a common larval pool. This mechanism is the probable explanation of previously observed temporal and possible spatial genetic variation in adult P. cygnus, and highlights the importance of studying recruitment in order to understand the genetic structure of marine species. Received: 22 February 1999 / Accepted: 8 June 1999  相似文献   

11.
Marine reserves are an increasingly important tool for the management of marine ecosystems around the world. However, the effects of proposed marine reserve configurations on sustainability and yield of populations are typically not estimated because of the computational intensity of direct simulation and uncertainty in larval dispersal and density-dependent recruitment. Here we develop a method for efficiently assessing a marine reserve configuration for persistence and yield of a population with sedentary adults and dispersing larvae. The method extends the familiar sustainability criteria of individual replacement for single populations based on eggs-per-recruit (EPR) to spatially distributed populations with sedentary adults, a dispersing larval phase, and limited carrying capacity in the settlement-recruit relationship. We refer to this approach as dispersal-per-recruit (DPR). In some cases, a single DPR calculation, based on the assumption that post-settlement habitat is saturated (i.e., at maximum recruitment), is sufficient to determine population persistence, while in other cases further iterative calculations are required. These additional calculations reach an equilibrium more rapidly than a full simulation of age- or size-structured populations. From the DPR result, fishery yield can be computed from yield-per-recruit (YPR) at each point. We assess the utility of DPR calculations by applying them to single reserves, uniformly distributed systems of reserves, and randomly sized and spaced systems of reserves on a linear coastline. We find that for low levels of EPR in fished areas (e.g., 10% or less of the natural, unfished EPR when post-settlement habitats are saturated by 35% of natural settlement), a single DPR calculation is sufficient to determine persistence of the population. We also show that, in uniform systems of reserves with finite reserve size, maximal fisheries yield occurs when the density of reserves is such that all post-settlement habitat is nearly saturated with settlers. Finally, we demonstrate the application of this approach to a realistic proposed marine reserve configuration.  相似文献   

12.
Stier AC  Osenberg CW 《Ecology》2010,91(10):2826-2832
Increased habitat availability or quality can alter production of habitat-dependent organisms in two contrasting ways: (1) by enhancing input of new colonists to the new sites (the Field-of-Dreams Hypothesis); and (2) by drawing colonists away from existing sites (the Propagule Redirection Hypothesis), and thus reducing the deleterious effects of density. We conducted a field experiment on coral reef fishes in Moorea, French Polynesia, to quantify how differing levels of habitat availability (controlling for quality) increased and/or redirected colonizing larval fish. Focal reefs without neighboring reefs received two to four times more settlers than reefs with adjacent habitat, demonstrating that increased habitat redirected larval fish. At the scale of the entire reef array, total colonization increased 1.3-fold in response to a sixfold increase in reef area (and a 2.75-fold increase in adjusted habitat availability). Thus, propagules were both increased and redirected, a result midway between the Field-of-Dreams and Propagule Redirection Hypotheses. A recruitment model using our data and field estimates of density-dependent recruitment predicts that habitat addition increases recruitment primarily by ameliorating the negative effects of competition at existing sites rather than increasing colonization at the new sites per se. Understanding long-term implications of these effects depends upon the interplay among habitat dynamics, population connectivity, colonization dynamics, and density dependence.  相似文献   

13.
Spatiotemporal recruitment patterns of scleractinian corals were investigated around Iriomote Island, Ryukyu Archipelago, Japan, in relation to adult coral cover in 2005 and 2006. Although almost all corals were broadcasting spawners, the relationship between recruitment and adult coral cover differed among coral families (Acroporidae, Poritidae, and Pocilloporidae), likely due to differences in embryonic development time. For spawning pocilloporid corals, whose larvae develop relatively more rapidly, recruitment was higher at sites where adult coral cover was higher. In contrast, recruitment was not related to adult coral cover in acroporid and poritid corals, whose embryonic development times were relatively slow. Moreover, recruitment of acroporid corals varied between years, and recruitment was greater at leeward compared to windward reefs for a few days after spawning. These results suggest that embryonic development time and wind-driven surface currents affect larval dispersal and subsequent recruitment patterns at a local scale. Based on embryonic development time, some spawning corals are more likely to have higher rates of self-seeding than others. Our results predict that among spawning corals, local populations of acroporid and poritid corals, whose larvae potentially disperse over long distances and recruit in neighboring reefs, are more resilient to local disturbances than those of pocilloporid corals, whose recruitment relies upon local stock.  相似文献   

