首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 105 毫秒
1.
灰霾天气能见度较低,除影响人们日常生产活动和交通运输外,空气中携带的有毒有害细粒子严重危害人们的生命健康。近几年,北京市加大治霾力度,虽取得一定成绩,但灰霾天气仍然频发。为进一步更好地治理北京灰霾,为制定政策提供依据,须了解北京地区灰霾污染特征,因此,对北京市2013年6月到2014年5月的气象观测数据和PM2.5质量浓度进行了统计分析。文章统计了不同强度灰霾的分布,分析了PM2.5质量浓度与能见度的相关关系,在此基础上,研究了PM2.5质量浓度影响能见度变化程度的分界点。研究结果表明:研究期间,北京地区出现灰霾时总计4 572 h,发生频率为56.2%,灰霾日总计233 d,频率为64.4%,呈冬季春季夏季秋季;湿霾最易发生在夏季,干霾最易发生在冬季,分别占当季灰霾时的17.6%和59.0%;全年不同强度霾发生小时数呈现轻微霾重度霾轻度霾中度霾,其中,轻微霾时数1 625 h,重度霾1 163 h,轻度霾1 101 h,中度霾683 h;研究期间PM2.5质量浓度呈夏季低冬季高的显著变化趋势,PM2.5日均质量浓度达一级空气质量标准59 d,达二级标准159 d,达标率分别为17.7%和47.74%;PM2.5小时质量浓度与能见度呈负相关性较高的幂函数关系(置信度取99%,P0.01),无高湿条件影响下,空气中细颗粒物对能见度的影响更为直接;北京地区在改善能见度的过程中,通过降低1μg·m-3的PM2.5,使能见度改善大于或远大于1 km的概率仅为18.9%,而在50.4%的时段内仅能使能见度的改善小于或远小于0.1 km。  相似文献   

2.
冬季广州大气能见度影响因子分析   总被引:5,自引:0,他引:5  
于2005年12月至2006年2月收集了华南所大气观测站大气能见度等7个气象因子及PM2.5浓度观测数据,分析了冬季广州大气能见度变化趋势及灰霾天气主要影响因子,并对能见度与主要影响因子进行相关性分析。结果发现:人为因素和气象条件对大气能见度的影响比较明显,当大气层结受到北方冷空气扰动后,能见度得到明显改善;1月份灰霾天气出现频率高达60.9%,灰霾天气下大气能见度与PM2.5浓度密切相关;大气能见度与PM2.5浓度、温度、相对湿度呈负相关性,与大气压呈正相关性;灰霾天气下大气能见度还与细颗粒物的粒径分布密切相关。  相似文献   

3.
为了研究合肥市能见度影响规律,为改善城市大气能见度提供科学依据,利用合肥市2013年1月—2015年12月的气象观测数据和颗粒物质量浓度数据,采用统计分析方法研究了合肥市大气能见度与相对湿度和PM_(2.5)质量浓度的定量关系,以及不同等级能见度下相对湿度和PM_(2.5)浓度的统计特征。结果表明,PM_(2.5)质量浓度与相对湿度共同影响合肥市大气能见度变化,较低相对湿度下(RH60%),能见度降低主要受PM_(2.5)质量浓度升高的影响;较高湿度条件下(RH≥60%),能见度降低主要是由于相对湿度增加造成的大气粒子吸湿增长导致消光性能增大,且这种作用在污染程度较轻时更加突出。RH≥60%时,相对湿度每增加1%,平均能见度降低0.172 km;当RH≥90%时,平均能见度基本在5 km以下。PM_(2.5)质量浓度与能见度呈幂函数关系,40%≤RH60%时,PM_(2.5)的影响作用最显著;PM_(2.5)质量浓度对能见度的影响阈值随相对湿度增加而减小,当PM_(2.5)质量浓度低于46μg?m~(-3)时,能见度随着PM_(2.5)质量浓度降低而迅速增大。随着相对湿度增加,或者PM_(2.5)质量浓度增加,低能见度出现频率呈上升趋势;高湿度、高细颗粒物浓度均可导致低能见度的出现。当前一日能见度低于7km,当日相对湿度大于75%,且PM_(2.5)质量浓度大于65μg?m~(-3),当日能见度超过75%的比例在5 km以下。当前一日PM_(2.5)质量浓度达到中度及以上污染,当日能见度随着相对湿度增加逐渐减小,RH≥80%时,能见度低于5 km的比例达到70%。  相似文献   

