首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Conservation success is contingent on assessing social and environmental factors so that cost‐effective implementation of strategies and actions can be placed in a broad social–ecological context. Until now, the focus has been on how to include spatially explicit social data in conservation planning, whereas the value of different kinds of social data has received limited attention. In a regional systematic conservation planning case study in Australia, we examined the spatial concurrence of a range of spatially explicit social values and land‐use preferences collected using a public participation geographic information system and biological data. We used Zonation to integrate the social data with the biological data in a series of spatial‐prioritization scenarios to determine the effect of the different types of social data on spatial prioritization compared with biological data alone. The type of social data (i.e., conservation opportunities or constraints) significantly affected spatial prioritization outcomes. The integration of social values and land‐use preferences under different scenarios was highly variable and generated spatial prioritizations 1.2–51% different from those based on biological data alone. The inclusion of conservation‐compatible values and preferences added relatively few new areas to conservation priorities, whereas including noncompatible economic values and development preferences as costs significantly changed conservation priority areas (48.2% and 47.4%, respectively). Based on our results, a multifaceted conservation prioritization approach that combines spatially explicit social data with biological data can help conservation planners identify the type of social data to collect for more effective and feasible conservation actions.  相似文献   

2.
Systematic conservation planning aims to design networks of protected areas that meet conservation goals across large landscapes. The optimal design of these conservation networks is most frequently based on the modeled habitat suitability or probability of occurrence of species, despite evidence that model predictions may not be highly correlated with species density. We hypothesized that conservation networks designed using species density distributions more efficiently conserve populations of all species considered than networks designed using probability of occurrence models. To test this hypothesis, we used the Zonation conservation prioritization algorithm to evaluate conservation network designs based on probability of occurrence versus density models for 26 land bird species in the U.S. Pacific Northwest. We assessed the efficacy of each conservation network based on predicted species densities and predicted species diversity. High‐density model Zonation rankings protected more individuals per species when networks protected the highest priority 10‐40% of the landscape. Compared with density‐based models, the occurrence‐based models protected more individuals in the lowest 50% priority areas of the landscape. The 2 approaches conserved species diversity in similar ways: predicted diversity was higher in higher priority locations in both conservation networks. We conclude that both density and probability of occurrence models can be useful for setting conservation priorities but that density‐based models are best suited for identifying the highest priority areas. Developing methods to aggregate species count data from unrelated monitoring efforts and making these data widely available through ecoinformatics portals such as the Avian Knowledge Network will enable species count data to be more widely incorporated into systematic conservation planning efforts.  相似文献   

3.
Policies and research increasingly focus on the protection of ecosystem services (ESs) through priority‐area conservation. Priority areas for ESs should be identified based on ES capacity and ES demand and account for the connections between areas of ES capacity and demand (flow) resulting in areas of unique demand–supply connections (flow zones). We tested ways to account for ES demand and flow zones to identify priority areas in the European Union. We mapped the capacity and demand of a global (carbon sequestration), a regional (flood regulation), and 3 local ESs (air quality, pollination, and urban leisure). We used Zonation software to identify priority areas for ESs based on 6 tests: with and without accounting for ES demand and 4 tests that accounted for the effect of ES flow zone. There was only 37.1% overlap between the 25% of priority areas that encompassed the most ESs with and without accounting for ES demand. The level of ESs maintained in the priority areas increased from 23.2% to 57.9% after accounting for ES demand, especially for ESs with a small flow zone. Accounting for flow zone had a small effect on the location of priority areas and level of ESs maintained but resulted in fewer flow zones without ES maintained relative to ignoring flow zones. Accounting for demand and flow zones enhanced representation and distribution of ESs with local to regional flow zones without large trade‐offs relative to the global ES. We found that ignoring ES demand led to the identification of priority areas in remote regions where benefits from ES capacity to society were small. Incorporating ESs in conservation planning should therefore always account for ES demand to identify an effective priority network for ESs.  相似文献   

