首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodiversity offsetting is the practice of using conservation actions, such as habitat restoration, management, or protection, to compensate for ecological losses caused by development activity, including construction projects. The typical goal of offsetting is no net loss (NNL), which means that all ecological losses are compensated for by commensurate offset gains. We focused on a conceptual and methodological exploration of net positive impact (NPI), an ambitious goal that implies commitment beyond NNL and that has recently received increasing attention from big business and environmental nongovernmental organizations. We identified 3 main ways NPI could be delivered: use of an additional NPI multiplier; use of slowly developing permanent offsets to deliver additional gains after NNL has first been reached during a shorter offset evaluation time interval; and the combination of permanent offsets with partially temporary losses. An important and novel variant of the last mechanism is the use of an alternate mitigation hierarchy so that gains from the traditional third step of the mitigation hierarchy (i.e., onsite rehabilitation) are no longer be counted toward reduced offset requirements. The outcome from these 3 factors is that for the same ecological damage, larger offsets will be required than previously, thereby improving offset success. As a corollary, we show that offsets are NNL only at 1 ephemeral point in time, before which they are net negative and after which they become either NPI or net negative impact, depending on whether permanent offsets are combined with partially temporary losses or if temporary offset gains are combined with partially permanent losses. To achieve NPI, offsets must be made permanent, and they must achieve NNL during an agreed-upon offset evaluation period. An additional NPI-multiplier and use of the modified mitigation hierarchy will deliver additional NPI gains. Achieving NPI is fully conditional on prior achievement of NNL, and NNL offsets have been frequently observed to fail due to inadequate policy requirements, poor planning, or incomplete implementation. Nevertheless, achieving NPI becomes straightforward if NNL can be credibly reached first.  相似文献   

2.
There is an urgent need to improve the evaluation of conservation interventions. This requires specifying an objective and a frame of reference from which to measure performance. Reference frames can be baselines (i.e., known biodiversity at a fixed point in history) or counterfactuals (i.e., a scenario that would have occurred without the intervention). Biodiversity offsets are interventions with the objective of no net loss of biodiversity (NNL). We used biodiversity offsets to analyze the effects of the choice of reference frame on whether interventions met stated objectives. We developed 2 models to investigate the implications of setting different frames of reference in regions subject to various biodiversity trends and anthropogenic impacts. First, a general analytic model evaluated offsets against a range of baseline and counterfactual specifications. Second, a simulation model then replicated these results with a complex real world case study: native grassland offsets in Melbourne, Australia. Both models showed that achieving NNL depended upon the interaction between reference frame and background biodiversity trends. With a baseline, offsets were less likely to achieve NNL where biodiversity was decreasing than where biodiversity was stable or increasing. With a no‐development counterfactual, however, NNL was achievable only where biodiversity was declining. Otherwise, preventing development was better for biodiversity. Uncertainty about compliance was a stronger determinant of success than uncertainty in underlying biodiversity trends. When only development and offset locations were considered, offsets sometimes resulted in NNL, but not across an entire region. Choice of reference frame determined feasibility and effort required to attain objectives when designing and evaluating biodiversity offset schemes. We argue the choice is thus of fundamental importance for conservation policy. Our results shed light on situations in which biodiversity offsets may be an inappropriate policy instrument Importancia de la Especificación de Línea de Base en la Evaluación de Intervenciones de Conservación y la Obtención de Ninguna Pérdida Neta de la Biodiversidad  相似文献   