4.
天津城区大气气溶胶质量浓度分布特征与影响因素   总被引:9,自引:0,他引:9  
姚青  蔡子颖  张长春  穆怀斌 《生态环境》2010,19(9):2225-2231
根据中国气象局天津大气边界层观测站2009年的气溶胶观测资料和同期气象资料,对天津城区PM10和PM2.5质量浓度变化特征,及其与气象条件的相互关系进行研究,结果表明:PM10和PM2.5年均质量浓度为153.24和68.78μg·m-3,其日均值超标率近半,表明南部城区尤其是交通干道附近气溶胶污染较为严重;PM10和PM2.5质量浓度逐月变化呈现明显的冬季高、夏季低的特征,其日变化特征呈明显的双峰型,早晚污染高峰主要受交通源影响;气象条件对气溶胶质量浓度作用显著,气溶胶质量浓度与气温正相关,相对湿度的增高易导致细粒子吸湿性增长,但高湿状态下易引起降水有利于气溶胶的湿清除,西南气流和偏北风是PM10和PM2.5高浓度的主要影响风向,静小风易造成气溶胶堆积,高风速可引起PM10排放增多,但对PM2.5影响不大。  相似文献   

5.
沈阳地区霾的环境特征研究   总被引:6,自引:0,他引:6  
利用沈阳市1961—2009年的气象资料,分析了霾天气出现的年季特征及其天气形势特征。利用边界层气象资料与污染物质量浓度资料对特定的霾过程从边界层到污染物质量浓度条件进行了分析。结果表明:沈阳地区霾的出现呈现逐年上升的趋势,近5 a平均每年为120 d左右,目前霾天数已经占到了全年的30%~40%。冬秋季节出现霾天气较多,秋冬两季霾日数占全年霾日总数的75%。凌晨到上午是霾出现的高发期,02—08时霾出现频率占总霾数的44.5%。霾的出现主要发生在冬秋季节冷空气势力不强,大气扩散能力较弱,边界层出现逆温时刻。接地逆温层厚度常常稳定在200~300 m高度左右,PM10质量浓度与能见度(霾)呈负相关,相关系数-0.402 7。风速与能见度(霾)呈正相关,相关系数为0.886 4。  相似文献   