4.
Abstract:  Effective management of biodiversity in production landscapes requires a conservation approach that acknowledges the complexity of ecological and cultural systems in time and space. Fennoscandia has experienced major loss of forest biodiversity caused by intensive forestry. Therefore, the Countdown 2010 initiative to halt the loss of biodiversity in Europe is highly relevant to forest management in this part of the continent. As a contribution to meeting the challenge posed by Countdown 2010, we developed a spatially explicit conservation-planning exercise that used regional knowledge on forest biodiversity to provide support for managers attempting to halt further loss of biological diversity in the region. We used current data on the distribution of 169 species (including 68 red-listed species) representing different forest habitats and ecologies along with forest data within the frame of modern conservation software to devise a map of priority areas for conservation. The top 10% of priority areas contained over 75% of red-listed species locations and 41% of existing protected forest areas, but only 58% of these top priorities overlapped with core areas identified previously in a regional strategy that used more qualitative methods. We argue for aggregating present and future habitat value of single management units to landscape and regional scales to identify potential bottlenecks in habitat availability linked to landscape dynamics. To address the challenge of Countdown 2010, a general framework for forest conservation planning in Fennoscandia needs to cover different conservation issues, tools, and data needs.  相似文献   

5.
The consideration of information on social values in conjunction with biological data is critical for achieving both socially acceptable and scientifically defensible conservation planning outcomes. However, the influence of social values on spatial conservation priorities has received limited attention and is poorly understood. We present an approach that incorporates quantitative data on social values for conservation and social preferences for development into spatial conservation planning. We undertook a public participation GIS survey to spatially represent social values and development preferences and used species distribution models for 7 threatened fauna species to represent biological values. These spatially explicit data were simultaneously included in the conservation planning software Zonation to examine how conservation priorities changed with the inclusion of social data. Integrating spatially explicit information about social values and development preferences with biological data produced prioritizations that differed spatially from the solution based on only biological data. However, the integrated solutions protected a similar proportion of the species’ distributions, indicating that Zonation effectively combined the biological and social data to produce socially feasible conservation solutions of approximately equivalent biological value. We were able to identify areas of the landscape where synergies and conflicts between different value sets are likely to occur. Identification of these synergies and conflicts will allow decision makers to target communication strategies to specific areas and ensure effective community engagement and positive conservation outcomes. Integración de Valores Biológicos y Sociales al Priorizar Sitios para la Conservación de la Biodiversidad  相似文献   

6.
The participation of private landowners in conservation is crucial to efficient biodiversity conservation. This is especially the case in settings where the share of private ownership is large and the economic costs associated with land acquisition are high. We used probit regression analysis and historical participation data to examine the likelihood of participation of Danish forest owners in a voluntary conservation program. We used the results to spatially predict the likelihood of participation of all forest owners in Denmark. We merged spatial data on the presence of forest, cadastral information on participation contracts, and individual‐level socioeconomic information about the forest owners and their households. We included predicted participation in a probability model for species survival. Uninformed and informed (included land owner characteristics) models were then incorporated into a spatial prioritization for conservation of unmanaged forests. The choice models are based on sociodemographic data on the entire population of Danish forest owners and historical data on their participation in conservation schemes. Inclusion in the model of information on private landowners’ willingness to supply land for conservation yielded at intermediate budget levels up to 30% more expected species coverage than the uninformed prioritization scheme. Our landowner‐choice model provides an example of moving toward more implementable conservation planning.  相似文献   

7.
High costs of land in agricultural regions warrant spatial prioritization approaches to conservation that explicitly consider land prices to produce protected‐area networks that accomplish targets efficiently. However, land‐use changes in such regions and delays between plan design and implementation may render optimized plans obsolete before implementation occurs. To measure the shelf life of cost‐efficient conservation plans, we simulated a land‐acquisition and restoration initiative aimed at conserving species at risk in Canada's farmlands. We accounted for observed changes in land‐acquisition costs and in agricultural intensity based on censuses of agriculture taken from 1986 to 2011. For each year of data, we mapped costs and areas of conservation priority designated using Marxan. We compared plans to test for changes through time in the arrangement of high‐priority sites and in the total cost of each plan. For acquisition costs, we measured the savings from accounting for prices during site selection. Land‐acquisition costs and land‐use intensity generally rose over time independent of inflation (24–78%), although rates of change were heterogeneous through space and decreased in some areas. Accounting for spatial variation in land price lowered the cost of conservation plans by 1.73–13.9%, decreased the range of costs by 19–82%, and created unique solutions from which to choose. Despite the rise in plan costs over time, the high conservation priority of particular areas remained consistent. Delaying conservation in these critical areas may compromise what optimized conservation plans can achieve. In the case of Canadian farmland, rapid conservation action is cost‐effective, even with moderate levels of uncertainty in how to implement restoration goals.  相似文献   

