首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
城市污水处理厂进行脱氮除磷工艺时,大量的磷从水体转入活性污泥中,如不能回收这部分磷,将造成磷的大量流失,这与磷矿稀缺的现状形成矛盾。通过建立污泥停留时间5 d和10 d的两个厌氧反应系统,对污泥中磷的释放规律进行研究,并采用鸟粪石法对上清液中的磷进行回收。研究结果表明,厌氧污泥上清液中的磷含量高达150 mg.L-1,SRT为5 d和10 d的系统,分别在4 d和2 d后磷的质量浓度由14 mg.L-1上升到100 mg.L-1,且基本上都以正磷酸盐的形式存在。将pH从8.3上升到9.0,磷的回收率可以从60%提升到90%,当pH达到8.8时,磷的回收率即可超过80%,表现出了较好的磷回收效果。研究还发现镁离子和磷酸根的摩尔比对磷的回收率的影响较小,在pH=8.8时,将镁磷比从1.43提升到1.83,磷的回收率仅从79.2%提升到85.5%;在pH=9.0时提高镁磷比对磷的回收基本没有影响。  相似文献   

2.
《环境化学》2012,31(7)
根据我国中路沙尘暴的影响范围和移动路径,应用颗粒物中磷的连续浸提技术,选择研究了8个站位的颗粒物样品中磷的赋存形态和分布特征.研究结果表明,各粒级样品中无机磷(IP)含量范围在300.16—1916.99μg.g-1,占总磷(TP)比率86.11%—99.84%,TP含量主要受IP控制,有机磷(POrg)含量远低于IP,彼此之间表现为负相关关系;沙尘粒子Y1—Y4(呼和浩特,2005年—2010年沙尘暴期间收集)的TP、IP、生物可交换磷(BP)和可交换态磷(Pex)含量远高于沙尘暴源地及沿途地区地表颗粒物,这与沙尘暴源地及影响区域磷污染状况及地质环境条件关系密切;粒径小于57μm的颗粒物样品的TP、IP、PCa含量均高于自然粒径颗粒物样品.  相似文献   

3.
考察了不同进水有机物浓度下厌氧/好氧序批式移动床生物膜反应器(SBMBBR)污染物去除特性,实验结果表明,SBMBBR能够实现低碳源污水中氮和磷的同步去除,在进水TN和TP浓度分别为116.7 mg.L-1和11.5 mg.L-1、COD浓度为456 mg.L-1的条件下,TN和TP去除率分别达到94.3%和92.2%以上.反应器除磷是基于常规生物除磷和反硝化除磷过程实现的,脱氮主要是基于好氧段发生的同时硝化反硝化(SND)作用而完成.由于生物膜内部存在的DO扩散梯度,在好氧阶段混合液DO浓度不断提高的条件下反应器内具有良好SND反应的发生.进水COD浓度由149 mg.L-1提高至456 mg.L-1的过程中,反应器硝化效果不变,反硝化和除磷效果改善.反应器在好氧阶段pH值基本维持在7.0—7.1之间,为各类菌群的生长创造了条件.碱度变化较pH值更能反映硝化和反硝化反应发生的程度.反应器中微生物相丰富,生物膜以丝状菌为骨架,其上附着大量的球状菌和杆状菌,而悬浮活性污泥中丝状菌较少,形成了由细菌、真菌到原生动物和后生动物的复杂的生态体系,为系统取得稳定的污水处理效果提供了有效的保证.  相似文献   

4.
底泥加入铁盐对水体磷的吸收和固定   总被引:2,自引:0,他引:2  
李大鹏  黄勇  李祥 《环境化学》2013,(5):797-802
对加入FeCl3的底泥在扰动条件下对外源磷的吸收效果进行研究,并通过内源磷数量分布分析了固定效果.磷吸附等温线结果表明,对FeCl3质量百分比占2%的底泥而言,磷吸附最大值、磷平衡浓度、磷饱和度分别为未加入FeCl3的原底泥的273%、85.7%、60.7%.磷吸附实验结果表明,加入FeCl3的底泥对上覆水中磷的吸收能力增加.FeCl3质量百分比占1%和2%的底泥对外源磷的吸收量分别为未加入FeCl3的原底泥的150%和210%,而达到饱和时间也分别从17 d延长至26 d和35 d.内源磷的主要分布为Fe/Al-P(57.1%—63.4%)、HCl-P(19.9%—28.4%)、NH4Cl-P(12.9%—15.2%).由于FeCl3的加入抑制了Fe/Al-P向HCl-P的转化,加入的外源磷主要形成了藻类可利用磷(AAP).  相似文献   

