首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Abstract: Invasions of non‐native species are one of the major causes of losses of native species. In some cases, however, non‐natives may also have positive effects on native species. We investigated the potential facilitative effects of the North American red swamp crayfish (Procambarus clarkii) on the community of predators in southwestern Spain. To do so, we examined the diets of predators in the area and their population trends since introduction of the crayfish. Most predator species consumed red swamp crayfish, which sometimes occurred in over 50% of their diet samples. Moreover, the abundance of species preying on crayfish increased significantly in the area as opposed to the abundance of herbivores and to predator populations in other areas of Europe, where those predators are even considered threatened. Thus, we report the first case in which one non‐native species is both beneficial because it provides prey for threatened species and detrimental because it can drive species at lower trophic levels to extinction. Increases in predator numbers that are associated with non‐native species of prey, especially when some of these predators are also invasive non‐natives, may increase levels of predation on other species and produce cascading effects that threaten native biota at longer temporal and larger spatial scales. Future management plans should include the complexity of interactions between invasive non‐natives and the entire native community, the feasibility of successful removal of non‐native species, and the potential social and economic interests in the area.  相似文献   

2.
Rudolf VH 《Ecology》2008,89(6):1650-1660
Direct and indirect interactions between two prey species can strongly alter the dynamics of predator-prey systems. Most predators are cannibalistic, and as a consequence, even systems with only one predator and one prey include two prey types: conspecifics and heterospecifics. The effects of the complex direct and indirect interactions that emerge in such cannibalistic systems are still poorly understood. This study examined how the indirect interaction between conspecific and heterospecific prey affects cannibalism and predation rates and how the direct interactions between both species indirectly alter the effect of the cannibalistic predator. I tested for these effects using larvae of the stream salamanders Eurycea cirrigera (prey) and Pseudotriton ruber (cannibalistic predator) by manipulating the relative densities of the conspecific and heterospecific prey in the presence and absence of the predator in experimental streams. The rates of cannibalism and heterospecific predation were proportional to the respective densities and negatively correlated, indicating a positive indirect interaction between conspecific and heterospecific prey, similar to "apparent mutualism." Direct interactions between prey species did not alter the effect of the predator. Although both types of prey showed a similar 30% reduction in night activity and switch in microhabitat use in response to the presence of the predator, cannibalism rates were three times higher than heterospecific predation rates irrespective of the relative densities of the two types of prey. Cumulative predation risks differed even more due to the 48% lower growth rate of conspecific prey. Detailed laboratory experiments suggest that the 3:1 difference in cannibalism and predation rate was due to the higher efficiency of heterospecific prey in escaping immediate attacks. However, no difference was observed when the predator was a closely related salamander species, Gyrinophilus porphyriticus, indicating that this difference is species specific. This demonstrates that cannibalism can result in the coupling of predator and prey mortality rates that strongly determines the dynamics of predator-prey systems.  相似文献   

3.
Griswold MW  Lounibos LP 《Ecology》2006,87(4):987-995
Multiple predator species can interact as well as strongly affect lower trophic levels, resulting in complex, nonadditive effects on prey populations and community structure. Studies of aquatic systems have shown that interactive effects of predators on prey are not necessarily predictable from the direct effects of each species alone. To test for complex interactions, the individual and combined effects of a top and intermediate predator on larvae of native and invasive mosquito prey were examined in artificial analogues of water-filled treeholes. The combined effects of the two predators were accurately predicted from single predator treatments by a multiplicative risk model, indicating additivity. Overall survivorship of both prey species decreased greatly in the presence of the top predator Toxorhynchites rutilus. By itself, the intermediate predator Corethrella appendiculata increased survivorship of the native prey species Ochlerotatus triseriatus and decreased survivorship of the invasive prey species Aedes albopictus relative to treatments without predators. Intraguild predation did not occur until alternative prey numbers had been reduced by approximately one-half. Owing to changes in size structure accompanying its growth, T. rutilus consumed more prey as time progressed, whereas C. appendiculata consumed less. The intermediate predator, C. appendiculata, changed species composition by preferentially consuming A. albopictus, while the top predator, T. rutilus, reduced prey density, regardless of species. Although species interactions were in most cases predicted from pairwise interactions, risk reduction from predator interference occurred when C. appendiculata densities were increased and when the predators were similarly sized.  相似文献   