3.
Businesses, governments, and financial institutions are increasingly adopting a policy of no net loss of biodiversity for development activities. The goal of no net loss is intended to help relieve tension between conservation and development by enabling economic gains to be achieved without concomitant biodiversity losses. biodiversity offsets represent a necessary component of a much broader mitigation strategy for achieving no net loss following prior application of avoidance, minimization, and remediation measures. However, doubts have been raised about the appropriate use of biodiversity offsets. We examined what no net loss means as a desirable conservation outcome and reviewed the conditions that determine whether, and under what circumstances, biodiversity offsets can help achieve such a goal. We propose a conceptual framework to substitute the often ad hoc approaches evident in many biodiversity offset initiatives. The relevance of biodiversity offsets to no net loss rests on 2 fundamental premises. First, offsets are rarely adequate for achieving no net loss of biodiversity alone. Second, some development effects may be too difficult or risky, or even impossible, to offset. To help to deliver no net loss through biodiversity offsets, biodiversity gains must be comparable to losses, be in addition to conservation gains that may have occurred in absence of the offset, and be lasting and protected from risk of failure. Adherence to these conditions requires consideration of the wider landscape context of development and offset activities, timing of offset delivery, measurement of biodiversity, accounting procedures and rule sets used to calculate biodiversity losses and gains and guide offset design, and approaches to managing risk. Adoption of this framework will strengthen the potential for offsets to provide an ecologically defensible mechanism that can help reconcile conservation and development. Balances de Biodiversidad y el Reto de No Obtener Pérdida Neta  相似文献   

4.
Developers are often required by law to offset environmental impacts through targeted conservation actions. Most offset policies specify metrics for calculating offset requirements, usually by assessing vegetation condition. Despite widespread use, there is little evidence to support the effectiveness of vegetation-based metrics for ensuring biodiversity persistence. We compared long-term impacts of biodiversity offsetting based on area only; vegetation condition only; area × habitat suitability; and condition × habitat suitability in development and restoration simulations for the Hunter Region of New South Wales, Australia. We simulated development and subsequent offsetting through restoration within a virtual landscape, linking simulations to population viability models for 3 species. Habitat gains did not ensure species persistence. No net loss was achieved when performance of offsetting was assessed in terms of amount of habitat restored, but not when outcomes were assessed in terms of persistence. Maintenance of persistence occurred more often when impacts were avoided, giving further support to better enforce the avoidance stage of the mitigation hierarchy. When development affected areas of high habitat quality for species, persistence could not be guaranteed. Therefore, species must be more explicitly accounted for in offsets, rather than just vegetation or habitat alone. Declines due to a failure to account directly for species population dynamics and connectivity overshadowed the benefits delivered by producing large areas of high-quality habitat. Our modeling framework showed that the benefits delivered by offsets are species specific and that simple vegetation-based metrics can give misguided impressions on how well biodiversity offsets achieve no net loss.  相似文献   

5.
Biodiversity offsets aim to counterbalance the residual impacts of development on species and ecosystems. Guidance documents explicitly recommend that biodiversity offset actions be located close to the location of impact because of higher potential for similar ecological conditions, but allowing greater spatial flexibility has been proposed. We examined the circumstances under which offsets distant from the impact location could be more likely to achieve no net loss or provide better ecological outcomes than offsets close to the impact area. We applied a graphical model for migratory shorebirds in the East Asian–Australasian Flyway as a case study to explore the problems that arise when incorporating spatial flexibility into offset planning. Spatially flexible offsets may alleviate impacts more effectively than local offsets; however, the risks involved can be substantial. For our case study, there were inadequate data to make robust conclusions about the effectiveness and equivalence of distant habitat-based offsets for migratory shorebirds. Decisions around offset placement should be driven by the potential to achieve equivalent ecological outcomes; however, when considering more distant offsets, there is a need to evaluate the likely increased risks alongside the potential benefits. Although spatially flexible offsets have the potential to provide more cost-effective biodiversity outcomes and more cobenefits, our case study showed the difficulty of demonstrating these benefits in practice and the potential risks that need to be considered to ensure effective offset placement.  相似文献   