8.
Globally expanding human land use sets constantly increasing pressure for maintenance of biological diversity and functioning ecosystems. To fight the decline of biological diversity, conservation science has broken ground with methods such as the operational model of systematic conservation planning (SCP), which focuses on design and on‐the‐ground implementation of conservation areas. The most commonly used method in SCP is reserve selection that focuses on the spatial design of reserve networks and their expansion. We expanded these methods by introducing another form of spatial allocation of conservation effort relevant for land‐use zoning at the landscape scale that avoids negative ecological effects of human land use outside protected areas. We call our method inverse spatial conservation prioritization. It can be used to identify areas suitable for economic development while simultaneously limiting total ecological and environmental effects of that development at the landscape level by identifying areas with highest economic but lowest ecological value. Our method is not based on a priori targets, and as such it is applicable to cases where the effects of land use on, for example, individual species or ecosystem types are relatively small and would not lead to violation of regional or national conservation targets. We applied our method to land‐use allocation to peat mining. Our method identified a combination of profitable production areas that provides the needed area for peat production while retaining most of the landscape‐level ecological value of the ecosystem. The results of this inverse spatial conservation prioritization are being used in land‐use zoning in the province of Central Finland.  相似文献   

9.
Effective conservation policies require comprehensive knowledge of biodiversity. However, knowledge shortfalls still remain, hindering possibilities to improve decision making and built such policies. During the last 2 decades, conservationists have made great efforts to allocate resources as efficiently as possible but have rarely considered the idea that if research investments are also strategically allocated, it would likely fill knowledge gaps while simultaneously improving conservation actions. Therefore, prioritizing areas where both conservation and research actions could be conducted becomes a critical endeavor that can further maximize return on investment. We used Zonation, a conservation planning tool and geographical distributions of amphibians, birds, mammals, and reptiles to suggest and compare priority areas for conservation and research of terrestrial vertebrates worldwide. We also evaluated the degree of human disturbance in both types of priority areas by describing the value of the human footprint index within such areas. The spatial concordance between priority conservation and research areas was low: 0.36% of the world's land area. In these areas, we found it would be possible to protect almost half of the currently threatened species and to gather information on nearly 42% of data-deficient (DD) species. We also found that 6199 protected areas worldwide are located in such places, although only 35% of them have strict conservation purposes. Areas of consensus between conservation and research areas represent an opportunity for simultaneously conserving and acquiring knowledge of threatened and DD species of vertebrates. Although the picture is not the most encouraging, joint conservation and research efforts are possible and should be fostered to save vertebrate species from our own ignorance and extinction.  相似文献   

10.
Abstract: Systematic conservation assessment (an information‐gathering and prioritization process used to select the spatial foci of conservation initiatives) is often considered vital to conservation‐planning efforts, yet published assessments have rarely resulted in conservation action. Conservation assessments may lead more directly to effective conservation action if they are reoriented to inform conservation decisions. Toward this goal, we evaluated the relative priority for conservation of 7 sites proposed for the first forest reserves in the Union of the Comoros, an area with high levels of endemism and rapidly changing land uses in the western Indian Ocean. Through the analysis of 30 indicator variables measured at forest sites and nearby villages, we assessed 3 prioritization criteria at each site: conservation value, threat to loss of biological diversity from human activity, and feasibility of reserve establishment. Our results indicated 2 sites, Yiméré and Hassera‐Ndrengé, were priorities for conservation action. Our approach also informed the development of an implementation strategy and enabled an evaluation of previously unexplored relations among prioritization criteria. Our experience suggests that steps taken to ensure the closer involvement of practitioners, include a broader range of social data, encourage stakeholder participation, and consider the feasibility of conservation action can improve the relevance of assessments for conservation planning, strengthen the scientific basis for conservation decisions, and result in a more realistic evaluation of conservation alternatives.  相似文献   