5.
低磷胁迫下大麦磷高效基因型的筛选   总被引:2,自引:0,他引:2  
为获得大麦(Hordeumv ulgare Linn.)磷高效育种的材料,分别在土壤有效磷质量分数为1.32和36.6mg·kg-1的条件下,对180个大麦品种进行磷高效材料的筛选和鉴定研究。结果发现,不同品种中磷高效差异很大;中国大麦茎干重和地上重极显著高于美国大麦(P=0.000);裸大麦(H.vulgare var.nudum)有效穗、分蘖数和茎干重极显著高于皮大麦(H.oldeum vulgateL.);多棱大麦(Hordeum vulgareL.)分蘖数、茎干重和地上干重极显著高于二棱大麦(Hordeum distichon L.)。磷效率用耐低磷力和品种适应性来描述,用籽粒产量计算耐低磷力,云啤1号(122.3%,231.43%)、Z050P004Q(109.81%,214.40%)和YS500(101.08%,566.14%)等是供试样品中磷高效较高的品种。该实验结果为云南地区进一步选育磷高效的大麦品种提供了材料。  相似文献   

6.
有机磷是土壤磷的主要存在形式,占比40%—90%,是作物磷营养的重要来源和储备库,亦是引起水体富营养化的潜在因子.磷作为植物生长发育的必需大量营养元素,通常以无机磷肥形式施用于土壤,易吸附于土壤表面或与钙、镁、铝、铁等金属阳离子形成难溶性络合物,导致其生物可利用性降低,其中20%—80%磷肥转化为有机磷,不易被植物吸收利用.矿化作用是在土壤微生物作用下,土壤中有机态化合物转化为无机态化合物的总称.土壤中有机磷主要以植酸及其盐类形式存在(占比50%—70%),植酸(盐)可被专一性酶(植酸酶)矿化水解为肌醇和磷酸(盐),并释放出无机磷,以供植物的根系直接吸收和利用.前期研究发现,缺磷胁迫下微生物可大量分泌植酸酶分解植酸,释放磷酸根,促使土壤有机磷水解矿化为无机磷,提高了土壤有机磷的生物可利用率.目前关于微生物植酸酶矿化植酸的研究多集中于谷类作物和动物营养,对土壤植酸矿化与土壤有机磷利用的综述性报道较少.因此,本文主要关注微生物植酸酶对土壤植酸的矿化作用与土壤有机磷利用,重点阐述其过程、机制和效率,包括微生物植酸酶的种类来源、酶学性质、作用机理和实际应用等方面的研究进展,可为提高土壤有机磷的...  相似文献   

7.
杨华  孙宝维 《环境化学》2013,(6):1102-1103
化肥、农药、含磷洗涤剂以及粪便,是废水中磷的主要来源,而磷浓度超标是引起水体中富营养化的主要原因之一.目前,国内外除磷的方法中主要有化学沉淀法、物理吸附法、离子交换法和微生物降解法等,吸附法因其工艺简单、运行可靠、操作灵活和无二次污染等特点备受关注.硅酸镁为多孔结构,属两性化合物,具有酸碱两种吸附性能,在聚醚精制过程中用于脱酸、脱臭、脱色及脱钾,在煎炸油处理和生物柴油加工过程中用于降低酸价;此外,硅酸镁还广泛地应用于脱除废水中的金属离子和染料.目前,国内外对三硅酸镁和六硅酸镁的报道较多,对其它镁硅配比的硅酸镁报道较少.本课题组系统地研究了不同镁硅物质的量之比的  相似文献   