6.
Biodiversity offsetting aims to compensate for development‐induced biodiversity loss through commensurate conservation gains and is gaining traction among governments and businesses. However, cost shifting (i.e., diversion of offset funds to other conservation programs) and other perverse incentives can undermine the effectiveness of biodiversity offsetting. Additionality—the requirement that biodiversity offsets result in conservation outcomes that would not have been achieved otherwise—is fundamental to biodiversity offsetting. Cost shifting and violation of additionality can go hand in hand. India's national offsetting program is a case in point. Recent legislation allows the diversion of offset funds to meet the country's preexisting commitments under the United Nations Framework Convention on Climate Change (UNFCCC) and United Nations Convention on Biological Diversity (CBD). With such diversions, no additional conservation takes place and development impacts remain uncompensated. Temporary additionality cannot be conceded in light of paucity of funds for preexisting commitments unless there is open acknowledgement that fulfillment of such commitments is contingent on offset funds. Two other examples of perverse incentives related to offsetting in India are the touting of inherently neutral offsetting outcomes as conservation gains, a tactic that breeds false complacency and results in reduced incentive for additional conservation efforts, and the clearing of native vegetation for commercial plantations in the name of compensatory afforestation, a practice that leads to biodiversity decline. The risks accompanying cost shifting and other perverse incentives, if not preempted and addressed, will result in net loss of forest cover in India. We recommend accurate baselines, transparent accounting, and open reporting of offset outcomes to ensure biodiversity offsetting achieves adequate and additional compensation for impacts of development.  相似文献   

7.
Biodiversity offsets are intended to achieve no net loss of biodiversity due to economic and human development. A variety of biodiversity components are addressed by offset policies. It is required that loss of protected species due to development be offset under the EU Habitats and Birds Directives in Europe. We call this type of offset a species‐equality offset because the offset pertains to the same species affected by the development project. Whether species equality can be achieved by offset design is unknown. We addressed this gap by reviewing derogation files (i.e., specific files that describe mitigation measures to ensure no net loss under the EU Habitats and Birds Directives) from 85 development projects in France (2009–2010). We collected information on type of effect (reversible vs. irreversible) and characteristics of affected and offset sites (i.e., types of species, total area). We analyzed how the type of effect and the affected‐site characteristics influenced the occurrence of offset measures. The proportion of species targeted by offset measures (i.e., offset species) increased with the irreversibility of the effect of development and the conservation status of the species affected by development (i.e., affected species). Not all effects on endangered species (International Union for Conservation of Nature Red List) were offset; on average, 82% of affected species would be offset. Twenty‐six percent of species of least concern were offset species. Thirty‐five percent of development projects considered all affected species in their offset measures. Species richness was much lower in offset sites than in developed sites even after offset proposals. For developed areas where species richness was relatively high before development, species richness at offset sites was 5–10 times lower. The species‐equality principle appears to have been applied only partially in offset policies, as in the EU directives. We suggest the application of this principle through offsets is highly important for the long‐term conservation of biodiversity in Europe. Compensaciones y Conservación de las Especies de las Directivas de Hábitats y Aves de la UE  相似文献   

8.
Mitigation and offset programs designed to compensate for ecosystem function losses due to development must balance losses from affected ecosystems with gains in restored ecosystems. Aggregation rules applied to ecosystem functions to assess site equivalence are based on implicit assumptions about the substitutability of functions among sites and can profoundly influence the distribution of restored ecosystem functions on the landscape. We investigated the consequences of rules applied to the aggregation of ecosystem functions for wetland offsets in the Beaverhill watershed in Alberta, Canada. We considered the fate of 3 ecosystem functions: hydrology, water purification, and biodiversity. We set up an affect‐and‐offset algorithm to simulate the effect of aggregation rules on ecosystem function for wetland offsets. Cobenefits and trade‐offs among functions and the constraints posed by the quantity and quality of restorable sites resulted in a redistribution of functions between affected and offset wetlands. Hydrology and water purification functions were positively correlated with one another and negatively correlated with biodiversity function. Weighted‐average rules did not replace functions in proportion to their weights. Rules prioritizing biodiversity function led to more monofunctional wetlands and landscapes. The minimum rule, for which the wetland score was equal to the worst performing function, promoted multifunctional wetlands and landscapes. The maximum rule, for which the wetland score was equal to the best performing function, promoted monofunctional wetlands and multifunctional landscapes. Because of implicit trade‐offs among ecosystem functions, no‐net‐loss objectives for multiple functions should be constructed within a landscape context. Based on our results, we suggest criteria for the design of aggregation rules for no net loss of ecosystem functions within a landscape context include the concepts of substitutability, cobenefits and trade‐offs, landscape constraints, heterogeneity, and the precautionary principle.  相似文献   