6.
为了探讨景观生态林对大气颗粒物的调控作用,以北京大兴区景观生态林为例(主要树种为旱柳Salix matsudana),研究不同季节、不同天气条件下景观生态林内大气颗粒物质量浓度差异以及林内和林外质量浓度对比。于2013年7月至2014年5月,分四季选择不同天气类型,采用水平同步监测法对林内和林外两个监测点3种粒径大气颗粒物(TSP、PM10和PM2.5)质量浓度和气象因子进行每日10 h的连续监测(8:00─18:00)。结果表明,(1)晴朗天气景观生态林内ρ(TSP)、ρ(PM10)和ρ(PM2.5)均处于较低水平,分别为(61.53±21.73)~(174.32±36.01)μg·m-3、(28.91±10.34)~(94.87±20.45)μg·m-3和(6.29±3.86)~(23.91±12.29)μg·m-3;多云、扬尘、雾霾和雾霭天气颗粒物质量浓度较高,污染明显加重,雾霾天气下ρ(PM2.5)的增加效果更为明显,而扬尘天气下ρ(TSP)显著增加。(2)雾滴对于PM2.5与PM10具有一定的湿清除作用,也可以与霾粒子共同作用形成相对稳定的雾霭天气,其颗粒物污染程度高于其他天气状况,此时以粒径为2.5~10μm的颗粒物污染为主。(3)夏、秋和春季晴朗微风天气(风速≤3 m·s-1)和扬尘天气林内ρ(TSP)和ρ(PM10)显著低于林外,多云、轻微至轻度雾霾天气,林内ρ(TSP)、ρ(PM10)和ρ(PM2.5)均显著低于林外,晴朗大风(风速5 m·s-1)和雾霭天气林内ρ(TSP)和ρ(PM10)不显著高于林外,雾霭天气林内ρ(PM2.5)显著高于林外;冬季不同天气下ρ(TSP)、ρ(PM10)和ρ(PM2.5)林内和林外对比没有明显规律。(4)空气相对湿度、风速和风向是观测时段内影响颗粒物质量浓度的主要因子。ρ(PM2.5)与相对湿度呈线性正相关,而与风速呈非线性负相关,偏南风对颗粒物主要起输送和积累作用,偏北风对颗粒物起到稀释和扩散作用。相对于TSP和PM10,PM2.5更易受近地面气象条件的影响而堆积或扩散。  相似文献   

7.
成都市灰霾与正常天气下大气PM2.5的化学元素特征   总被引:2,自引:0,他引:2  
为研究成都市灰霾期间PM2.5中元素的特征,于2009年4月和5月采集环境大气中PM2.5样品,用X-射线荧光光谱法测定元素含量.研究结果表明,成都市非灰霾与灰霾期间PM2.5的质量浓度分别为124.9 μg·m-3 和152.8 μg·m-3;Na、Mg、Al、Si和Ca的质量浓度在非灰霾期间略高于灰霾期间,其它元素则基本上是灰霾大于非灰霾期间.富集因子分析表明,Na、Mg、Al、Si和Ca在不同天气下主要是地壳来源,而Cu、Zn、Mo、Pb、Br、S、Cd、As和Cl在灰霾期间更容易富集,与人类活动密切相关.因子分析显示,灰霾期间重金属元素主要来源于机动车排放、地面扬尘、冶金化工.  相似文献   

8.
为研究京津冀地区冬、夏两季大气颗粒物质量浓度与水溶性离子组成特征,于2013年2月、7月对北京、天津、石家庄及4个国家大气背景点进行了PM2.5及PM10的采样,分析了质量浓度及9种水溶性离子,结果表明:(1)京津冀地区颗粒物污染冬季重于夏季,冬季污染水平石家庄天津北京,夏季污染天津、北京石家庄,区域内PM2.5与PM10之间有很好的相关性,相关系数r冬季为0.8796,夏季为0.8424,说明整个区域颗粒物污染有较为相近的来源,大气颗粒物污染表现出区域性特征;(2)京津冀地区PM2.5及PM10中的9种水溶性离子浓度规律为NO-3、SO2-4、NH+4Cl-、Ca2+K+、Na+F-、Mg2+.该地区水溶性离子污染冬季最重为石家庄,夏季则为北京;(3)在京津冀地区二次离子NO-3、SO2-4、NH+4是主要的污染离子,3种离子质量浓度总和在PM2.5、PM10中冬季分别占48.9%、27.8%,夏季分别占58.7%、48.5%.二次离子主要集中在PM2.5中,其对细离子浓度的升高起到直接作用,且二次离子的构成关系也在发生变化.整个区域向硝酸型污染转变,二次离子的季节分布也呈现区域特征,冬季NO-3离子质量浓度比重最大.夏季则为SO2-4;(4)粒径越小富集水溶性离子的能力越强,在PM1中分布了50%以上的水溶性离子,73.9%—94.8%的水溶性离子分布在PM2.5中.  相似文献   

