首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
植物群落是森林美学景观形成的物质基础.彩叶林是川西亚高山地区重要的森林景观美学资源,分析彩叶林群落的分类、排序和物种多样性,可以为了解彩叶林群落景观形成和维持机制提供基础数据.基于34个彩叶林群落调查数据,选用双向指示种法分析(two-way indicator species analysis,TWINSPAN)和Ward聚类对彩叶林群落进行数量分类,采用CCA(canonical correspondence analysis)排序分析彩叶林群落类型分布与地形因子的关系,采用KruskalWallis检验和拟合分析彩叶林群落物种多样性特征及其与地形因子的关系.结果显示:(1)研究区调查得到木本植物62种,其中彩叶树种50种,隶属19科31属;(2)结合TWINSPAN和Ward数量分类将34个样方划分为13个彩叶林群落类型;(3)CCA排序结果表明海拔和坡向是影响该地区彩叶林群落分布的重要环境因子;(4)不同彩叶林群落间物种多样性差异显著,分布于中海拔、阴坡区域的彩叶林群落物种多样性高.本研究表明川西亚高山彩叶林群落的分布和物种多样性受海拔和坡向的调控,结果可为川西亚高山彩叶林的生态保护和合理利用提供基础数据.(图6表4参47)  相似文献   

2.
闫东锋  杨喜田 《生态环境》2010,19(12):2826-2831
研究选取14个分别代表植被群落、地形因子、土壤因子的指标,利用宝天曼自然保护区32块样地资料,研究了物种分布与环境之间关系。采用DCCA法可将该地区木本植物群落划分为3个类型;物种与9个环境因子之间存在显著的相关关系,前4轴可解释物种总变异的94.1%;海拔、坡度、土壤含水量、坡向是影响该地区物种分布的主要因子,其中海拔是指示物种分布变化的最敏感因子。不同指标集团的典型相关分析结果表明:地形与植被因子之间、土壤因子与植被因子之间第1对典范相关系数分别为0.712和0.783,存在着显著的相关关系,影响植被特征的最重要地形因子是海拔和坡度,土壤因子为土壤厚度和土壤含水量,而对地形和土壤反应最敏感的植被指标分别为林分密度和平均树高,群落分布状态是由地形和土壤因子共同作用所控制的。  相似文献   

3.
研究太岳山群落分布及其与环境因子之间的关系,旨在为深入研究太岳山群落资源、生境和群落学特征奠定基础,亦为太岳山资源开发利用提供理论依据和实践参考。以山西太岳山森林群落为研究对象,从海拔1 600~2 200 m,海拔每上升100 m设置1个样地,每个样地由8个10 m×10 m的样方组成,并分别在每一个样方内取2个5 m×5 m的灌木样方和4个1m×1 m草本样方,共7个样地,50个样方。根据7个样地50个样方的调查数据,采用多元回归树(MRT)对群落进行分类;采用典范对应分析(canonical correspondence analysis,CCA)进行排序分析,旨在研究太岳山森林群落的植被分布格局。结果如下,(1)MRT分类将植被划分为6个群落类型。(2)太岳山森林群落样方与环境因子的CCA排序结果显示,12个环境因子对物种分布的解释量为40.78%,Monte Carlo置换检验结果显示,制约森林群落类型分布格局的主要环境因子是海拔、坡度、坡向和土壤p H值。(3)利用偏典范对应分析(PCCA)定量分离地形、土壤及其交互作用对植被格局总体变异的影响,分析表明,土壤因子和地形因子解释了物种格局变化的40.78%,其中地形因子占13.61%,土壤因子占19.53%,地形因子与土壤因子交互作用解释的部分为7.64%。地形因子和p H值对太岳山森林群落的分布影响最大,是决定植物群落空间分布的主导因子。  相似文献   