8.
污水处理过程中产生的剩余污泥富含大量的氮磷元素,从剩余污泥中回收磷是解决磷资源日益缺乏的一种有效途径。探寻出剩余污泥中磷的释放规律是实现剩余污泥中磷回收的首要前提。因此,以实际污水处理厂污泥为研究对象,建立污泥停留时间为5d的中试模型系统。通过系统分析5d停留时间的厌氧条件下污泥中污泥浓度、上清液总磷和氨氮浓度的变化情况,为后续的污泥磷回收提供支撑条件。研究结果表明,在中试系统污泥停留时间5d的厌氧条件下,剩余污泥微生物衰亡自溶或被分解,胞内物质释放,从而使固态物质转化为液态,污泥中磷及相关的氮等物质得到了较大的释放,污泥上清液总磷和氨氮质量浓度可分别达到100和40 mg·L^-1以上。所释放出的氮磷浓度足以满足鸟粪石回收氮磷方法所需的最低经济性要求,为污泥进行厌氧消化后采用鸟粪石的方法回收释放的氮磷提供了重要的基础依据。研究中还发现5d停留时间下, SS和VSS都有不同程度的降低,二者分别减少8.34%和10.14%以上,其中VSS的减少量占SS减少量的65%左右。同时,进入厌氧反应系统的初始污泥浓度对于氮磷的释放有着较大的影响,反应系统的SS在6300~7200 mg·L^-1的条件下,磷和氮的单位质量污泥释放量达到最佳,分别达到单位干污泥0.015和0.006 mg·mg^-1。研究结果为剩余污泥中回收氮磷提供了重要的依据。  相似文献   

9.
采用室内模拟培养试验方法,研究不同磷初始浓度对紫萍生长及磷吸收效率的影响。结果表明,水体初始ρ(磷)为3.0 mg.L-1时,紫萍相对生长率最高,生长繁殖速度最快。当初始ρ(磷)为0.3~3.0 mg.L-1时,紫萍对水体中磷的去除率在70%以上。紫萍累积吸磷量和磷吸收能力均随磷初始浓度的升高而增加,但当初始ρ(磷)为45.0 mg.L-1时,紫萍累积吸磷量和单位鲜质量紫萍吸磷量均明显下降。当初始ρ(磷)≤1.5 mg.L-1时,紫萍体内酸性磷酸酶活性升高,但随着低磷胁迫时间的延长,低磷条件和高磷条件间酸性磷酸酶活性差异减小。  相似文献   

10.
湖水中磷形态的生物有效性   总被引:8,自引:0,他引:8  
王晓蓉  吴重华 《环境化学》1994,13(2):146-151
本文采用化学分析将湖水中的磷划分为七种形态:总磷(TP)、总反应磷(TRP)。总溶解磷(TSP)、溶解反应磷(SRP)、溶解的水解性磷(SHP)、溶解的光解性磷(UVSRP)以及颗粒磷(PP)。为了确定生物有效磷,把湖水灭菌后再接入羊角月芽藻进行试验,研究了湖水中各种磷形态对羊角月芽藻最大生长量的影响。结果表明:当湖水中磷含量大于100μg/l时,藻的最大生长量与大多数磷形态有较好的相关性(n=1  相似文献   

11.
水稻磷效率差异的生理生化特性   总被引:13,自引:0,他引:13  
以磷效率差异显著的IR71379—2B—10—2—3-1(磷低效型)、IR7133l-2B-2-1(中间型)及IR74(磷高效型)3个品种为供试材料,采用水培法研究了它们对磷的吸收效率、运输效率及植株体内磷的利用效率,进而研究了其对低磷胁迫的根系形态学和生理生化机制的适应性反应.结果表明:水稻磷效率的高低是由基因型对磷的吸收效率,运输效率及利用效率综合作用的结果.磷高效基因型IR74和磷效率表现为中间型的IR71331-2B-2-1具有高的磷吸收效率.旺盛的根系生长,高的根系活力,Km、Cmin小,Imax大及相对酸性磷酸酯酶(APase)活性高等是水稻对磷高效吸收的特征.但品种不同特征也有别,本试验中的IR74对磷高的吸收效率主要是由于根系生长旺盛,根系吸收面积大所致,而IR71331-2B-2-1高的磷吸收效率则主要缘于根系活力强,Imax大.低磷胁迫下,叶片中核糖核酸酶的活性也大大升高,约是对照的10~15倍,但品种间无显著差异.图2表6参21  相似文献   