9.
天津市近地层PM2.5的垂直分布特征   总被引:10,自引:2,他引:8  
大气细颗粒物PM2.5是导致城市能见度降低的重要原因之一,研究低层大气细颗粒物的垂直分布特征,利于了解边界层内污染物的大气物理化学反应机制,能为大气污染综合治理决策提供新的科学数据.2006年8月16日-2007年8月31日期间以天津市255 m气象塔为观测平台,分别在40 m、120 m和220 m 3个不同高度进行大气污染物PM2.5质量浓度和气象要素的同步观测.对观测资料的分析表明:PM2.5质量浓度季节变化规律非常明显,冬季最高,春季最低.PM2.5日变化特征非常明显,呈明显的双峰变化规律:冬季峰值最大、春季最小.边界层内PM2.5质量浓度在各个高度存在明显差异,受逆温层影响,四个季节的早晨第一个峰值出现时间随高度增加均存在滞后现象,PM2.5从地面扩散到220 m大约需要2 h.各个观测高度PM2.5质量浓度随风向变化不大,得到天津市细粒子主要是由本地源生成的结论.  相似文献   

10.
于2009年2月-8月利用高效液相色谱法对徐州市区冬、春、夏3个季节大气TSP和PM10中16种多环芳烃进行分析,结果表明:大气TSP和PM10中∑PAHs不同季节分布规律均为:冬季〉春季〉夏季;冬季,荧蒽污染浓度最高;春季和夏季苯并(g,h,i)芘浓度最高;不同环数PAHs春季和年均值呈规律均为:6环〉4环〉5环〉3环〉2环;夏季为:6环〉5环〉4环〉3环〉2环;冬季为:4环〉5环〉6环〉3环〉2环;大气TSP中整体苯并(a)芘等效致癌毒性(BEQ)不同季节分布规律为:冬季(4.517ng/m3)〉夏季(1.602ng/m3)〉春季(1.413ng/m3);PM10中整体BEQ不同季节分布规律为:冬季(3.706ng/m3)〉春季(1.504ng/m3)〉夏季(1.331ng/m3);采暖期大气颗粒物中PAHs污染对人体健康危害风险相对较高。  相似文献   

11.
天津城区秋冬季黑碳气溶胶观测与分析   总被引:2,自引:0,他引:2  
姚青  蔡子颖  韩素芹  黄鹤 《环境化学》2012,31(3):324-329
利用天津大气边界层观测站2010年9月—2011年1月黑碳气溶胶、PM2.5质量浓度、大气能见度及常规气象观测数据,研究天津城区秋冬季黑碳气溶胶污染特征.结果表明,天津秋冬季黑碳气溶胶质量浓度均值7.24μg.m-3和6.46μg.m-3,分别占PM2.5质量的9.42%和7.98%,其吸收作用分别贡献大气消光的17.2%和17.6%;采用最大频数浓度法计算黑碳浓度本底值为2.50μg.m-3;黑碳浓度的日变化特征与天气过程有关,雾和霾天气下黑碳浓度较高,降水利于清除黑碳污染,秋季高浓度黑碳除局地源污染外,可能还与河北、山西、天津等地燃烧秸秆有关.  相似文献   