4.
鄱阳湖湿地不同植物群落土壤养分及微生物多样性研究   总被引:1,自引:0,他引:1  
土壤养分和微生物对环境变化十分敏感,能快速对土壤生态变化作出反应。分析土壤养分和微生物对不同碳源利用能力的差异,明确鄱阳湖湿地土壤微生物群落变化特征,对中国湿地健康状况评价及可持续利用具有重要意义。基于2014-2017年对鄱阳湖湿地不同植物群落(沉水植物区、湿生植物区、挺水植物区、湖滨高滩地)土壤生境的调查数据,利用Biolog微平板法和磷脂脂肪酸甲酯法(FAMEs)系统研究土壤微生物多样性群落特征。鄱阳湖湿地不同植物群落土壤养分和有效养分基本表现为沉水植物区湿生植物区挺水植物区湖滨高滩地。鄱阳湖湿地不同植物群落土壤微生物群落代谢平均颜色变化率(AWCD)随培养时间延长而逐渐增加,土壤微生物群落代谢活性表现为沉水植物区湿生植物区挺水植物区湖滨高滩地。土壤微生物对不同种类碳源的利用强度存在较大差异,碳水化合物和羧酸类碳源是鄱阳湖湿地不同植物群落土壤微生物的主要碳源,其次为氨基酸类、酚酸类和聚合物类,胺类碳源的利用率最小。土壤微生物群落的物种丰富度指数(H)、均匀度指数(E)、优势度指数(D_s)和碳源利用丰富度指数(S)总体以沉水植物区为最高,湖滨高滩地最低,优势度指数在鄱阳湖湿地不同植物群落差异不显著(P0.05)。主成分分析结果表明,从31个因素中提取的与碳源利用相关的主成分1、主成分2分别能解释变量方差的63.152%和15.174%,在主成分分离中起主要贡献作用的是胺类和氨基酸类碳源;土壤微生物多样性指数与土壤养分之间呈正相关,与pH呈负相关,而土壤全碳和全氮含量对土壤微生物多样性贡献较大,是土壤微生物群落功能多样性差异的主要影响因子。物种丰富度指数(H)、均匀度指数(E)和碳源利用丰富度指数(S)与土壤养分各指标的相关系数绝对值均高于优势度指数(D_s),说明土壤养分对土壤微生物群落优势度指数的影响作用较小。  相似文献   

5.
为了解川东北传统乡村杂草多样性及特征,在研究区生境调查的基础上,记录了18种生境中的杂草种类,针对具有代表性的15种生境中的杂草群落进行定量调查,并采用双向指示种分析(TWINSPAN)进行数量分类,采用典范对应分析(CCA)进行排序。结果表明:(1)区内有农田、水塘、墓地和片林等多种乡村生境类型。(2)区内有杂草61科181属238种,菊科(Compositae)和禾本科(Gramineae)为优势科。(3)采用TWINSPAN数量分类方法将杂草群落划分为6种类型。(4)CCA排序分析结果表明影响杂草群落分布的主要环境因子是光照强度和土壤含水量,说明杂草种类、生境类型与群落类型的分布格局存在一定的相似性,这与TWINSPAN分类结果较为一致。研究认为在乡村原住民传统生产生活过程中形成的多样化生境类型维持了较高的杂草多样性,进而说明乡村生境多样化是维持乡村生物多样性的重要机制之一。  相似文献   

6.
松嫩草甸不同退化程度生境土壤磷素动态研究   总被引:4,自引:0,他引:4  
对松嫩草甸不同退化程度生境的几种代表植物群落土壤磷素状况的研究表明,各群落相同土层的全磷含量没有显著的差异,说明土壤磷库具有较强的弹性,土壤退化落后于地上植物群落的退化.各群落土壤全磷的季节变化相似,均经历迅速累积,达到峰值后下降,之后又有一个缓慢积累的过程.羊草、寸草苔和碱茅群落全磷含量随土层的加深而减少,虎尾草群落土壤全磷聚集于10~20cm土层.随退化程度的加重,土壤速效磷含量增加,虎尾草群落土壤速效磷占全磷的比重最高(2.8%),表明退化生境植物群落对速效磷素的利用并不充分.各群落土壤微生物量磷含量均高于速效磷含量,其季节动态均为单峰曲线,峰值出现在8月.虎尾草群落土壤微生物量磷在10~20cm的土层最多,其他群落土壤微生物量磷在0~10cm土层的含量最多.灰色分析的结果表明,土壤速效磷的形成主要受到土壤养分,尤其是碳、氮养分的影响;而土壤温度、水分状况、酸碱状况和盐化程度等因素对土壤微生物量磷的影响较强.图2表3参26  相似文献   