14.
G. Rilov  Y. Benayahu 《Marine Biology》2000,136(5):931-942
Artificial reefs have been suggested as a potential tool for the restoration of marine habitats. In the present study, the fish assemblage established around the oil jetties of Eilat (northern Red Sea, Israel) was compared to those found in three adjacent natural reef habitats: two in a nature reserve (one shallow and one deep) and a third deep site located near the city. Both species richness and fish abundance were found to be significantly higher around the vertical structures of the jetty's pillars than at all three natural sites, with the lowest values at the site closest to the city. The higher species richness at the jetties may be explained by (1) the vertical relief and high complexity of the jetty which offers a variety of niches for both shallow and deep coral reef species, and (2) by the reduction in available niches at the natural sites as a result of coral destruction due to anthropogenic activity. The pronounced difference in fish abundance is attributed mainly to the high seasonal recruitment at the jetty which was much lower at the natural sites. We therefore suggest that vertical structures are more attractive to fish settlement and recruitment than moderately sloped bottoms such as those found at the fringing reefs of Eilat. High similarity (51 to 56%) was found between fish assemblages at the natural sites while relatively low similarity (27 to 37%) was found between the jetty and the natural reefs. The jetty's complex vertical artificial structures can serve as a model for future construction of artificial reefs designed to restore the fish community in areas where the natural reefs have been damaged. It should be taken into account, however, that these do not necessarily mimic the natural environment but may rather establish a community of their own, which is influenced by the spatial orientation and complexity of the structure. Received: 30 December 1998 / Accepted: 9 December 1999  相似文献   

15.
Fishing the line near marine reserves in single and multispecies fisheries.   总被引:3,自引:0,他引:3  
Throughout the world "fishing the line" is a frequent harvesting tactic in communities where no-take marine reserves are designated. This practice of concentrating fishing effort at the boundary of a marine reserve is predicated upon the principle of spillover, the net export of stock from the marine reserve to the surrounding unprotected waters. We explore the consequences and optimality of fishing the line using a spatially explicit theoretical model. We show that fishing the line: (1) is part of the optimal effort distribution near no-take marine reserves with mobile species regardless of the cooperation level among harvesters; (2) has a significant impact on the spatial patterns of catch per unit effort (CPUE) and fish density both within and outside of the reserve; and (3) can enhance total population size and catch simultaneously under a limited set of conditions for overexploited populations. Additionally, we explore the consequences of basing the spatial distribution of fishing effort for a multispecies fishery upon the optimality of the most mobile species that exhibits the greatest spillover. Our results show that the intensity of effort allocated to fishing the line should instead be based upon more intermediate rates of mobility within the targeted community. We conclude with a comparison between model predictions and empirical findings from a density gradient study of two important game fish in the vicinity of a no-take marine-life refuge on Santa Catalina Island, California (USA). These results reveal the need for empirical studies to account for harvester behavior and suggest that the implications of spatial discontinuities such as fishing the line should be incorporated into marine-reserve design.  相似文献   

16.
Few studies examine the long-term effects of changing predator size and abundance on the habitat associations of resident organisms despite that this knowledge is critical to understand the ecosystem effects of fishing. Marine reserves offer the opportunity to determine ecosystem-level effects of manipulated predator densities, while parallel monitoring of adjacent fished areas allows separating these effects from regional-scale change. Relationships between two measures of benthic habitat structure (reef architecture and topographic complexity) and key invertebrate species were followed over 17 years at fished and protected subtidal rocky reefs associated with two southern Australian marine reserves. Two commercially harvested species, the southern rock lobster (Jasus edwardsii) and blacklip abalone (Haliotis rubra) were initially weakly associated with habitat structure across all fished and protected sites. The strength of association with habitat for both species increased markedly at protected sites 2 years after marine reserve declaration, and then gradually weakened over subsequent years. The increasing size of rock lobster within reserves apparently reduced their dependency on reef shelters as refuges from predation. Rising predation by fish and rock lobster in the reserves corresponded with weakening invertebrate–habitat relationships for H. rubra and sea urchins (Heliocidaris erythrogramma). These results emphasise that animal–habitat relationships are not necessarily stable through time and highlight the value of marine reserves as reference sites. Our work shows that fishery closures to enhance populations of commercially important and keystone species should be in areas with a range of habitat features to accommodate shifting ecological requirements with ontogenesis.  相似文献   