9.
Economic and Ecological Outcomes of Flexible Biodiversity Offset Systems   总被引:1,自引:0,他引:1  
The commonly expressed goal of biodiversity offsets is to achieve no net loss of specific biological features affected by development. However, strict equivalency requirements may complicate trading of offset credits, increase costs due to restricted offset placement options, and force offset activities to focus on features that may not represent regional conservation priorities. Using the oil sands industry of Alberta, Canada, as a case study, we evaluated the economic and ecological performance of alternative offset systems targeting either ecologically equivalent areas (vegetation types) or regional conservation priorities (caribou and the Dry Mixedwood natural subregion). Exchanging dissimilar biodiversity elements requires assessment via a generalized metric; we used an empirically derived index of biodiversity intactness to link offsets with losses incurred by development. We considered 2 offset activities: land protection, with costs estimated as the net present value of profits of petroleum and timber resources to be paid as compensation to resource tenure holders, and restoration of anthropogenic footprint, with costs estimated from existing restoration projects. We used the spatial optimization tool MARXAN to develop hypothetical offset networks that met either the equivalent‐vegetation or conservation‐priority targets. Networks that required offsetting equivalent vegetation cost 2–17 times more than priority‐focused networks. This finding calls into question the prudence of equivalency‐based systems, particularly in relatively undeveloped jurisdictions, where conservation focuses on limiting and directing future losses. Priority‐focused offsets may offer benefits to industry and environmental stakeholders by allowing for lower‐cost conservation of valued ecological features and may invite discussion on what land‐use trade‐offs are acceptable when trading biodiversity via offsets. Resultados Económicos y Ecológicos de Sistemas de Compensación de Biodiversidad Flexible Habib et al.  相似文献   

10.
Globally, offset schemes have emerged in many statutory frameworks relating to development activities, with the aim of balancing biodiversity conservation and development. Although the theory and use of biodiversity offsets in terrestrial environments is broadly documented, little attention has been paid to offsets in stream ecosystems. Here we examine the application of offset schemes to stream ecosystems and explore whether they suffer similar shortcomings to those of offset schemes focused on terrestrial biodiversity. To challenge the applicability of offsets further, we discuss typical trajectories of urban expansion and their cascading physical, chemical and biological impacts on stream ecosystems. We argue that the highly connected nature of stream ecosystems and urban drainage networks can transfer impacts of urbanization across wide areas, complicating the notion of like‐for‐like exchange and the prospect of effectively mitigating biodiversity loss. Instead, we identify in‐catchment options for stormwater control, which can avoid or minimize the impacts of development on downstream ecosystems, while presenting additional public and private benefits. We describe the underlying principles of these alternatives, some of the challenges associated with their uptake, and policy initiatives being trialed to facilitate adoption. In conclusion, we argue that stronger policies to avoid and minimize the impacts of urbanization provide better prospects for protecting downstream ecosystems, and can additionally, stimulate economic opportunities and improve urban liveability.  相似文献   