12.
利用碳还原剂和氯化钙熔盐药剂在1100℃下还原污泥焚烧灰中的磷酸盐为气态磷单质并去除,采用X射线衍射分析(XRD)残渣的组成和热重质谱(TGA-MS)分析反应过程.结果表明,添加氯化钙可显著提高污泥焚烧灰除磷效率,氯化钙的最优添加量为25%质量分数,此时污泥焚烧灰除磷效率为82%.XRD结果显示,污泥焚烧灰经熔盐处理后形成了氯磷灰石(chlorapatite),珍珠云母(margarite)等物质,其中氯磷灰石的形成有利于焚烧灰中磷的还原.对TGA-MS结果进行热解动力学反应拟合,结果显示,污泥焚烧灰除磷反应在添加少量氯化钙添加时为均相反应;污泥焚烧灰除磷反应在添加较多氯化钙时为固相扩散反应.固相反应的发生有利于降低磷酸盐还原反应温度并提高去除效率.  相似文献   

13.
为解决给水厂残泥(WTR)作为磷吸附材料用于水处理工艺时存在的沉降性能差和易堵塞等问题,本研究利用海藻酸钠包埋法制备了给水厂残泥-海藻酸钠(WTR-SA)胶珠,考察了WTR-SA胶珠对磷的吸附与解吸附特征.研究结果表明WTR-SA胶珠对磷的动力学吸附过程符合准二级动力学方程(R~2=0.9957),Freundlich方程能较好描述其对磷的等温吸附过程(R~2=0.9907),Langmuir方程模拟得到的磷饱和吸附量为1.878 mg·g~(-1);随着溶液pH的升高,WTR-SA胶珠对磷的吸附量呈现先上升后下降的趋势,在pH5时吸附量最高;WTR-SA胶珠对磷的吸附稳定,在接近饱和吸附量条件下,磷的解吸率仅为0.72%;磷分级提取结果表明磷主要以稳定的铝结合态、铁结合态和钙结合态存在于WTR-SA胶珠中,3种赋存形态含量占比分别为43.2%、22.7%和21.3%.  相似文献   

14.
磷是植物生长发育所需的重要营养元素.次生演替是陆地退化生态系统恢复的重要途径,但土壤磷缺乏会对次生演替过程中的植物生长造成限制,因此深入理解次生演替对土壤磷组分的影响,对解决生态系统恢复过程中养分管理具有重要意义.在介绍土壤磷循环和磷组分的基本概念及生态学意义的基础上,对次生演替过程中不同土壤磷组分的变化规律、影响因素及其磷有效性进行全面梳理和分析.发现在次生演替过程中,高活性的树脂磷(Resin-P)没有特定的变化规律;较高活性的碳酸氢钠无机磷和有机磷(NaHCO3-Pi和NaHCO3-Po)随演替逐渐增加,主要与凋落物归还、有机质积累和微生物群落变化有关;中等活性的氢氧化钠无机磷和有机磷(NaOH-Pi和NaOH-Po)在演替过程中无明显变化趋势,可能受到土壤pH值和矿物离子(如铁和铝)的影响;中等活性的原生矿物磷(Primary mineral P)在大多数情况下会随着次生演替而降低.由于土壤有机质和微生物组成等与土壤磷组分显著相关,为提高次生演替过程中土壤磷有效性,应重点关注次生演替过程中土壤的理化特性(例如土壤pH值、含水量和有机质)以及微生物群落(例如溶磷菌群落)的变化;同...  相似文献   

15.
从潮土、水稻土、砂姜黑土、石灰土上植物根际土壤和根中分离了86株磷细菌,通过NBRIP液体摇瓶培养3 d,培养液水溶磷质量浓度为4.2~387.3 mg.L^-1,水溶磷质量浓度与培养液pH呈显著负相关(r^2=0.621 6)。筛选出3株磷细菌进行玉米盆栽试验,结果表明,1株磷细菌处理的玉米干物质量和吸磷量与对照(处理4)相比无显著差异,2株磷细菌处理的玉米干物质量和吸磷量与对照相比有明显增加,干物质量增加了19.6%~37.5%,吸磷量增加了22.7%~40.2%,其中编号为HCW115解磷菌株的效果相当于施用无机磷(P)10 mg.kg^-1处理。  相似文献   

16.
城市滨海湿地表层沉积物磷形态与相关关系分析   总被引:4,自引:0,他引:4  
以九龙江口滨海湿地为例,采用连续提取法对沉积物中的磷进行连续提取和测定,探究城市滨海湿地表层沉积物中磷的生物可利用性,同时分析沉积物磷形态以及与环境参数的相关关系。结果表明:总磷(TP)含量为(456.34±13.13)mg·kg-1,生物可利用性磷(Bio-P)占TP59.46%;NaOH-P、HCl-P是TP的主要组成形态;NaOH-P是Bio-P的主要组成形态。相关性研究表明,沉积物中TP含量的增加主要来自NaOH-P,其次是HCl-P。NH4Cl-P、BD-P、NaOH-P、HCl-P之间未呈显著相关,其来源具有差异性。NaOH-P与pH显著负相关,与Fe、Al未呈显著相关;OP与有机质含量亦无显著相关。研究成果将为海域生态环境保护和城市滨海湿地环境恢复提供基础数据。  相似文献   