7.
土壤微生物是维持森林生态系统平衡与土壤养分的一个重要因素。雪岭云杉林是天山重要的生态屏障和珍贵生物资源,其生态系统的固碳能力持续提升。研究雪岭云杉森林土壤微生物群落特征及微生物与土壤养分之间的互作关系,对维持雪岭云杉森林生态系统质量,促进雪岭云杉森林生态系统可持续发展至关重要。以天山北坡雪岭云杉林表层土为研究对象,利用宏基因组技术,探究天山北坡雪岭云杉林土壤微生物群落组成和多样性及其影响因素。结果表明,天山北坡雪岭云杉林土壤微生物群落特征表现为细菌相对丰度82.5%,真菌1.3%,古菌0.5%,其他15.7%。细菌Alpha多样性在中东部和西部之间有显著性差异;古菌Beta多样性在中部与西部存在显著差异,且中部和东部之间极显著;细菌Beta多样性在3个区域之间均有显著差异,其中西部与东部极显著;真菌Beta多样性仅中部与东部存在极显著差异。古菌多样性主要受有机碳、总氮、pH和土壤湿度的影响;细菌多样性主要受氮素、pH、年均降水量和年均摄氏温度的影响;真菌群落多样性主要受微生物碳和年均摄氏温度的影响。综上说明,土壤因素和水热条件在天山北坡雪岭云杉林土壤微生物群落分布中起主要控制作用,其中...  相似文献   

8.
古树群落对研究群落演替和物种更新具有重要的研究价值。森林群落中,土壤环境和群落竞争是影响物种生长和分布的重要因子。为探究古树群落优势树种对土壤环境和种间竞争的响应差异,以深圳盐灶银叶树(Heritiera littoralis)群落为研究对象,设立样方进行群落和土壤性质调查,分析银叶树群落乔木层和灌木层的5种优势树种分布与土壤环境、种间竞争的关系。结果表明:土壤pH值、盐分、磷元素和钾元素含量是影响银叶树群落树种分布的主要土壤因子;乔木层优势树种的分布与群落多样性显著相关,且乔木层优势树种个体的分布显著影响灌木层个体的分布;银叶树对群落多样性和土壤环境的响应与其他优势树种呈相反趋势,随着群落多样性的增加和土壤盐分及pH值的降低,除银叶树外的其他优势树种重要值均呈上升趋势,银叶树重要值则呈下降趋势;银叶树幼树生长显著受群落多样性的影响。阴香(Cinnamomumburmanni)、假苹婆(Sterculia lanceolata)、海杧果(Cerbera manghas)、多毛茜草树(Aidia pycnantha)、九节(Psychotria rubra)和罗伞树(Ardisia quinquegona)等优势树种随着土壤养分,尤其是磷和钾元素含量的提高以及群落正向演替而稳定更新和生长,而银叶树幼树对群落竞争的敏感度很可能影响其种群在山坡、邻海海岸等土壤环境较好的生境中的更新和维持。因此,银叶树种群保育应考虑改善沼泽土壤环境以缓解土壤pH值和盐分过高产生的潜在胁迫,同时应持续跟踪银叶树幼苗幼树个体在山坡和邻海海岸生境中的生长状况。  相似文献   