11.
Abstract: One of the most important tools in conservation biology is information on the geographic distribution of species and the variables determining those patterns. We used maximum‐entropy niche modeling to run distribution models for 222 amphibian and 371 reptile species (49% endemics and 27% threatened) for which we had 34,619 single geographic records. The planning region is in southeastern Mexico, is 20% of the country's area, includes 80% of the country's herpetofauna, and lacks an adequate protected‐area system. We used probabilistic data to build distribution models of herpetofauna for use in prioritizing conservation areas for three target groups (all species and threatened and endemic species). The accuracy of species‐distribution models was better for endemic and threatened species than it was for all species. Forty‐seven percent of the region has been deforested and additional conservation areas with 13.7% to 88.6% more native vegetation (76% to 96% of the areas are outside the current protected‐area system) are needed. There was overlap in 26 of the main selected areas in the conservation‐area network prioritized to preserve the target groups, and for all three target groups the proportion of vegetation types needed for their conservation was constant: 30% pine and oak forests, 22% tropical evergreen forest, 17% low deciduous forest, and 8% montane cloud forests. The fact that different groups of species require the same proportion of habitat types suggests that the pine and oak forests support the highest proportion of endemic and threatened species and should therefore be given priority over other types of vegetation for inclusion in the protected areas of southeastern Mexico.  相似文献   

12.
The persistence of species in reserves depends in large part on the persistence of functional ecological interactions. Despite their importance, however, ecological interactions have not yet been explicitly incorporated into conservation prioritization methods. We develop here a general method for incorporating consumer–resource interactions into spatial reserve design. This method protects spatial consumer–resource interactions by protecting areas that maintain the connectivity between the distribution of consumers and resources. We illustrate our method with a conservation planning case study of a mammalian predator, American marten (Martes americana), and its two primary prey species, Red-backed vole (Clethrionomys rutilus) and Deer mouse (Peromyscus maniculatus). The conservation goal was to identify a reserve for marten that comprised 12% of a forest management unit in the boreal forest in Québec, Canada. We compared reserves developed using analysis variants that utilized different levels of information about predator and prey habitat distributions, species-specific connectivity requirements, and interaction connectivity requirements. The inclusion of consumer–resource interactions in reserve-selection resulted in spatially aggregated reserves that maintained local habitat quality for the species. This spatial aggregation was not induced by applying a qualitative penalty for the boundary length of the reserve, but rather was a direct consequence of modelling the spatial needs of the interacting consumer and resources. Our method for maintaining connectivity between consumers and their resources within reserves can be applied even under the most extreme cases of either complete spatial overlap or complete spatial segregation of consumer–resource distributions. The method has been made available via public software.  相似文献   

13.
Marine protected areas (MPAs) are the cornerstone of most marine conservation strategies, but the effectiveness of each one partly depends on its size and distance to other MPAs in a network. Despite this, current recommendations on ideal MPA size and spacing vary widely, and data are lacking on how these constraints might influence the overall spatial characteristics, socio‐economic impacts, and connectivity of the resultant MPA networks. To address this problem, we tested the impact of applying different MPA size constraints in English waters. We used the Marxan spatial prioritization software to identify a network of MPAs that met conservation feature targets, whilst minimizing impacts on fisheries; modified the Marxan outputs with the MinPatch software to ensure each MPA met a minimum size; and used existing data on the dispersal distances of a range of species found in English waters to investigate the likely impacts of such spatial constraints on the region's biodiversity. Increasing MPA size had little effect on total network area or the location of priority areas, but as MPA size increased, fishing opportunity cost to stakeholders increased. In addition, as MPA size increased, the number of closely connected sets of MPAs in networks and the average distance between neighboring MPAs decreased, which consequently increased the proportion of the planning region that was isolated from all MPAs. These results suggest networks containing large MPAs would be more viable for the majority of the region's species that have small dispersal distances, but dispersal between MPA sets and spill‐over of individuals into unprotected areas would be reduced. These findings highlight the importance of testing the impact of applying different MPA size constraints because there are clear trade‐offs that result from the interaction of size, number, and distribution of MPAs in a network.  相似文献   

