首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of silver doped nano-particulate titanium dioxide (Ag/TiO2) using a microemulsion method and an investigation of its photocatalytic activity for the degradation of Acid Red 27 in distilled water under UV-irradiation is reported. The prepared Ag/TiO2 is characterized using transmission electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. The size of the Ag nanoparticles is around 5–15?nm, with almost uniform distribution on the TiO2 particles. The efficiency of the photocatalytic process is evaluated to establish the optimum conditions, found to be at 2?wt% of Ag loading on TiO2, catalyst dosage of 400?mg?L?1, and calcination temperature of 300°C. Complete decolorization of the dye solution on Ag/TiO2 was observed in 20?min of UV irradiation in the optimum conditions.  相似文献   

2.
The photocatalytic degradation of hydrolyzed reactive violet 5 (RV5) using titanium dioxide (TiO2) was investigated in this study. The effects of various factors including the amount of photocatalyst, RV5 concentration, light intensity, and pH on photocatalytic degradation were evaluated. The photodegradation efficiency was 90% after 20 min of irradiation and reached nearly 100% after 80 min under the condition of pH 4 and temperature of 25°C. The decolorization rate typically followed first-order reaction, and increased markedly with increasing amount of photocatalyst, pH as well as light intensity. The total mineralization, based on total organic carbon (TOC) concentration was 53% after 20 min of UV light exposure and approached nearly 100% after 140 min. The final mineralization product was formylformamide. The photodegradation was faster than the mineralization, indicating that the intermediate products of decolorization were resistant to photodegradation. In this study, we found that toxicity of RV5 significantly decreased after decolorization. Our study suggests that the photocatalytic degradation treatment of RV5 with TiO2 in wastewater is a simple and fast method.  相似文献   

3.
Photocatalytic oxidation using semiconductors is one of the advanced oxidation processes for degradation of organic pollutants in water and air. TiO2 is an excellent photocatalyst that can mineralize a large range of organic pollutants such as pesticides and dyes. The main challenge is to improve the efficiency of the TiO2 photocatalyst and to extend TiO2 light absorption spectra to the visible region. A potential solution is to couple TiO2 with a narrow band gap semiconductor possessing a higher conduction band such as bismuth oxide. Therefore, here we prepared Bi2O3/TiO2 heterojunctions by the impregnation method with different Bi/Ti ratio. The prepared composites have been characterized by UV–Vis diffused reflectance spectra and X-ray diffraction. The photocatalytic activity of the heterojunction has been determined from the degradation of orange II under visible and UV light. Results show that Bi2O3/TiO2 heterojunctions are more effective than pure TiO2-anatase under UV-A irradiation, with an optimum for the Bi/Ti ratio of 5 %, for the photocatalytic degradation of Orange II. However, the photocatalytic activity under irradiation at λ higher than 420 nm is not much improved. Under UV–visible radiation, the two semiconductors are activated. We propose a mechanism explaining why our products are more effective under UV–visible irradiation. In this case the charge separation is enhanced because a part of photogenerated electrons from the conduction band of TiO2 will go to the conduction band of bismuth oxide. In this composite, titanium dioxide is the main photocatalyst, while bismuth oxide acts as adsorbent photosensitizer under visible light.  相似文献   

4.
Poly(vinylidene fluoride) (PVDF)/titanium dioxide (TiO2) hybrid membranes were prepared using nano-TiO2 as the modifier, and characterized by Transmission Electron Microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), atomic force microscope (AFM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The characterization results demonstrated that nano-sized TiO2 particles dispersed homogeneously within the PVDF matrix, contributing to more hydroxyls and smoother surfaces. Moreover, permeate flux, retention factor, porosity, contact angle and anti-fouling tests were carried out to evaluate the effect of TiO2 concentration on the performance of PVDF membranes. Among all the prepared membranes, PVDF/TiO2 membrane containing 10 vol.% TiO2 exhibited the best hydrophilicity with an average pure water flux up to 237 L·m?2·h?1, higher than that of unmodified PVDF membranes (155 L·m?2·h?1). Besides, the bovine serum albumin rejection of the hybrid membrane was improved evidently from 52.3% to 70.6%, and the contact angle was significantly lowered from 83° to 60°, while the average pore size and its distribution became smaller and narrower.  相似文献   