12.
北京市2012-2013年秋冬季大气颗粒物污染特征分析   总被引:5,自引:0,他引:5  
大气颗粒物一直是影响我国城市空气质量的重要污染物,2013年1月北京市的严重灰霾污染更是带来了重大的健康危害和经济损失。为了摸清北京市颗粒物污染的特征,本文利用北京市实时发布的颗粒物污染监测数据,选取污染最为严重的2012-2013年秋冬季时段,对颗粒物的达标情况、变化趋势及其与气象因子相关性等方面进行研究。研究结果表明:1)2012年,北京市年均ρ(PM10)为109.0μg.m-3,超过了新国标二级标准限值,日均ρ(PM10)的超标天数为84天,全年超标天数比例为23.0%。2)2012年10月至2013年2月,ρ(PM10)达标天数比例为77.9%,ρ(PM2.5)的达标天数比例为51.9%。各月ρ(PM2.5)的达标天数比例均低于ρ(PM10),某些月份二者达标天数比例差异很大。3)ρ(PM2.5)与ρ(PM10)的逐小时连续变化趋势基本相同,变化特征为"快速积累,迅速消散,持续时间不定"。ρ(PM2.5)与ρ(PM10)平均值24 h的变化呈双峰双谷曲线,颗粒物质量浓度夜间高于白天。4)研究期日均ρ(PM10)和ρ(PM2.5)与日均相对湿度呈显著正相关关系,与平均风速和最大风速呈显著负相关关系,ρ(PM2.5)比ρ(PM10)更易受气象条件变化影响。5)ρ(PM10)和ρ(PM2.5)日均值有着非常显著的线性相关关系。本研究得出的ρ(PM2.5)/ρ(PM10)的均值高于之前北京市及我国其他城市研究得出的数值,严重污染现象是由特殊的气象背景条件与污染物高排放共同导致的。  相似文献   

13.
气象条件作为影响生态系统最活跃、最直接的驱动因子,影响着生态系统的质量和人类生存的环境,关系着生态保护和建设的成果,而城市生态系统具有与其他系统不一样的气候特征,目前还未形成一套有关城市的生态气象监测评估方法。基于生态气象学理论,分别从城市气候环境、与气候相关的陆表环境、大气环境、人居环境以及城市高影响天气气候事件等5个方面选择不同的要素和指标开展了城市生态气象监测评估初步研究,并以北京为例,利用2018年国家和区域自动气象站资料、大气成分观测资料、2002—2018年MODIS卫星资料、Landsat及环境一号卫星资料,开展了2018年北京城市生态气象监测评估。监测评估显示,(1)2018年北京城市“热岛”和“干岛”气候特征明显,并在北京二环与五环之间存在一个“冂”形风速低值区。(2)2018年北京陆表生态环境、大气环境、人居环境进一步好转:其中植被覆盖度达61.6%,创2002年以来新高,气象条件贡献率达50%,生态涵养区植被生态质量处于正常偏好的面积比例达93.2%;中心城区陆表温度为2011年以来最低值;重要水源地密云水库、官厅水库水体面积均为2000年以来最大值;气溶胶光学厚度、霾日数、大气静稳指数分别较过去4年平均值下降14%、31%和8%,大气扩散条件偏好,对霾日减少贡献率达21%,外地污染传输对PM2.5贡献达到53%;城市生态冷源较2013年明显增加,城市“热岛”得到缓解。(3)历史罕见的夏季高温闷热、冬季阶段低温、极端强降水以及持续无降水等高影响天气气候事件给城市安全运行和生态环境带来不利影响。综合评估表明2018年北京气象条件总体利于陆表生态环境改善,有利的气候条件提高了生态环境的质量,但城市生态质量仍面临着极端天气气候事件、城市热岛、低风速以及外来大气污染输送等风险。  相似文献   