9.
土壤是湿地植被生长和植物群落分布的主要影响因子,研究土壤环境因子对鄱阳湖湿地植物群落分布特征的影响有助于深入理解湿地生态系统地球生物循环过程。通过研究鄱阳湖湿地不同生境下植物群落土壤环境因子特征变化,结合冗余分析(Redundancy analysis,RDA)探讨了鄱阳湖湿地主要土壤环境因子及其对植被分布的影响。结果表明,鄱阳湖湿地Jaccard指数、Sorensen指数和Cody指数均表现为样带1(藜蒿-苔草带Cynodon dactylon-Carex cinerascen)样带2(芦苇-藨草群落Phragmites communis-Phalaris arundinace)样带3(苔草-狗牙根群落Carex cinerascen-Artemisia selengens)样带4(苔草-藨草群落Carex cinerascen-Phalaris arundinace),随生境梯度呈递减规律;而Bray curtis指数则表现为样带1样带2样带3样带4,随生境梯度呈递增规律。土壤有机碳、全氮、硝态氮、铵态氮呈一致的变化规律,均表现为样带1样带2样带3样带4,而土壤速效磷表现为样带1样带3样带2样带4,不同植被带土壤全磷含量差异均不显著(P0.05)。相关性分析表明,不同植被带Bray curtis指数均与土壤养分呈负相关,Jaccard指数、Sorensen指数和Cody指数均呈正相关,沿河岸带的增加,其相关系数的绝对值逐渐增加,而土壤磷素与湿地多样性指数没有显著的相关性(P0.05)。RDA排序分析表明,土壤环境因子具有明显的生态梯度,土壤有机碳是影响研究区植被分布的最主要因素,土壤全氮是影响湿地植被分布的次要土壤环境因子。  相似文献   

10.
为了解地貌在坡面尺度上对α生物多样性的影响,采用主观采样法在陕北吴起县合家沟流域不同地貌部位进行了样地调查.利用SPSS16.0统计软件先后对各地貌部位物种组成及各物种的重要值、地形因子要素间、地形因子和群落α多样性之间分别做了聚类分析、相关分析和多元回归分析.结果表明:(1)地貌部位相似的群落聚类在一起,说明地形因子是影响物种组成、群落结构、生态系统等的重要因素.(2)海拔和坡位,坡向和坡度,地形指数和海拔、坡位、坡形之间的Pearson 相关系数均大于0.8,双尾显著性检验概率小于0.05.(3)影响α生物多样性指标香农-维纳指数的地形因子按重要性从大到小依次是:坡位、坡向、海拔、坡形、坡度、地形指数,进一步分析得出在黄土高原丘陵沟壑区,沟沿线、光照、土壤水分和养分在影响α生物多样性指标上依次递减.(4)通过多元线形回归检验,得出坡位、坡向、坡形、海拔这四个地形因子与群落α生物多样性关系密切,建立的回归模型显著性检验可信度大,与样本数据的拟合度高.各地形因子数据归一处理后的回归方程为:香农-维纳指数=2.417-0.581×坡形-1.333×坡位+1.449×海拔+0.631×坡向.地形地貌特征在黄土丘陵区表现明显,研究它对生物多样性的影响可为该区植被恢复提供参考,但由于调查样地尺度较小,在应用推广上尚待进一步研究.  相似文献   

11.
Slope aspect modifies microclimate and influences ecological processes and spatial distribution of species across forest landscapes, but the impact of slope aspect on community responses to disturbance is poorly understood. Such insight is necessary to understand landscape community dynamics and resilience. We compared bryophyte (liverworts and mosses) communities in matched 0.02-ha plots of four boreal stand types in central Sweden: recently clear-felled and mature stands dominated by Norway spruce in south-facing and north-facing slopes. Differences between forests and clear-cuts were interpreted as effects of clear-cutting, and differences between south- and north-facing slopes as effects of aspect. In response to clear-cutting, bryophyte cover and composition changed more in south-facing slopes. Only one out of ten significantly declining species in south-facing slopes also declined significantly in north-facing slopes. North-facing slopes lost fewer bryophyte species, and among those, fewer forest species and fewer species associated with wood and bark. In north-facing slopes, the average proportions of mosses and liverworts shared between the forest and the clear-cut plot were 88% and 74%, respectively. Corresponding numbers for south-facing slopes were 79% and 33%. In addition, more bryophyte species were added in north- than south-facing slopes after clear-cutting, somewhat reducing the difference in compositional change between aspects. South- and north-facing mature forests differed in species composition, mostly due to higher richness of mosses in south-facing slopes. The smaller changes in bryophyte communities on north-facing slopes in response to clear-cutting have implications for ecosystem dynamics and management as high local survival may enhance landscape-level resilience.  相似文献   