17.
Habitat maps are frequently invoked as surrogates of biodiversity to aid the design of networks of marine reserves. Maps are used to maximize habitat heterogeneity in reserves because this is likely to maximize the number of species protected. However, the technique's efficacy is limited by intra-habitat variability in the species present and their abundances. Although communities are expected to vary among patches of the same habitat, this variability is poorly documented and rarely incorporated into reserve planning. To examine intra-habitat variability in coral-reef fishes, we generated a data set from eight tropical coastal habitats and six islands in the Bahamian archipelago using underwater visual censuses. Firstly, we provide further support for habitat heterogeneity as a surrogate of biodiversity as each predefined habitat type supported a distinct assemblage of fishes. Intra-habitat variability in fish community structure at scales of hundreds of kilometers (among islands) was significant in at least 75% of the habitats studied, depending on whether presence/absence, density, or biomass data were used. Intra-habitat variability was positively correlated with the mean number of species in that habitat when density and biomass data were used. Such relationships provide a proxy for the assessment of intra-habitat variability when detailed quantitative data are scarce. Intra-habitat variability was examined in more detail for one habitat (forereefs visually dominated by Montastraea corals). Variability in community structure among islands was driven by small, demersal families (e.g., territorial pomacentrid and labrid fishes). Finally, we examined the ecological and economic significance of intra-habitat variability in fish assemblages on Montastraea reefs by identifying how this variability affects the composition and abundances of fishes in different functional groups, the key ecosystem process of parrotfish grazing, and the ecosystem service of value of commercially important finfish. There were significant differences in a range of functional groups and grazing, but not fisheries value. Variability at the scale of tens of kilometers (among reefs around an island) was less than that among islands. Caribbean marine reserves should be replicated at scales of hundreds of kilometers, particularly for species-rich habitats, to capture important intra-habitat variability in community structure, function, and an ecosystem process.  相似文献   

18.
19.
Abstract: It is thought that recovery of marine habitats from uncontrollable disturbance may be faster in marine reserves than in unprotected habitats. But which marine habitats should be protected, those areas at greatest risk or those at least risk? We first defined this problem mathematically for 2 alternate conservation objectives. We then analytically solved this problem for both objectives and determined under which conditions each of the different protection strategies was optimal. If the conservation objective was to maximize the chance of having at least 1 healthy site, then the best strategy was protection of the site at lowest risk. On the other hand, if the goal was to maximize the expected number of healthy sites, the optimal strategy was more complex. If protected sites were likely to spend a significant amount of time in a degraded state, then it was best to protect low‐risk sites. Alternatively, if most areas were generally healthy then, counterintuitively, it was best to protect sites at higher risk. We applied these strategies to a situation of cyclone disturbance of coral reefs on Australia's Great Barrier Reef. With regard to the risk of cyclone disturbance, the optimal reef to protect differed dramatically, depending on the expected speed of reef recovery of both protected and unprotected reefs. An adequate consideration of risk is fundamental to all conservation actions and can indicate surprising routes to conservation success.  相似文献   

20.
Corals are the primary reef-building organisms, therefore it is key to understand their recruitment patterns for effective reef management. Coral recruitment rates and juvenile coral abundance were recorded in the Wakatobi National Marine Park, Indonesia, on two reefs (Sampela and Hoga) with different levels of environmental degradation (12.5 vs. 44 % coral cover with high and low sedimentation rates, respectively) to examine consistencies in recruitment patterns between years and seasons. Recruitment was measured on multiple panels at two sites on each reef (6–7 m depth) and cleared areas of natural reef. Although coral recruitment was twofold higher in 2008–2009 than in 2007–2008, and seasonal differences were identified, consistent significant differences in recruitment rates were found between the two reefs even though they are separated by only ~1.5 km. Recruitment rates and juvenile abundance were lower on the more degraded reef. These patterns are likely a consequence of differential pre- and post-settlement mortality as a result of the high sedimentation rates and degraded conditions and possibly reduced larval supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号