4.
Effect of Introduced Crayfish and Mosquitofish on California Newts   总被引:15,自引:0,他引:15  
One goal of conservation biology is to explain population declines. We present field survey data and experimental evidence that implicate introduced predators as a possible cause of decline in the California newt ( Taricha torosa ). In 1994 and 1995 we surveyed 10 streams in the Santa Monica Mountains of southern California for amphibians. These streams contained California newts when surveyed between 1981 and 1986. Of the 10 streams surveyed in 1994, three contained introduced mosquitofish ( Gambusia affinis ) and/or crayfish ( Procambarus clarkii ). These three streams contained no California newt eggs, larvae, or adults. The seven streams without introduced predators contained California newts. We conducted laboratory and field experiments to determine if California newt larvae and egg masses are susceptible to predation by mosquitofish and crayfish. Results from these experiments indicate that crayfish consume California newt egg masses and that both mosquitofish and crayfish consume larval newts. In 24-hour field experiments, no newt larvae survived in crayfish enclosures, and only 13% of the larvae survived with mosquitofish. Newt larvae are known to have antipredator adaptations for native predators. Apparently, these adaptations are not adequate for coexistence with introduced crayfish or mosquitofish. Heavy rains in 1995 removed introduced crayfish from one stream. We found newt egg masses, larvae, and adults in that stream the following spring. This same stream showed no evidence of California newts when crayfish were present in matched-date surveys in 1994. These experiments and surveys present evidence that predation by mosquitofish and crayfish may cause localized decline of newts in mountain streams of southern California. Understanding the effects of nonnative species is an important step in preventing detrimental introductions in the future.  相似文献   

5.
Rudolf VH 《Ecology》2006,87(2):362-371
Nonlethal indirect interactions between predators often lead to nonadditive effects of predator number on prey survival and growth. Previous studies have focused on systems with at least two different predator species and one prey species. However, most predators undergo extreme ontological changes in phenotype such that interactions between different-sized cohorts of a predator and its prey could lead to nonadditive effects in systems with only two species. This may be important since different-sized individuals of the same species can differ more in their ecology than similar-sized individuals of different species. This study examined trait-mediated indirect effects in a two-species system including a cannibalistic predator with different-sized cohorts and its prey. I tested for these effects using larvae of two stream salamanders, Gyrinophilus porphyriticus (predator) and Eurycea cirrigera (prey), by altering the densities and combinations of predator size classes in experimental streams. Results showed that the presence of large individuals can significantly reduce the impact of density changes of smaller conspecifics on prey survival through nonlethal means. In the absence of large conspecifics, an increase in the relative frequency of small predators significantly increased predation rates, thereby reducing prey survival. However, with large conspecifics present, increasing the density of small predators did not decrease prey survival, resulting in a 14.3% lower prey mortality than predicted from the independent effects of both predator size classes. Small predators changed their microhabitat use in the presence of larger conspecifics. Prey individuals reduced activity in response to large predators but did not respond to small predators. Both predators reduced prey growth. These results demonstrate that the impact of a predator can be significantly altered by two different types of trait-mediated indirect effects in two-species systems: between different-sized cohorts and between different cohorts and prey. This study demonstrates that predictions based on simple numerical changes that assume independent effects of different size classes or ignore size structure can be strongly misleading. We need to account for the size structure within predator populations in order to predict how changes in predator abundance will affect predator-prey dynamics.  相似文献   

6.
Predators sometimes provide biotic resistance against invasions by nonnative prey. Understanding and predicting the strength of biotic resistance remains a key challenge in invasion biology. A predator's functional response to nonnative prey may predict whether a predator can provide biotic resistance against nonnative prey at different prey densities. Surprisingly, functional responses have not been used to make quantitative predictions about biotic resistance. We parameterized the functional response of signal crayfish (Pacifastacus leniusculus) to invasive New Zealand mud snails (Potamopyrgus antipodarum; NZMS) and used this functional response and a simple model of NZMS population growth to predict the probability of biotic resistance at different predator and prey densities. Signal crayfish were effective predators of NZMS, consuming more than 900 NZMS per predator in a 12-h period, and Bayesian model fitting indicated their consumption rate followed a type 3 functional response to NZMS density. Based on this functional response and associated parameter uncertainty, we predict that NZMS will be able to invade new systems at low crayfish densities (< 0.2 crayfish/m2) regardless of NZMS density. At intermediate to high crayfish densities (> 0.2 crayfish/m2), we predict that low densities of NZMS will be able to establish in new communities; however, once NZMS reach a threshold density of -2000 NZMS/m2, predation by crayfish will drive negative NZMS population growth. Further, at very high densities, NZMS overwhelm predation by crayfish and invade. Thus, interacting thresholds of propagule pressure and predator densities define the probability of biotic resistance. Quantifying the shape and uncertainty of predator functional responses to nonnative prey may help predict the outcomes of invasions.  相似文献   