14.
应用柱状图和箱线图对污染物分布情况进行对比分析,明确了2013上半年北京、沈阳、广州、上海和海口5个城市4项污染物(SO2、NO2、PM10、PM2.5)的日均浓度的分布范围。该组数据涉及的站点总计有49个,其中包含的数据量北京有1863个、沈阳有1670个、上海有1452个、广州有1574个、海口有780个。柱状图显示了这段时间每个城市各个站点4种污染物不同浓度的分布范围,北京的ρ(SO2)和ρ(NO2)分布较为集中,主要的质量浓度区间分别是0~40和40~80μg·m-3,分别占北京SO2和NO2总数据量的51.0%和49.7%,ρ(PM10)和ρ(PM2.5)则分布较为分散;沈阳分布较为集中的是ρ(NO2)和ρ(PM2.5),主要的质量浓度区间分别是0~30和30~60μg·m-3,分别占沈阳NO2和PM2.5总数据量的52.2%和42.8%,ρ(SO2)和ρ(PM10)则分布较为分散;上海和广州分布较为集中的是低浓度下的ρ(SO2),其他三项污染物分布较为分散。箱线图是利用每个城市所有站点得到的最大值、最小值、上四分位数、下四分位数和中位数的平均值绘制得到的,通过不同城市间的比较可见,同期ρ(SO2)的比较结果是ρ(沈阳)〉ρ(北京)〉ρ(广州)〉ρ(上海)〉ρ(海口);ρ(NO2)较大的3个城市是北京、上海和广州;对于ρ(PM10)则只有广州和海口2个城市浓度较低,而对于ρ(PM2.5)高值集中在北京、广州和沈阳3个城市。通过谱图间的比较,并结合各个城市的气象条件及经济发展状况,从中可推测除背景点海口外,北京和沈阳主要的污染物是PM2.5和PM10,广州和上海主要的污染物是NO2和PM2.5;北京主要的污染来源是燃煤烟尘和机动车尾气,广州和上海主要的污染来源是机动车尾气,沈阳主要的污染来源是燃煤烟尘。研究结果可为典型城市的环境监管与大气污染控制提供科学依据。  相似文献   

15.
武汉市城区大气PM2.5的碳组分与源解析   总被引:2,自引:0,他引:2  
大气细颗粒物(PM2.5)和碳组分(OC,EC)是影响大气能见度、气候变化以及人体健康的重要污染物,研究大气颗粒物及其中碳组分的污染特征及各类典型污染源对大气细颗粒物及碳组分的贡献,对于认识区域和城市大气污染状况,控制细颗粒物的污染,具有重要意义。2011年7月至2012年2月,利用大流量PM2.5采样器采集武汉市大气细颗粒物样品并对其碳组分进行测定。武汉市城区大气中PM215、OC和EC的质量浓度平均值分别为(127±48.7)、(19.4±10.5)和(2.9±1.48)μg·m-3。其PM2.5的浓度处于我国主要城市的中等偏高水平,而OC、EC的浓度则属中等偏下水平,但均高于国外城市。武汉市大气PM2,质量浓度的季节性变化呈现出秋季〉冬季〉夏季的趋势,是气象因素和污染源排放综合影响的结果。OC浓度和EC浓度具有较好的相关性(r2=0.69),表明二者存在来源联系。OC/EC的比值为6.7,指示武汉市大气中OC和EC的来源受汽车尾气排放和生物质燃烧的共同影响。SOA的平均质量浓度值为12.5μg·m-3约占PM2.5平均质量浓度的9.8%,表明SOA对武汉市城区大气PM2.5具有重要贡献。结合PM2.5所含的水溶性离子、微量元素组成,利用正矩阵因子分析(PMF)模型对武汉市城区大气PM2.5来源进行解析,结果表明,其主要来源及贡献率分别为机动车源(27.1%)、二次硫酸盐和硝酸盐(26.8%)、工厂排放(26.4%)和生物质燃烧(19.6%)。  相似文献   

16.
北京市秋季大气颗粒物的污染特征研究   总被引:22,自引:0,他引:22  
大气颗粒物是造成城市空气污染的重要原因之一,并已经成为我国北京等大中城市空气污染中的首要污染。为了分析北京市大气细颗粒物的污染水平及其影响因素,以大气中的PM10和PM2.5为研究对象,于2005年秋季在北京市设立了9个采样点进行采样监测,通过对所采集到的PM10和PM2.5质量浓度的对比来分析大气颗粒物的空间分布和时间变化特征,并建立起PM10和PM2.5质量浓度与风力、温度、湿度等气象条件的对应关系来分析各种气象因素对大气细颗粒物污染水平的影响。结果表明:北京市不同区域的PM10和PM2.5的质量浓度差异较大,同时,值得注意的是通过对同一地点同一采样时间大气颗粒物质量浓度的对比发现PM2.5质量浓度的空间分布并不完全同于PM10,这主要是与采样点所处的环境中不同污染源影响的强弱有关;气象条件稳定时,PM10和PM2.5质量浓度的日变化表现出一定的规律性,这种时间变化的特征主要取决于所在环境中排放的污染物变化情况;气象条件是影响PM10和PM2.5污染程度的重要因素,在一定的范围内,颗粒物质量浓度随着温度的上升而下降,随着相对湿度的升高而增大,随着风力的增强而减小。  相似文献   