14.
Conserving migratory species requires protecting connected habitat along the pathways they travel. Despite recent improvements in tracking animal movements, migratory connectivity remains poorly resolved at a population level for the vast majority of species, thus conservation prioritization is hampered. To address this data limitation, we developed a novel approach to spatial prioritization based on a model of potential connectivity derived from empirical data on species abundance and distance traveled between sites during migration. We applied the approach to migratory shorebirds of the East Asian‐Australasian Flyway. Conservation strategies that prioritized sites based on connectivity and abundance metrics together maintained larger populations of birds than strategies that prioritized sites based only on abundance metrics. The conservation value of a site therefore depended on both its capacity to support migratory animals and its position within the migratory pathway; the loss of crucial sites led to partial or total population collapse. We suggest that conservation approaches that prioritize sites supporting large populations of migrants should, where possible, also include data on the spatial arrangement of sites.  相似文献   

15.
We aspired to set conservation priorities in ways that lead to direct conservation actions. Very large‐scale strategic mapping leads to familiar conservation priorities exemplified by biodiversity hotspots. In contrast, tactical conservation actions unfold on much smaller geographical extents and they need to reflect the habitat loss and fragmentation that have sharply restricted where species now live. Our aspirations for direct, practical actions were demanding. First, we identified the global, strategic conservation priorities and then downscaled to practical local actions within the selected priorities. In doing this, we recognized the limitations of incomplete information. We started such a process in Colombia and used the results presented here to implement reforestation of degraded land to prevent the isolation of a large area of cloud forest. We used existing range maps of 171 bird species to identify priority conservation areas that would conserve the greatest number of species at risk in Colombia. By at risk species, we mean those that are endemic and have small ranges. The Western Andes had the highest concentrations of such species—100 in total—but the lowest densities of national parks. We then adjusted the priorities for this region by refining these species ranges by selecting only areas of suitable elevation and remaining habitat. The estimated ranges of these species shrank by 18–100% after accounting for habitat and suitable elevation. Setting conservation priorities on the basis of currently available range maps excluded priority areas in the Western Andes and, by extension, likely elsewhere and for other taxa. By incorporating detailed maps of remaining natural habitats, we made practical recommendations for conservation actions. One recommendation was to restore forest connections to a patch of cloud forest about to become isolated from the main Andes. Establecimiento de Prioridades Prácticas para la Conservación de Aves en los Andes Occidentales de Colombia  相似文献   

16.
Conservation planning tends to focus on protecting species’ ranges or landscape connectivity but seldom both—particularly in the case of diverse taxonomic assemblages and multiple planning goals. Therefore, information on potential trade-offs between maintaining landscape connectivity and achieving other conservation objectives is lacking. We developed an optimization approach to prioritize the maximal protection of species’ ranges, ecosystem types, and forest carbon stocks, while also including habitat connectivity for range-shifting species and dispersal corridors to link protected area. We applied our approach to Sabah, Malaysia, where the state government mandated an increase in protected-area coverage of approximately 305,000 ha but did not specify where new protected areas should be. Compared with a conservation planning approach that did not incorporate the 2 connectivity features, our approach increased the protection of dispersal corridors and elevational connectivity by 13% and 21%, respectively. Coverage of vertebrate and plant species’ ranges and forest types were the same whether connectivity was included or excluded. Our approach protected 2% less forest carbon and 3% less butterfly range than when connectivity features were not included. Hence, the inclusion of connectivity into conservation planning can generate large increases in the protection of landscape connectivity with minimal loss of representation of other conservation targets.  相似文献   

17.
Species distribution models (SDMs) are increasingly used in conservation and land-use planning as inputs to describe biodiversity patterns. These models can be built in different ways, and decisions about data preparation, selection of predictor variables, model fitting, and evaluation all alter the resulting predictions. Commonly, the true distribution of species is unknown and independent data to verify which SDM variant to choose are lacking. Such model uncertainty is of concern to planners. We analyzed how 11 routine decisions about model complexity, predictors, bias treatment, and setting thresholds for predicted values altered conservation priority patterns across 25 species. Models were created with MaxEnt and run through Zonation to determine the priority rank of sites. Although all SDM variants performed well (area under the curve >0.7), they produced spatially different predictions for species and different conservation priority solutions. Priorities were most strongly altered by decisions to not address bias or to apply binary thresholds to predicted values; on average 40% and 35%, respectively, of all grid cells received an opposite priority ranking. Forcing high model complexity altered conservation solutions less than forcing simplicity (14% and 24% of cells with opposite rank values, respectively). Use of fewer species records to build models or choosing alternative bias treatments had intermediate effects (25% and 23%, respectively). Depending on modeling choices, priority areas overlapped as little as 10–20% with the baseline solution, affecting top and bottom priorities differently. Our results demonstrate the extent of model-based uncertainty and quantify the relative impacts of SDM building decisions. When it is uncertain what the best SDM approach and conservation plan is, solving uncertainty or considering alterative options is most important for those decisions that change plans the most.  相似文献   