7.
Thompson CM  Gese EM 《Ecology》2007,88(2):334-346
Trophic level interactions between predators create complex relationships such as intraguild predation. Theoretical research has predicted two possible paths to stability in intraguild systems: intermediate predators either outcompete higher-order predators for shared resources or select habitat based on security. The effects of intraguild predation on intermediate mammalian predators such as swift foxes (Vulpes velox) are not well understood. We examined the relationships between swift foxes and both their predators and prey, as well the effect of vegetation structure on swift fox-coyote (Canis latrans) interactions, between August 2001 and August 2004. In a natural experiment created by the Pinon Canyon Maneuver Site in southeastern Colorado, USA, we documented swift fox survival and density in a variety of landscapes and compared these parameters in relation to prey availability, coyote abundance, and vegetation structure. Swift fox density varied significantly between study sites, while survival did not. Coyote abundance was positively related to the basal prey species and vegetation structure, while swift fox density was negatively related to coyote abundance, basal prey species, and vegetation structure. Our results support the prediction that, under intraguild predation in terrestrial systems, top predator distribution matches resource availability (resource match), while intermediate predator distribution inversely matches predation risk (safety match). While predation by coyotes may be the specific cause of swift fox mortality in this system, the more general mechanism appears to be exposure to predation moderated by shrub density.  相似文献   

8.
Levi T  Wilmers CC 《Ecology》2012,93(4):921-929
Due to the widespread eradication of large canids and felids, top predators in many terrestrial ecosystems are now medium-sized carnivores such as coyotes. Coyotes have been shown to increase songbird and rodent abundance and diversity by suppressing populations of small carnivores such as domestic cats and foxes. The restoration of gray wolves to many parts of North America, however, could alter this interaction chain. Here we use a 30-year time series of wolf, coyote, and fox relative abundance from the state of Minnesota, USA, to show that wolves suppress coyote populations, which in turn releases foxes from top-down control by coyotes. In contrast to mesopredator release theory, which has often considered the consequence of top predator removal in a three-species interaction chain (e.g., coyote-fox-prey), the presence of the top predator releases the smaller predator in a four-species interaction chain. Thus, heavy predation by abundant small predators might be more similar to the historical ecosystem before top-predator extirpation. The restructuring of predator communities due to the loss or restoration of top predators is likely to alter the size spectrum of heavily consumed prey with important implications for biodiversity and human health.  相似文献   

9.
Functional responses: a question of alternative prey and predator density   总被引:2,自引:0,他引:2  
Tschanz B  Bersier LF  Bacher S 《Ecology》2007,88(5):1300-1308
Throughout the study of ecology, there has been a growing realization that indirect effects among species cause complexity in food webs. Understanding and predicting the behavior of ecosystems consequently depends on our ability to identify indirect effects and their mechanisms. The present study experimentally investigates indirect interactions arising between two prey species that share a common predator. In a natural field experiment, we introduced different densities of mealworms (Tenebrio molitor), an alternative prey, to a previously studied predator-prey system in which paper wasps (Polistes dominulus) preyed on shield beetle larvae (Cassida rubiginosa). We tested if alternative prey affects predation on the first prey (i.e., the predator-dependent functional response of paper wasps) by modifying either interference among predators or the effective number of predators foraging on shield beetles. Presence of mealworms significantly reduced the effective number of predators, whereas predator interference was not affected. In this way, the experimentally introduced alternative prey altered the wasps' functional response and thereby indirectly influenced C. rubiginosa density. In all prey-density combinations offered, paper wasps constantly preferred T. molitor. This led to an asymmetrical, indirect interaction between both prey species: an increase in mealworm density significantly relaxed predation on C. rubiginosa, whereas an increase in C. rubiginosa density intensified predation on mealworms. Such asymmetrical outcomes of a fixed food preference can significantly affect the population dynamics of the species involved. In spite of the repeated finding of a Type III functional response in this system, our experiment did not reveal switching behavior in paper wasps. The variety of mechanisms underlying direct and indirect interactions within our study system exemplifies the importance of incorporating alternative prey when investigating the impact of a generalist predator on a focal prey population under realistic field conditions.  相似文献   