11.
Evaluating the outcomes and tracking the trajectory of biodiversity offsets is essential to demonstrating their effectiveness as a mechanism to conciliate development and conservation. We reviewed the literature to determine the principles that should underpin biodiversity offset planning and the criteria for offset evaluation at the project level. According to the literature, the core principles of equivalence, additionality, and permanence are used as criteria to evaluate conservation outcomes of offsets. We applied the criteria to evaluate offsets of a large iron ore mining project in the Atlantic Forest in Brazil. We examined equivalence in terms of the amount of area per biodiversity value affected and fauna and flora similarity, additionality in terms of landscape connectivity, and permanence in terms of guarantees to ensure protection and restoration offsets lasting outcomes. We found an offset ratio (amount of affected area:offset area) of 1:1.8 for forests and 1:2 for grasslands. Ecological equivalence (i.e., similarity between affected and offset areas) was found for forested areas, but not for ferruginous rupestrian grasslands or for fauna. Landscape metrics showed that connectivity improved relative to the preproject situation as a result of locating restoration offsets in the largest and best-connected forest patch. Permanence of offsets was addressed by establishing covenants and management measures, but financial guarantees to cover maintenance costs after mine closure were lacking. Offsets should be equivalent in type and size, provide conservation outcomes that would not be obtained without them (additionality), and be lasting (permanence). To monitor and evaluate offsets, it is necessary to determine how well these 3 principles are applied in the planning, implementation, and maintenance of offsets. Achieving measurable conservation outcomes from offsets is a long-term endeavor that requires sustained management support, and is information intensive. Thus, offsets require ongoing monitoring and evaluation as well as adaptive management.  相似文献   

12.
Understanding the social acceptability of biodiversity offsets is important to the design of offset policy. We used a discrete choice experiment to quantify preferences of Australians for a migratory shorebird offset in the context of an oil and gas development project. We surveyed a nationally representative sample of 1371 respondents on their preferences for current and prospective offset‐policy characteristics via an online questionnaire to inform policy design of the social dimensions related to offset acceptability. The majority of respondents accepted offsetting as a means to allow economic development; the option to reject development (and an offset) was selected in 13% of possible offset scenarios. Substituting protection of a species affected by the development with protection of a more endangered species was a desirable policy characteristic, as was having the offset implemented by a third party or the government rather than the company responsible for the development. Direct offset activities (e.g., improving degraded habitat) were preferred over indirect activities (e.g., a research program), and respondents were strongly against locating the offset at a site other than where the impact occurred. Positive and negative characteristics of offsets could be traded off by changing the number of birds protected by the offset. Our results show that Australians are likely to support increased flexibility in biodiversity‐offset policies, particularly when undesirable policy characteristics are compensated for.  相似文献   

13.
Biodiversity offset schemes are globally popular policy tools for balancing the competing demands of conservation and development. Trading currencies for losses and gains in biodiversity value at development and credit sites are usually based on several vegetation attributes combined to yield a simple score (multimetric), but the score is rarely validated prior to implementation. Inaccurate biodiversity trading currencies are likely to accelerate global biodiversity loss through unrepresentative trades of losses and gains. We tested a model vegetation multimetric (i.e., vegetation structural and compositional attributes) typical of offset trading currencies to determine whether it represented measurable components of compositional and functional biodiversity. Study sites were located in remnant patches of a critically endangered ecological community in western Sydney, Australia, an area representative of global conflicts between conservation and expanding urban development. We sampled ant fauna composition with pitfall traps and enumerated removal by ants of native plant seeds from artificial seed containers (seed depots). Ants are an excellent model taxon because they are strongly associated with habitat complexity, respond rapidly to environmental change, and are functionally important at many trophic levels. The vegetation multimetric did not predict differences in ant community composition or seed removal, despite underlying assumptions that biodiversity trading currencies used in offset schemes represent all components of a site's biodiversity value. This suggests that vegetation multimetrics are inadequate surrogates for total biodiversity value. These findings highlight the urgent need to refine existing offsetting multimetrics to ensure they meet underlying assumptions of surrogacy. Despite the best intentions, offset schemes will never achieve their goal of no net loss of biodiversity values if trades are based on metrics unrepresentative of total biodiversity.  相似文献   