18.
For conservation decision making, species’ geographic distributions are mapped using various approaches. Some such efforts have downscaled versions of coarse‐resolution extent‐of‐occurrence maps to fine resolutions for conservation planning. We examined the quality of the extent‐of‐occurrence maps as range summaries and the utility of refining those maps into fine‐resolution distributional hypotheses. Extent‐of‐occurrence maps tend to be overly simple, omit many known and well‐documented populations, and likely frequently include many areas not holding populations. Refinement steps involve typological assumptions about habitat preferences and elevational ranges of species, which can introduce substantial error in estimates of species’ true areas of distribution. However, no model‐evaluation steps are taken to assess the predictive ability of these models, so model inaccuracies are not noticed. Whereas range summaries derived by these methods may be useful in coarse‐grained, global‐extent studies, their continued use in on‐the‐ground conservation applications at fine spatial resolutions is not advisable in light of reliance on assumptions, lack of real spatial resolution, and lack of testing. In contrast, data‐driven techniques that integrate primary data on biodiversity occurrence with remotely sensed data that summarize environmental dimensions (i.e., ecological niche modeling or species distribution modeling) offer data‐driven solutions based on a minimum of assumptions that can be evaluated and validated quantitatively to offer a well‐founded, widely accepted method for summarizing species’ distributional patterns for conservation applications.  相似文献   

19.
Larval dispersal connectivity is typically integrated into spatial conservation decisions at regional or national scales, but implementing agencies struggle with translating these methods to local scales. We used larval dispersal connectivity at regional (hundreds of kilometers) and local (tens of kilometers) scales to aid in design of networks of no-take reserves in Southeast Sulawesi, Indonesia. We used Marxan with Connectivity informed by biophysical larval dispersal models and remotely sensed coral reef habitat data to design marine reserve networks for 4 commercially important reef species across the region. We complemented regional spatial prioritization with decision trees that combined network-based connectivity metrics and habitat quality to design reserve boundaries locally. Decision trees were used in consensus-based workshops with stakeholders to qualitatively assess site desirability, and Marxan was used to identify areas for subsequent network expansion. Priority areas for protection and expected benefits differed among species, with little overlap in reserve network solutions. Because reef quality varied considerably across reefs, we suggest reef degradation must inform the interpretation of larval dispersal patterns and the conservation benefits achievable from protecting reefs. Our methods can be readily applied by conservation practitioners, in this region and elsewhere, to integrate connectivity data across multiple spatial scales.  相似文献   

20.
Designing connected landscapes is among the most widespread strategies for achieving biodiversity conservation targets. The challenge lies in simultaneously satisfying the connectivity needs of multiple species at multiple spatial scales under uncertain climate and land‐use change. To evaluate the contribution of remnant habitat fragments to the connectivity of regional habitat networks, we developed a method to integrate uncertainty in climate and land‐use change projections with the latest developments in network‐connectivity research and spatial, multipurpose conservation prioritization. We used land‐use change simulations to explore robustness of species’ habitat networks to alternative development scenarios. We applied our method to 14 vertebrate focal species of periurban Montreal, Canada. Accounting for connectivity in spatial prioritization strongly modified conservation priorities and the modified priorities were robust to uncertain climate change. Setting conservation priorities based on habitat quality and connectivity maintained a large proportion of the region's connectivity, despite anticipated habitat loss due to climate and land‐use change. The application of connectivity criteria alongside habitat‐quality criteria for protected‐area design was efficient with respect to the amount of area that needs protection and did not necessarily amplify trade‐offs among conservation criteria. Our approach and results are being applied in and around Montreal and are well suited to the design of ecological networks and green infrastructure for the conservation of biodiversity and ecosystem services in other regions, in particular regions around large cities, where connectivity is critically low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号