10.
McCauley SJ  Rowe L  Fortin MJ 《Ecology》2011,92(11):2043-2048
Nonconsumptive predator effects are widespread and include plasticity as well as general stress responses. Caged predators are often used to estimate nonconsumptive effects, and numerous studies have focused on the larval stages of animals with complex life cycles. However, few of these studies test whether nonconsumptive predator effects, including stress responses, are exclusively sublethal. Nor have they assessed whether these effects extend beyond the larval stage, affecting success during stressful life-history transitions such as metamorphosis. We conducted experiments with larvae of a dragonfly (Leucorrhinia intacta) that exhibits predator-induced plasticity to assess whether the mere presence of predators affects larval survivorship, metamorphosis, and adult body size. Larvae exposed to caged predators with no ability to attack them had higher levels of mortality. In the second experiment, larvae reared with caged predators had higher rates of metamorphic failure, but there was no effect on adult body size. Our results suggest that stress responses induced by exposure to predator cues increase the vulnerability of prey to other mortality factors, and that mere exposure to predators can result in significant increases in mortality.  相似文献   

11.
Summary The threat-sensitive predator avoidance hypothesis predicts that prey can assess the relative threat posed by a predator and adjust their behaviour to reflect the magnitude of the threat. We tested the ability of larval threespine sticklebacks to adjust their foraging in the presence of predators by exposing them to conspecific predators of various sizes and recording their foraging and predator avoidance behaviours. Larvae (<30 days post-hatch) displayed predator escape behaviours only towards attacking predators. At 3 weeks post-hatch larvae approached the predator after fleeing, a behaviour which may be the precursor to predator inspection. Larvae reduced foraging and spent less time in the proximity of large and medium-sized predators compared to small predators. The reduction in foraging was negatively correlated to the predator/larva size ratio, indicating that larvae increased their foraging as they increased in size relative to the predator. We conclude that larval sticklebacks can assess the threat of predation early in their ontogeny and adjust their behaviour accordingly.Correspondence to: J.A. Brown  相似文献   

12.
Habitat characteristics mediate predator–prey coexistence in many ecological systems but are seldom considered in species introductions. When economically important introduced predators are stocked despite known negative impacts on native species, understanding the role of refuges, landscape configurations, and community interactions can inform habitat management plans. We measured these factors in basins with introduced trout (Salmonidae) and the Cascades frog (Rana cascadae) to determine, which are responsible for observed patterns of co‐occurrence of this economically important predator and its native prey. Large, vegetated shallows were strongly correlated to co‐occurrence, and R. cascadae larvae occur in shallower water when fish are present, presumably to escape predation. The number of nearby breeding sites of R. cascadae was also correlated to co‐occurrence, but only when the western toad (Anaxyrus boreas) was present. Because A. boreas larvae are unpalatable to fish and resemble R. cascadae, they may provide protection from trout via Batesian mimicry. Although rescue‐effect dispersal from nearby populations may maintain co‐occurrence, within‐lake factors proved more important for predicting co‐occurrence. Learning which factors allow co‐occurrence between economically important introduced species and their native prey enables managers to make better‐informed stocking decisions. Factores que Median la Co‐Ocurrencia de un Pez Introducido con Valor Económico y su Presa, una Rana Nativa  相似文献   

13.
Recent investigations have indicated that animals are able to use chemical cues of predators to assess the magnitude of predation risk. One possible source of such cues is predator diet. Chemical cues may also be important in the development of antipredator behaviour, especially in animals that possess chemical alarm substances. Tadpoles of the common toad (Bufo bufo) are unpalatable to most vertebrate predators and have an alarm substance. Tadpoles of the common frog (Rana temporaria) lack both these characters. We experimentally studied how predator diet, previous experience of predators and body size affect antipredator behaviour in these two tadpole species. Late-instar larvae of the dragonfly Aeshna juncea were used as predators. The dragonfly larvae were fed a diet exclusively of insects, R. temporaria tadpoles or B. bufo tadpoles. R. temporaria tadpoles modified their behaviour according to the perceived predation risk. Depending on predator diet, the tadpoles responded with weak antipredatory behaviour (triggered by insect-fed predators) or strong behaviour (triggered by tadpole-fed predators) with distinct spatial avoidance and lowered activity level. The behaviour of B. bufo in predator diet treatments was indistinguishable from that in the control treatment. This lack of antipredator behaviour is probably related to the effective post-encounter defenses and more intense competitive regime experienced by B. bufo. The behaviour of both tadpole species was dependent on body size, but this was not related to predator treatments. Our results also indicate that antipredator behaviour is largely innate in tadpoles of both species and is not modified by a brief exposure to predators. Received: 22 August 1996 / Accepted after revision: 31 January 1997  相似文献   