12.
In this study, influence of slope position (south-facing vs. north-facing), species type and sampling time on fine (0-2 mm), small (2-5 mm) and coarse (5-10 mm) root biomass and carbon storage of oriental spruce (Picea orientalis) and oriental beech (Fagus orientalis) were investigated. Mean total root biomass of oriental spruce was 20160 kg ha(-1) in south-facing slopes and 17140 kg ha(-1) in north-facing slopes. Mean total belowground C storage of oriental spruce was 7861 kg ha(-1) in south-facing slopes and 6840 kg ha(-1) in north-facing slopes. Similarly, biomass and C storage of oriental beech were 17190 and 6690 kg ha(-1) in south-facing slopes, and 13260 and 5200 kg ha(-1) in north-facing slopes, respectively. Oriental spruce had significantly higher fine root biomass than did oriental beech in south-facing slopes. Fine root biomass was significantly higher in fall than in spring in south-facing slopes.  相似文献   

13.
The negative consequences of habitat fragmentation for plant communities have been documented in many regions of the world. In some fragmented habitats, livestock grazing has been proposed to be a dispersal mechanism reducing isolation between fragments. In others, grazing acts together with fragmentation in a way that increases habitat degradation. Iberian gypsum plant communities have been grazed and fragmented by agricultural practices for centuries. Although their conservation is considered a priority by the European Community, the effects of fragmentation on gypsum plant communities and the possible role of livestock grazing remain unknown. In addition, a substantial proportion of plant species growing in gypsum environments are gypsum specialists. They could be particularly affected by fragmentation, as was found for other habitat specialists (i.e., serpentine and calcareous specialists). In this study (1) we investigated the effect of fragmentation and grazing on gypsum plant community composition (species and life-forms), and (2) we tested to see if gypsum specialists were differently affected by fragmentation and grazing than habitat generalists. A vegetation survey was conducted in the largest gypsum outcrop of Europe (Middle Ebro Valley, northeast Spain). Fragmented and continuous sites in grazed and ungrazed areas were compared. Measurements related to species and composition of life-forms were contrasted first for the whole gypsum plant community and then specifically for the gypsum specialists. In the whole community, our results showed lower plant species diversity in fragmented sites, mainly due to the larger dominance of species more tolerant to fragmented habitat conditions. With livestock grazing, the plant species richness and the similarity in plant species composition between remnants was larger, suggesting that animals were acting as dispersal agents between fragments. As expected, gypsum specialists were less abundant in fragmented areas, and grazing led to the disappearance of the rare gypsum specialist Campanula fastigiata. According to our results, conservation strategies for gypsum plant communities in human-dominated landscapes should consider that fragmentation and grazing modify plant community composition affecting gypsum specialists in particular.  相似文献   

14.
Compared with forest interiors, forest edges typically have a different plant species composition and community structure, a phenomenon known as "edge effect." Edge effects make the functional interior area of a forest smaller than its actual area. The objective of this study was to estimate how far the effects of agriculturally maintained edges penetrate the mixed hardwood forests of the Roanoke River Basin, North Carolina. I determined percentage cover for all vascular plant species in 10-by-100-meter belt transects on north-facing or south-facing edges of four relatively undisturbed forests. Changes in the percentage cover of individual species, the relative cover of exotic species, and species richness all indicated that edge effects penetrate deeper on south-facing edges (to 60 meters) than on north-facing edges (to 20 meters). Analyses of species responses to the edge showed a number of species to be edge oriented, but no species was found to be interior oriented. The results of multivariate analyses (ordination and cluster analysis) suggested that edge effects could be detected to 50 meters on south-facing edges and 10–30 meters on north-facing edges. These results allow us to better understand the difference between a forest's actual area and its functional interior area.  相似文献   

15.