5.
The photocatalytic degradation of Procion blue H-B dye in biodegraded textile washwater has been investigated for the complete removal of color and maximum reduction of chemical oxygen demand (COD). Pseudomonas putida was utilized for obtaining biodegraded textile washwater. In this process, silver-doped TiO2 photocatalyst was prepared and experiments were carried out to study the effects of UV and mercury lamp irradiations on COD reduction and removal of color. The thus prepared silver-doped TiO2 catalyst was characterized by thermogravimetric and differential thermal analysis, UV-visible spectrometer, X-ray diffraction, scanning electron microscope, energy dispersive X-ray microanalysis, and BET surface area techniques. Adsorption studies were also carried out to evaluate the fitness of isotherm models. The results show that the silver-doped TiO2 has enhanced the photodegradation of Procion blue H-B dye under UV and mercury lamp irradiations. The enhanced activity of silver-doped TiO2 is due to the enrichment of electron–hole separation by electron trapping of silver particles.  相似文献   

6.
In this study, the removal of methylene blue (MB) by the coupling of black carbon (BC) and TiO2 was investigated. The effects of different parameters such as catalyst dose, sorbent, initial concentrations of dye, pH of the solutions, recycles on discoloration, and chemical oxidation demand (COD) reduction of MB were monitored to optimize the reaction conditions. The discoloration and COD conversation rate of MB obtained by the coupling process were 100% after 90?min irradiation. The synergistic effect of MB-adsorption on BC followed by degradation through TiO2 photocatalysis was proved by FT–IR spectrophotometer. The BC as by-product of natural materials is a promising adsorbent for waste water treatment.  相似文献   

7.
Multi-walled carbon nanotubes (MWCNTs)/TiO2 composite photocatalysts with high photoactivity were prepared by sol-gel process and further characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and UV-vis absorption spectra. Compared to pure TiO2, the combination of MWCNTs with titania could cause a significant absorption shift toward the visible region. The photocatalytic performances of the MWCNTs/TiO2 composite catalysts were evaluated for the decomposition of Reactive light yellow K-6G (K-6G) and Mordant black 7 (MB 7) azo dyes solution under solar light irradiation. The results showed that the addition of MWCNTs enhanced the adsorption and photocatalytic activity of TiO2 for the degradation of azo dyes K-6G and MB 7. The effect of MWCNTs content, catalyst dosage, pH, and initial dye concentration were examined as operational parameters. The kinetics of photocatalytic degradation of two dyes was found to follow a pseudo-first-order rate law. The photocatalyst was used for seven cycles with photocatalytic degradation efficiency still higher than 98%. A plausible mechanism is also proposed and discussed on the basis of experimental results.  相似文献   

8.
The TiO2/SiO2 composite was prepared by means of the SiO2-particle-entrapment method. The FTIR data showed the presence of Si–O–Ti stretching vibration band at 970 cm−1 in the TiO2/SiO2 composite, suggesting a reaction between TiO2 and silica on the TiO2 particle surface during the silicagel formation around the TiO2 particles. The photocatalytic efficiency of TiO2 immobilized in silicagel was compared with that of the conventional TiO2 Degussa P25 catalyst. For this purpose, the degradation of indigo carmin (IC) dye was used as model molecule in the tests. The effect of operational parameters such as catalyst loading and dye concentration on the photocatalytic degradation of the model dye was investigated. The rate of degradation increased with increasing catalyst loading, and when the concentration of the dye decreases.  相似文献   

9.
Abstract

A metal-organic framework of iron-doped copper 1,4-benzenedicarboxylate was synthesized and, for the first time, utilized as a heterogeneous photo-Fenton catalyst for degradation of methylene blue dye in aqueous solution under visible light irradiation. The synthesized materials were characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction and energy-dispersive X-ray spectroscopy. The influence factors, kinetics, and stability of the synthesized catalysts were investigated in detail. Iron-doped copper 1,4-benzenedicarboxylate showed higher degradation efficiency than pure copper 1,4-benzenedicarboxylate. An almost complete degradation was achieved within 70?min under visible light irradiation at a solution pH of 6, a catalyst loading of 1?g?L?1, a H2O2 dosage of 0.05?mol L?1 and methylene blue concentration of 50?mg?L?1. Recycling studies demonstrated that the iron-doped copper 1,4-benzenedicarboxylate is a promising heterogeneous photo-Fenton catalyst for long-term removal of methylene blue dye from industrial wastewater.  相似文献   