14.
Livestock populations in protected areas are viewed negatively because of their interaction with native ungulates through direct competition for food resources. However, livestock and native prey can also interact indirectly through their shared predator. Indirect interactions between two prey species occur when one prey modifies either the functional or numerical responses of a shared predator. This interaction is often manifested as negative effects (apparent competition) on one or both prey species through increased predation risk. But indirect interactions can also yield positive effects on a focal prey if the shared predator modifies its functional response toward increased consumption of an abundant and higher-quality alternative prey. Such a phenomenon between two prey species is underappreciated and overlooked in nature. Positive indirect effects can be expected to occur in livestock-dominated wildlife reserves containing large carnivores. We searched for such positive effects in Acacia-Zizhypus forests of India's Gir sanctuary where livestock (Bubalus bubalis and Bos indicus) and a coexisting native prey (chital deer, Axis axis) are consumed by Asiatic lions (Panthera leo persica). Chital vigilance was higher in areas with low livestock density than in areas with high livestock density. This positive indirect effect occurred because lion predation rates on livestock were twice as great where livestock were abundant than where livestock density was low. Positive indirect interactions mediated by shared predators may be more common than generally thought with rather major consequences for ecological understanding and conservation. We encourage further studies to understand outcomes of indirect interactions on long-term predator-prey dynamics in livestock-dominated protected areas.  相似文献   

15.
Interactions between foragers may seriously affect individual foraging efficiency. In a laboratory study of handling time, prey value and prey-size preference in northern pike and signal crayfish, we show that risk of intraspecific interactions between predators does not affect handling time or value of prey. However, the presence of agonistic intraspecific interactors shifts prey-size preference in these predators. Neither northern pike nor signal crayfish foraging alone show a prey-size preference, while pike foraging among conspecifics prefer small prey, and crayfish foraging in groups prefer large prey. We ascribe the different outcomes in prey preference to differences in susceptibility to interactions: northern pike under risk avoid large prey to avoid long handling times and the associated risk of interactions, while signal crayfish foraging among conspecifics may defend themselves and their prey during handling, and thus select prey to maximise investment. In addition, the value of pike prey (roach) is low for very small prey, maximises for small prey, and then decreases monotonically for larger prey, while crayfish prey (pond snail) value is low for very small prey, has a maximum at small prey, but does not decrease as much for larger prey. Therefore, a large and easily detected snail prey provides a crayfish with as much value as a small prey. We conclude that interaction risk and predator density affect prey-size preference differently in these aquatic predators, and therefore has different potential effects on prey-size structure and population and community dynamics. Received: 4 October 1999 / Revised: 20 March 2000 / Accepted: 27 May 2000  相似文献   

16.
Intraguild predation (IGP) occurs when one predator species consumes another predator species with whom it also competes for shared prey. One question of interest to ecologists is whether multiple predator species suppress prey populations more than a single predator species, and whether this result varies with the presence of IGP. We conducted a meta-analysis to examine this question, and others, regarding the effects of IGP on prey suppression. When predators can potentially consume one another (mutual IGP), prey suppression is greater in the presence of one predator species than in the presence of multiple predator species; however, this result was not found for assemblages with unidirectional or no IGP. With unidirectional IGP, intermediate predators were generally more effective than the top predator at suppressing the shared prey, in agreement with IGP theory. Adding a top predator to an assemblage generally caused prey to be released from predation, while adding an intermediate predator caused prey populations to be suppressed. However, the effects of adding a top or intermediate predator depended on the effectiveness of these predators when they were alone. Effects of IGP varied across different ecosystems (e.g., lentic, lotic, marine, terrestrial invertebrate, and terrestrial vertebrate), with the strongest patterns being driven by terrestrial invertebrates. Finally, although IGP theory is based on equilibrium conditions, data from short-term experiments can inform us about systems that are dominated by transient dynamics. Moreover, short-term experiments may be connected in some way to equilibrium models if the predator and prey densities used in experiments approximate the equilibrium densities in nature.  相似文献   