Background

Semi-natural plant communities such as field boundaries play an important ecological role in agricultural landscapes, e.g., provision of refuge for plant and other species, food web support or habitat connectivity. To prevent undesired effects of herbicide applications on these communities and their structure, the registration and application are regulated by risk assessment schemes in many industrialized countries. Standardized individual-level greenhouse experiments are conducted on a selection of crop and wild plant species to characterize the effects of herbicide loads potentially reaching off-field areas on non-target plants. Uncertainties regarding the protectiveness of such approaches to risk assessment might be addressed by assessment factors that are often under discussion. As an alternative approach, plant community models can be used to predict potential effects on plant communities of interest based on extrapolation of the individual-level effects measured in the standardized greenhouse experiments. In this study, we analyzed the reliability and adequacy of the plant community model IBC-grass (individual-based plant community model for grasslands) by comparing model predictions with empirically measured effects at the plant community level.

Results

We showed that the effects predicted by the model IBC-grass were in accordance with the empirical data. Based on the species-specific dose responses (calculated from empirical effects in monocultures measured 4 weeks after application), the model was able to realistically predict short-term herbicide impacts on communities when compared to empirical data.

Conclusion

The results presented in this study demonstrate an approach how the current standard greenhouse experiments—measuring herbicide impacts on individual-level—can be coupled with the model IBC-grass to estimate effects on plant community level. In this way, it can be used as a tool in ecological risk assessment.
  相似文献   

16.
Cornell HV  Karlson RH  Hughes TP 《Ecology》2007,88(7):1707-1715
Community similarity is the proportion of species richness in a region that is shared on average among communities within that region. The slope of local richness (alpha diversity) regressed on regional richness (gamma diversity) can serve as an index of community similarity across regions with different regional richness. We examined community similarity in corals at three spatial scales (among transects at a site, sites on an island, and islands within an island group) across a 10 000-km longitudinal diversity gradient in the west-central Pacific Ocean. When alpha diversity was regressed on gamma diversity, the slopes, and thus community similarity, increased with scale (0.085, 0.261, and 0.407, respectively) because a greater proportion of gamma diversity was subsumed within alpha diversity as scale increased. Using standard randomization methods, we also examined how community similarity differed between observed and randomized assemblages and how this difference was affected by spatial separation of species within habitat types and specialization of species to three habitat types (reef flats, crests, and slopes). If spatial separation within habitat types and/or habitat specialization (i.e., underdispersion) occurs, fewer species are shared among assemblages than the random expectation. When the locations of individual coral colonies were randomized within and among habitat types, community similarity was 46-47% higher than that for observed assemblages at all three scales. We predicted that spatial separation of coral species within habitat types should increase with scale due to dispersal/extinction dynamics in this insular system, but that specialization of species to different habitat types should not change because habitat differences do not change with scale. However, neither habitat specialization nor spatial separation within habitat types differed among scales. At the two larger scales, each accounted for 22-24% of the difference in community similarity between observed and randomized assemblages. At the smallest scale (transect-site), neither spatial separation within habitat types nor habitat specialization had significant effects on community similarity, probably due to the small size of transect samples. The results suggest that coral species can disperse among islands in an island group as easily as they can among sites on an island over time scales that are relevant to their establishment and persistence on reefs.  相似文献   

17.
Ewers RM  Thorpe S  Didham RK 《Ecology》2007,88(1):96-106
Both area and edge effects have a strong influence on ecological processes in fragmented landscapes, but there is little understanding of how these two factors might interact to exacerbate local species declines. To test for synergistic interactions between area and edge effects, we sampled a diverse beetle community in a heavily fragmented landscape in New Zealand. More than 35,000 beetles of approximately 900 species were sampled over large gradients in habitat area (10(-2) 10(6) ha) and distance from patch edge (2(0)-2(10) m from the forest edge into both the forest and adjacent matrix). Using a new approach to partition variance following an ordination analysis, we found that a synergistic interaction between habitat area and distance to edge was a more important determinant of patterns in beetle community composition than direct edge or area effects alone. The strength of edge effects in beetle-species composition increased nonlinearly with increasing fragment area. One important consequence of the synergy is that the slopes of species area (SA) curves constructed from habitat islands depend sensitively on the distance from edge at which sampling is conducted. Surprisingly, we found negative SA curves for communities sampled at intermediate distances from habitat edges, caused by differential edge responses of matrix- vs. forest-specialist species in fragments of increasing area. Our data indicate that distance to habitat edge has a consistently greater impact on beetle community composition than habitat area and that variation in the strength of edge effects may underlie many patterns that are superficially related to habitat area.  相似文献   