14.
15.
Land-use change via human development is a major driver of biodiversity loss. To reduce these impacts, billions of dollars are spent on biodiversity offsets. However, studies evaluating offset project effectiveness that examine components such as the overall compliance and function of projects remain rare. We reviewed 577 offsetting projects in freshwater ecosystems that included the metrics project size, type of aquatic system (e.g., wetland and creek), offsetting measure (e.g., enhancement, restoration, and creation), and an assessment of the projects’ compliance and functional success. Project information was obtained from scientific and government databases and gray literature. Despite considerable investment in offsetting projects, crucial problems persisted. Although compliance and function were related to each other, a high level of compliance did not guarantee a high degree of function. However, large projects relative to area had better function than small projects. Function improved when projects targeted productivity or specific ecosystem features and when multiple complementary management targets were in place. Restorative measures were more likely to achieve targets than creating entirely new ecosystems. Altogether the relationships we found highlight specific ecological processes that may help improve offsetting outcomes.  相似文献   

16.
The unlimited economic growth that fuels capitalism's metabolism has profoundly transformed a large portion of Earth. The resulting environmental destruction has led to an unprecedented rate of biodiversity loss. Following large-scale losses of habitats and species, it was recognized that biodiversity is crucial to maintaining functional ecosystems. We sought to continue the debate on the contradictions between economic growth and biodiversity in the conservation science literature and thus invite scholars to engage in reversing the biodiversity crisis through acknowledging the impacts of economic growth. In the 1970s, a global agenda was set to develop different milestones related to sustainable development, including green–blue economic growth, which despite not specifically addressing biodiversity reinforced the idea that economic development based on profit is compatible with the planet's ecology. Only after biodiversity loss captured the attention of environmental sciences researchers in the early 2000s was a global biodiversity agenda implemented. The agenda highlights biodiversity conservation as a major international challenge and recognizes that the main drivers of biodiversity loss derive from economic activities. The post-2000 biodiversity agendas, including the 2030 Agenda for Sustainable Development and the post-2020 Convention on Biological Diversity Global Strategy Framework, do not consider the negative impacts of growth-oriented strategies on biodiversity. As a result, global biodiversity conservation priorities are governed by the economic value of biodiversity and its assumed contribution to people's welfare. A large body of empirical evidence shows that unlimited economic growth is the main driver of biodiversity loss in the Anthropocene; thus, we strongly argue for sustainable degrowth and a fundamental shift in societal values. An equitable downscaling of the physical economy can improve ecological conditions, thus reducing biodiversity loss and consequently enhancing human well-being.  相似文献   

17.
Offsets are a novel conservation tool, yet using them to achieve no net loss of biodiversity is challenging. This is especially true when using conservation offsets (i.e., protected areas) because achieving no net loss requires avoiding equivalent loss. Our objective was to determine if offsetting the impacts of mining achieves no net loss of native vegetation in Brazil's largest iron mining region. We used a land‐use change model to simulate deforestation by mining to 2020; developed a model to allocate conservation offsets to the landscape under 3 scenarios (baseline, no new offsets; current practice, like‐for‐like [by vegetation type] conservation offsetting near the impact site; and threat scenario, like‐for‐like conservation offsetting of highly threatened vegetation); and simulated nonmining deforestation to 2020 for each scenario to quantify avoided deforestation achieved with offsets. Mines cleared 3570 ha of native vegetation by 2020. Under a 1:4 offset ratio, mining companies would be required to conserve >14,200 ha of native vegetation, doubling the current extent of protected areas in the region. Allocating offsets under current practice avoided deforestation equivalent to 3% of that caused by mining, whereas allocating under the threat scenario avoided 9%. Current practice failed to achieve no net loss because offsets did not conserve threatened vegetation. Explicit allocation of offsets to threatened vegetation also failed because the most threatened vegetation was widely dispersed across the landscape, making conservation logistically difficult. To achieve no net loss with conservation offsets requires information on regional deforestation trajectories and the distribution of threatened vegetation. However, in some regions achieving no net loss through conservation may be impossible. In these cases, other offsetting activities, such as revegetation, will be required. Compensación de los Impactos de la Minería para Obtener Ninguna Pérdida Neta de la Vegetación Nativa  相似文献   