10.
Four composites of metal oxide doped with activated carbon with a metal oxide weight of 20% were prepared using mechano-mixing method. The nano-catalysts were characterized by N2-adsorption–desorption, X-ray diffraction analysis, transmission electron microscopy, Fourier-transform infrared spectroscopy, UV-diffuse reflectance, and photoluminescence spectroscopy. Photo-catalytic degradation of methylene blue dye under UV 254 nm and visible light was examined. In general, prepared catalysts are more active for degradation of dye under visible light than UV, reaching 96% within 180?min irradiation using the SnO catalyst. Photo-degradation of methylene blue followed pseudo first order reaction mechanism with a rate constant of 14.8?×?10?3?min?1, and the time required for removal of 50% of dye was 47?min.  相似文献   

11.
The photodegradation of Acid blue 74 in aqueous solution employing a H2O2/ultraviolet system in a photochemical reactor was investigated. The kinetics of decolorization were studied by application of a kinetic model. The results show that the reaction of decolorization followed pseudo-first order kinetics. We demonstrate that there is an optimum H2O2 concentration, at which the rate of the decolorization reaction is maximum. Irradiation at 253.7 nm of the dye solution in the presence of H2O2 results in complete discoloration after ten minutes of treatment.  相似文献   

12.
Titanium dioxide (TiO2) is a widely used photocatalyst that has been demonstrated for microorganism disinfection in drinking water. In this study, a new material with a novel structure, silver and copper loaded TiO2 nanowire membrane (Cu-Ag-TiO2) was prepared and evaluated for its efficiency to inactivate E. coli and bacteriophage MS2. Enhanced photo-activated bactericidal and virucidal activities were obtained by the Cu-Ag-TiO2 membrane than by the TiO2, Ag-TiO2 and Cu-TiO2 membranes under both dark and UV light illumination. The better performance was attributed to the synergies of enhanced membrane photoactivity by loading silver and copper on the membrane and the synergistic effect between the free silver and copper ions in water. At the end of a 30 min test of deadend filtration under 254 nm UV irradiation, the Cu-Ag-TiO2 membrane was able to obtain an E. coli removal of 7.68 log and bacteriophage MS2 removal of 4.02 log, which have met the US EPA standard. The free metal ions coming off the membrane have concentrations of less than 10 ppb in the water effluent, far below the US EPA maximum contaminant level for silver and copper ions in drinking water. Therefore, the photo-activated disinfection by the Cu-Ag-TiO2 membrane is a viable technique for meeting drinking water treatment standards of microbiological water purifiers.
  相似文献   

13.
The photocatalytic activity of TiO2 deposits (Degussa P25 and Millennium PC500) has been studied using sulfamethoxazole (SMX) as a model water pollutant and a UV fluorescent lamp as a light source (365 nm). Both catalysts have shown very similar properties in the photocatalytic degradation of SMX. Special attention has been given to the effect of the irradiation time, pH, and pollutant concentration. No mass-transfer limitations are observed. The degradation of SMX is accelerated at low concentration, and the photocatalytic degradation kinetics obey the Langmuir–Hinshelwood model, allowing the adsorption and apparent rate constants to be determined for both catalysts.  相似文献   

14.
We studied the photocatalytic activity of Ti-montmorillonite. The highest activity was found for a Ti/bentonite ratio of 10 mmol/g, prepared using HCl and calcined by microwaves. This mixture is less active than TiO2 P-25 for 4-chlorophenol removal in water, but more active for methanol removal in air.  相似文献   

15.
We have discovered that HNO3 and related species are released from the TiO2 surface into air in the TiO2 photocatalytic oxidation of NO2 (1 ppm) under continuous UV light illumination (1 mW cm−2) by dehumidifying the outlet gas of the reaction and analyzing the recovered condensate liquid by ion chromatography. The origin of the HNO3 recovered in the dehumidifier could not be explained by a simple desorption of HNO3 overproduced on the TiO2 surface. The produced HNO3 must be activated on the TiO2 surface and causing the unidentified reaction.  相似文献   