17.
甘蔗渣活性炭/纳米氧化铁对磷的吸附作用   总被引:1,自引:0,他引:1  
目前,水中磷的去除方法主要有:生物法、化学沉淀法、人工湿地法、离子交换法及吸附法等.生物法和化学沉淀法会产生大量的含磷剩余污泥,提高了处理成本,磷的回收也有一定的困难.人工湿地法对磷的去除效率不高,而离子交换法的处理成本较高.目前,研究较多的吸附除磷的吸附剂有,粘土矿、石英砂负载氧化铁、橙子皮负载三价铁和锆、蛋壳负载氢氧化铁等;而用甘蔗渣活性炭/纳米氧化铁作为吸附剂除磷的研究报道较少.  相似文献   

18.
彭进平  赖焕然  程高  杜青 《生态环境》2010,19(8):1936-1940
利用吉林原土和FeCl3作为主要原料,制备应用于抑制湖泊富营养化的除磷材料—改性硅藻土,并利用物理吸附仪、扫描电镜、射线粉末衍射仪(XRD)等对改性硅藻土进行表征,此外,探讨了吸附时间、pH以及温度等对改性硅藻土除磷性能的影响。结果显示:(1)经改性后,硅藻土中Fe元素的含量有所增加,杂质含量则有所降低;微孔明显增多,孔径增大,表面负载一定量的颗粒物,粗糙度增大,比表面积较原硅藻土增大6倍。(2)在水体除磷应用中,当吸附时间达到20min时,吸附趋向平衡;在酸性条件下改性硅藻土的除磷效果好于碱性条件下的除磷效果;在25℃下改性硅藻土对磷的吸附能力较其他温度下强;(3)Langmuir和Freundlich等温吸附方程都能较好地描述硅藻土对磷的等温吸附特征,用Freundlich吸附等温方程来描述改性硅藻土对水中磷的吸附更为准确。  相似文献   

19.
硅和磷配合施入对镉污染土壤的修复改良   总被引:4,自引:0,他引:4  
徐应星  李军 《生态环境》2010,19(2):340-343
为了研究两种改良剂配合施入对重金属污染土壤的改良效果,以棕壤为供试土壤,以玉米(OryzasativaL.)作为供试作物,采用二元二次正交回归组合设计方法,通过室外盆栽试验,研究了硅和磷配合施入对镉污染土壤中玉米生物量以及玉米茎叶中镉吸收量的影响。结果表明:硅、磷施入都能增加镉污染条件下玉米的生物量,其中磷的增产作用大于硅;硅、磷施入都能降低镉污染条件下玉米茎叶中的镉含量,硅降低玉米茎叶中镉含量的效应大于磷;硅、磷配合施入降低玉米茎叶中镉含量的效果大于上述两种改良剂单独施入。在本实验条件范围内,当硅为6.60g·kg-1,磷施入量范围在2.29~2.39g·kg-1时,玉米茎叶中镉含量为最低。因此可以由硅磷配合施入改良重金属污染的土壤。  相似文献   

20.
黄河中下游表层沉积物磷的赋存形态特征   总被引:1,自引:0,他引:1  
王晓丽  张丽坤 《生态环境》2011,20(5):904-907
利用淡水沉积物中磷形态的标准测试程序(SMT),研究了黄河中下游10个沉积物样品中磷的赋存形态变化规律和分布特征,并分析了沉积物中磷的来源和释放潜力。研究结果表明,黄河中下游沉积物中总磷(TP)的含量为85.0~128.2 mg.kg-1,无机磷(IP)的含量范围在52.4~80.0 mg.kg-1,有机磷(OP)的含量范围在28.4~48.2 mg.kg-1。其中主要以无机磷的形式存在,而无机磷中以钙结合态磷为主。线性回归分析结果表明,NaOH-P的含量与活性态Fe、Al含量总和有一定的线性关系。黄河沉积物向上覆水体释放磷的潜力不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号