17.
Some organisms use morphological structures obtained by behavioural processes to lower mortality by predation. We test whether larvae of the limnephilid caddisfly Potamophylax latipennis (Curtis) vary their responses to the presence of different predators (dragonfly naiads, fire salamander larvae or brown trout) by choosing organic or mineral cases. We offered both case types to larvae, and simulated differences in predation risk using water conditioned with chemicals from the different predators. Our results show that Potamophylax larvae detect and discriminate predators using water-borne chemical cues and alter their choice of case type according to the perceived predation risk. Moreover, the distribution of larvae bearing cases of different anti-predator value matches the spatial variation in predation risk in the field.  相似文献   

18.
Orlofske SA  Jadin RC  Preston DL  Johnson PT 《Ecology》2012,93(6):1247-1253
While often studied in isolation, host-parasite interactions are typically embedded within complex communities. Other community members, including predators and alternative hosts, can therefore alter parasite transmission (e.g., the dilution effect), yet few studies have experimentally evaluated more than one such mechanism. Here, we used data from natural wetlands to design experiments investigating how alternative hosts and predators of parasites mediate trematode (Ribeiroia ondatrae) infection in a focal amphibian host (Pseudacris regilla). In short-term predation bioassays involving mollusks, zooplankton, fish, larval insects, or newts, four of seven tested species removed 62-93% of infectious stages. In transmission experiments, damselfly nymphs (predators) and newt larvae (alternative hosts) reduced infection in P. regilla tadpoles by -50%, whereas mosquitofish (potential predators and alternative hosts) did not significantly influence transmission. Additional bioassays indicated that predators consumed parasites even in the presence of alternative prey. In natural wetlands, newts had similar infection intensities as P. regilla, suggesting that they commonly function as alternative hosts despite their unpalatability to downstream hosts, whereas mosquitofish had substantially lower infection intensities and are unlikely to function as hosts. These results underscore the importance of studying host-parasite interactions in complex communities and of broadly linking research on predation, biodiversity loss, and infectious diseases.  相似文献   

19.
When predator chemical cues are present, low activity of prey is a commonly seen defensive behavior. However, few studies have explored the functional implications of the defensive behaviors and, thus, elucidated the possible linkages between behavioral responses and its consequences. In this study, we experimentally investigated how behavioral responses of Hyla japonica tadpoles to predator chemical cues affect vulnerability to a dragonfly nymph Anax parthenope julius. The frequency of tadpoles attacked by dragonfly nymphs was lower with chemical cues of predator was present than without chemical cues, and most of attacks occurred when tadpoles were mobile. When tadpoles were exposed to chemical cues, on the other hand, their swimming speed was quicker and swimming distance was longer, respectively, and the rates of being approached of the swimming tadpoles by dragonfly nymph was lower than those not exposed to chemical cues. We found that the tadpoles are induced by predator chemical cues not only to generally lower activity but also to swim in bursts as additional behavior and that the suite of their behavioral responses reduce the vulnerability against dragonfly nymph. Tadpoles can receive information about the predation risks by chemical cues and adjust their defensive behavior accordingly.  相似文献   

20.
Summary.  Under laboratory conditions, the multicolored Asian lady beetle, Harmonia axyridis is well known as an intraguild predator of other ladybirds. However the real impact of this exotic species on native species was poorly investigated in the field. Because many ladybird species produce alkaloids as defensive compounds, we propose here a new method of intraguild predation monitoring in coccinellids based on alkaloid quantification by GC-MS. In laboratory experiments, adaline was unambiguously detected in fourth instar larvae of H. axyridis having ingested one egg or one first instar larva of Adalia bipunctata. Although prey alkaloids in the predator decreased with time, traces were still detected in pupae, exuviae and imagines of H. axyridis having ingested one prey when they were fourth instar larvae. Analysis of H. axyridis larvae collected in two potato fields shows for the first time in Europe the presence of exogenous alkaloids in 9 out of 28 individuals tested. This new method of intraguild predation detection could be used more widely to follow the interactions between predators and potential chemically defended insect preys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号