18.
Least‐cost implementation of the mitigation hierarchy of impacts on biodiversity minimizes the cost of a given level of biodiversity conservation, at project or ecosystem levels, and requires minimizing costs across and within hierarchy steps. Incentive‐based policy instruments that price biodiversity to alter producer and consumer behavior and decision making are generally the most effective way to achieve least‐cost implementation across and within the different hierarchy steps and across all producers and conservation channels. Nonetheless, there are circumstances that favor direct regulation or intrinsic motivation. Conservatory offsets, introduced within the conservatory first three steps of the mitigation hierarchy, rather than the fourth step to compensate the residual, provide an additional incentive‐based policy instrument. The least‐cost mitigation hierarchy framework, induced through incentive‐based policy instruments, including conservatory offsets, mitigates fisheries bycatch consistent with given targets, the Law of the Sea, and the Convention on Biological Diversity.  相似文献   

19.
The increasing alienation of people from nature is profoundly concerning because people's interactions with nature affect well-being, affinity for nature, and support of biodiversity conservation. Efforts to restore or enhance people's interactions with nature are, therefore, important to ensure sustainable human and wildlife communities, but little is known about how this can be achieved. A key factor that shapes the way people interact with nature is their affinity for nature (often measured as nature relatedness [NR]). We explored how using cues to experience nature as a means to induce NR situationally can influence the quality of people's nature interactions on visits to green spaces and their positive affect after the visit. Cues to experience are cues that guide individuals on how to interact with nature. We surveyed 1023 visitors to a nature reserve to examine the relationships between trait (i.e., stable and long-lasting) and state (i.e., temporary, brief) NR, the quality of nature interactions, and positive affect. We also conducted a controlled experiment in which 303 participants spent 30 min outdoors on campus and reported the quality of their nature interactions and positive affect. Participants were randomly assigned to 1 of 9 cues-to-experience experimental groups (e.g., smell flowers, observe wildlife, turn off your phone) that differed in the psychological distance from nature that they prompted. Participants who received cues of close psychological distance from nature (e.g., smell and touch natural elements) interacted 3 to 4 times more with nature and reported 0.2 more positive affect than other participants. Our results demonstrate that providing cues to experience nature, which bring people closer to nature and potentially induce state NR, can enhance the quality of people's nature interactions and their positive affect. These results highlight the role of NR in high-quality nature interactions and suggest the use of cues to experience as a promising avenue for inducing state NR and promoting meaningful interactions with biodiversity, thus, reconciling conservation and well-being objectives.  相似文献   

20.
Smallholder agriculture is the main driver of deforestation in the western Amazon, where terrestrial biodiversity reaches its global maximum. Understanding the biodiversity value of the resulting mosaics of cultivated and secondary forest is therefore crucial for conservation planning. However, Amazonian communities are organized across multiple forest types that support distinct species assemblages, and little is known about smallholder impacts across the range of forest types that are essential for sustaining biodiversity. We addressed this issue with a large-scale field inventory of birds (point counts) and trees (transects) in primary forest and smallholder agriculture in northern Peru across 3 forest types that are key for Amazonian biodiversity. For birds smallholder agriculture supported species richness comparable to primary forest within each forest type, but biotic homogenization across forest types resulted in substantial losses of biodiversity overall. These overall losses are invisible to studies that focus solely on upland (terra firma) forest. For trees biodiversity losses in upland forests dominated the signal across all habitats combined and homogenization across habitats did not exacerbate biodiversity loss. Proximity to forest strongly predicted the persistence of forest-associated bird and tree species in the smallholder mosaic, and because intact forest is ubiquitous in our study area, our results probably represent a best-case scenario for biodiversity in Amazonian agriculture. Land-use planning inside and outside protected areas should recognize that tropical smallholder agriculture has pervasive biodiversity impacts that are not apparent in typical studies that cover a single forest type. The full range of forest types must be surveyed to accurately assess biodiversity losses, and primary forests must be protected to prevent landscape-scale biodiversity loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号