18.
露天矿排土场边坡水土流失严重,易发生地质灾害,急需开展生态恢复和土地复垦研究。为了解排土场边坡植物群落演替规律以及植物对生境因子的响应关系,本研究以阜新露天矿不同恢复年限排土场边坡为对象,调查不同坡向和坡位的植物组成、数量、高度和盖度,采用双向指示种法(TWINSPAN)对植物群落进行分类;同时分析边坡土壤物理、化学和生物学性质,采用去趋势典范对应分析(DCCA)方法研究群落分布格局与环境因子的关系。结果表明,排土场边坡共出现27种植物,物种数量小于平台。植物群落在阴坡和阳坡呈现出不同的演替格局,阴坡演替顺序为狗尾草(Setaira viridis)+茵陈蒿(Artemisia capillaries)+铁杆蒿(Artemisia sacrorum)→狗尾草+铁杆蒿+白蒿(Artemisia anethoides)→铁杆蒿+狗尾草;恢复10 a后,铁杆蒿在中上坡位占据优势地位,植物种类和数量下降,植物群落呈逆向演替。阳坡演替顺序为蒺藜(Tribulus terrestris)+旱稗(Echinochloa hispidula)+狗尾草→狗尾草+蒺藜+白蒿→狗尾草+页蒿(Carum carvi)+白蒿,植被演替进程缓慢。DCCA排序表明,第一轴主要反映植物群落随坡位、土壤水分、氮元素有效性和周转的变化规律,其与土壤pH值和脲酶紧密相关;第二轴主要反映植物群落随着恢复年限和土壤磷素有效性的梯度变化,其与土壤容重、速效磷、蔗糖酶和碱性磷酸酶紧密相关。排土场边坡必须采取人工恢复措施,土壤酶活性对植物群落分布影响较大。  相似文献   

19.
Abstract:  For 10 years I monitored the population density of threatened medicinal plant species in seven protected areas in the Indian Himalayas. I also documented the indigenous uses of threatened medicinal plants through interviews with 138 herbal healers (83 Tibetan healers and 55 Ayurvedic healers) residing in the buffer zone villages of these protected areas. To assess the population status of threatened medicinal plant species, I sampled the 10 major habitat types in the protected areas. In all, I found 60 threatened medicinal plant species during the study period, of which 54 species occurred in the sampling plots. Twenty-two percent of threatened medicinal plant species were critically endangered, 16% were endangered, and 27% were vulnerable. Thirty-two threatened medicinal plant species were endemic to the Himalayan region. The density of threatened medicinal plant species varied with protected areas. The Valley of Flowers protected area had the highest number of threatened medicinal plant species. The "moist" habitat type was richest in these species among all 10 habitat types sampled. Arnebia euchroma (Royle ex Benth.) Johnston and Ephedra gerardiana Wall. ex Stapf. were the most common threatened medicinal plant species. The indigenous groups of healers used these threatened species in curing about 45 different ailments. Based on my findings, I believe that to ensure the long-term sustainability of threatened medicinal plants, medicinal-plant conservation areas should be established.  相似文献   

20.
通过对祁连山自然保护区青海云杉群落物种组成及α多样性垂直分布格局的研究,结果表明:祁连山自然保护区青海云杉群落内有维管植物25科51属96种,其中乔木4种,灌木29种,草本62种;植物种相对集中分布于海拔2 680~2 890 m的阴坡;随海拔梯度升高,群落内植物种数减少,且相邻样地的共有种数呈不明显的先减少而后增加的趋势,Margalef指数、Shannon-Wiener指数和Pielou指数呈降低趋势;不同林型的植物种的丰富度依次为:青海云杉混交林〉草类-青海云杉林〉苔藓-青海云杉林〉灌木-青海云杉林〉马先蒿-青海云杉林。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号