16.
ZnS-loaded TiO2 (ZnS–TiO2) was synthesized by a sol–gel method. The catalyst was characterized by using different techniques (XRD, HR-SEM, EDS, DRS, PL, XPS, and BET methods). The photocatalytic activity of ZnS–TiO2 was investigated for the degradation of Sunset Yellow FCF (SY) dye in an aqueous solution using ultraviolet light. ZnS–TiO2 is found to be more efficient than prepared TiO2, TiO2–P25, TiO2 (Merck), and ZnS at pH 7 for the mineralization of SY. The effects of operational parameters such as the amount of photocatalyst, dye concentration, and initial pH on photo mineralization of SY have been analyzed. The mineralization of SY has been confirmed by chemical oxygen demand measurements. The catalyst is found to be reusable.  相似文献   

17.
A new type of Au/TiO2/reduced graphene oxide (RGO) nanocomposite was fabricated by the hydrothermal synthesis of TiO2 on graphene oxide followed by the photodeposition of Au nanoparticles. Transmission electron microscopy images showed that Au nanoparticles were loaded onto the surface of both TiO2 and RGO. Au/TiO2/RGO had a better photocatalytic activity than Au/ TiO2 for the degradation of phenol. Electrochemical measurements indicated that Au/TiO2/RGO had an improved charge transfer capability. Meanwhile, chemiluminescent analysis and electron spin resonance spectroscopy revealed that Au/TiO2/RGO displayed high production of hydrogen peroxide and hydroxyl radicals in the photocatalytic process. This high photocatalytic performance was achieved via the addition of RGO in Au/TiO2/RGO, where RGO served not only as a catalyst support to provide more sites for the deposition of Au nanoparticles but also as a collector to accept electrons from TiO2 to effectively reduce photogenerated charge recombination.
  相似文献   

18.
Nanocrystalline TiO2 films were prepared by magnetron sputtering technique on stainless-steel substrates. The as-deposited TiO2 thin films were in anatase structure with smooth surface morphology. Decomposition of methyl orange was used to measure the photoelectrocatalytic activity. The degradation rate of methyl orange increased with externally applied potential. To further accelerate the photocatalytic reaction, a novel method was employed by applying an external electric field in the mid-frequency domain. The fastest photocatalytic degradation rate of methyl orange was obtained when the frequency was maintained at 20 kHz with an external anodic bias at 3.0 V.  相似文献   

19.
Hydro-electric plasma technology in the presence of TiO2 catalyst used to treat 2,4-dinitrophenol (2,4-DNP) simulated wastewater is reported. The catalytic activity of TiO2 prepared by ammonia precipitation was greater than the activity of the TiO2 prepared by NaOH precipitation. The presence of chloride ions during the preparation process of TiO2 had a large negative effect on the catalytic activity. The catalytic activity of TiO2 calcined at 673 K was significantly higher than the activity of the TiO2 that was calcined at higher and lower temperatures. After being calcined at 673 K, TiO2 was mainly in the anatase phase and degraded 81% of the 2,4-DNP after 10 min of treatment.  相似文献   

20.

A southern Italian area that is characterized by large outcrops of rocks that are rich in titanium oxide (TiO2) phases were investigated to determine the mineralogical risk induced by the natural dispersion of TiO2 minerals. Rock, sediment and surface water samples were collected to determine the physicochemical and mineralogical factors (i.e., size distribution, morphology and alteration) indicative of potential TiO2 toxicity. X-ray diffraction data suggested that titanium oxides were present as rutile and anatase. Scanning electron microscopy images showed elongated TiO2 morphologies; fibres were found as either isolated or embedded/enclosed in flake-like phyllosilicates. The concentration of fibres in stream water ranged from 1.7 to 4.6 million fibres per litre. The highest fibre amounts in the sediments were in the <8-µm fraction, while single fibres were primarily concentrated in the <2-µm fraction. The results indicate that titanium oxide minerals represent a natural source of environmental risk and that the geomineralogical characterization of rich TiO2 areas is indispensable for understanding their geoavailability, dispersion and distribution.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号