17.
北京冬季一次重污染过程PM2.5中水溶性无机盐的变化特征   总被引:14,自引:0,他引:14  
为了解北京冬季重污染过程大气颗粒物化学特性,利用高时间分辨率实时在线细粒子快速捕集及化学成分分析系统(RCFP-IC)对2011年2月18—24日发生的一次重污染过程PM2.5中水溶性无机离子浓度变化进行了在线观测.结合颗粒物质量浓度、气态污染物浓度及气象资料,对此次污染过程中污染物的化学成分变化特征进行了详细分析.结果表明,此次北京冬季重污染4 d中颗粒物污染严重;总水溶性无机离子平均质量浓度151.31μg·m-3,占PM2.5相对比例54%,其中NO3-、SO24-和NH4+质量浓度占总水溶性无机离子质量浓度91%,二次离子污染非常严重;硝酸根氧化率(NOR)和硫酸根氧化率(SOR)结果显示NO3-与SO24-主要通过非均相反应生成,水溶性无机盐存在形态以NH4HSO4和(NH4)2SO4为主;重污染期K+和Cl-质量浓度显著升高,Mg2+和Ca2+质量浓度下降;阳、阴离子电荷比(C/A)重污染平均值为0.8,细粒子偏酸性.  相似文献   

18.
降雨过程后北京城区PM2.5日时空变化研究   总被引:1,自引:0,他引:1  
随着人类环境意识的增强,人们对城市雾霾天气的忧虑与日俱增,PM2.5的时空变化和对人体健康的影响已成为关注的焦点。以往的研究多集中在不同季节或年际的变化,本文通过统计环保局发布的位于北京城区13个逐时浓度监测点降雨前后PM2.5质量浓度,并在城区布设14个采样点昼夜连续监测一次降雨后72 h内PM2.5质量浓度变化情况,研究北京市城区降雨后PM2.5日变化规律及空间分布特征,由此分析降雨对PM2.5日变化规律的影响。同时对比PM2.5与同步气象数据(温度、相对湿度)和交通数据(车辆量、车速)最值频率分布情况,进而对PM2.5日变化特征进行成因分析。随后利用GIS空间分析方法,分析了PM2.5的日空间分布特征。结果表明,降雨对颗粒物的去除作用明显,一次降雨可使PM2.5质量浓度平均下降56.3%。雨后72 h内PM2.5质量浓度均小于60μg·m-3,降雨后1 h内PM2.5质量浓度处于稳定状态,在随后的12 h内PM2.5浓度值都处于下降状态。降雨过程只降低PM2.5的质量浓度值,并不影响其日变化规律。PM2.5的日变化规律以19时为界,表现出明显的昼夜差异。白天的变化规律呈现凹型,夜间的变化规律呈现拱型。PM2.5质量浓度峰值多出现在23时或0时,谷值多出现在下午15时,该特征受气象因素影响较大,受交通源的影响作用不明显。早高峰期间,PM2.5质量浓度变化主要受交通源的影响;晚高峰期间,交通源和气象因素共同影响PM2.5质量浓度。研究区PM2.5日空间分布特征同样存在明显的昼夜差异。白天PM2.5空间分布特征为南部高北部低;PM2.5在夜间的空间分布特征则多表现为四周高、中心低,三环外围区域多为高值区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号