首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
• BiVO4/Fe3O4/rGO has excellent photocatalytic activity under solar light radiation. • It can be easily separated and collected from water in an external magnetic field. • BiVO4/Fe3O4/0.5% rGO exhibited the highest RhB removal efficiency of over 99%. • Hole (h+) and superoxide radical (O2) dominate RhB photo-decomposition process. • The reusability of this composite was confirmed by five successive recycling runs. Fabrication of easily recyclable photocatalyst with excellent photocatalytic activity for degradation of organic pollutants in wastewater is highly desirable for practical application. In this study, a novel ternary magnetic photocatalyst BiVO4/Fe3O4/reduced graphene oxide (BiVO4/Fe3O4/rGO) was synthesized via a facile hydrothermal strategy. The BiVO4/Fe3O4 with 0.5 wt% of rGO (BiVO4/Fe3O4/0.5% rGO) exhibited superior activity, degrading greater than 99% Rhodamine B (RhB) after 120 min solar light radiation. The surface morphology and chemical composition of BiVO4/Fe3O4/rGO were studied by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV–visible diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The free radicals scavenging experiments demonstrated that hole (h+) and superoxide radical (O2) were the dominant species for RhB degradation over BiVO4/Fe3O4/rGO under solar light. The reusability of this composite catalyst was also investigated after five successive runs under an external magnetic field. The BiVO4/Fe3O4/rGO composite was easily separated, and the recycled catalyst retained high photocatalytic activity. This study demonstrates that catalyst BiVO4/Fe3O4/rGO possessed high dye removal efficiency in water treatment with excellent recyclability from water after use. The current study provides a possibility for more practical and sustainable photocatalytic process.  相似文献   

2.
• Bi doping in TiO2 enhanced the separation of photo-generated electron-hole. • The performance of photocatalytic degradation of MC-LR was improved. • Coexisting substances have no influence on algal removal performance. • The key reactive oxygen species were h+ and OH in the photocatalytic process. The increase in occurrence and severity of cyanobacteria blooms is causing increasing concern; moreover, human and animal health is affected by the toxic effects of Microcystin-LR released into the water. In this paper, a floating photocatalyst for the photocatalytic inactivation of the harmful algae Microcystis aeruginosa (M. aeruginosa) was prepared using a simple sol-gel method, i.e., coating g-C3N4 coupled with Bi-doped TiO2 on Al2O3-modified expanded perlite (CBTA for short). The impact of different molar ratios of Bi/Ti on CBTA was considered. The results indicated that Bi doping in TiO2 inhibited photogenerated electron-hole pair recombination. With 6 h of visible light illumination, 75.9% of M. aeruginosa (initial concentration= 2.7 × 106 cells/L) and 83.7% of Microcystin-LR (initial concentration= 100 μg/L) could be removed with the addition of 2 g/L CBTA-1% (i.e., Bi/Ti molar ratio= 1%). The key reactive oxygen species (ROSs) in the photocatalytic inactivation process are h+ and OH. The induction of the Bi4+/Bi3+ species by the incorporation of Bi could narrow the bandgap of TiO2, trap electrons, and enhance the stability of CBTA-1% in the solutions with coexisting environmental substances.  相似文献   

3.
• A novel Z-scheme Si-SnO2-TiOx with SnO2 as electron mediator is first constructed. • Transparent and conductive SnO2 can pass light through and promote charge transport. • VO from SnO2 and TiOx improve photoelectrochemical performances. • Efficient photocatalytic degradations originate from the Z scheme construction. Z-scheme photocatalysts, with strong redox ability, have a great potential for pollutants degradation. However, it is challenging to construct efficient Z-scheme photocatalysts because of their poor interfacial charge separation. Herein, by employing transparent and conductive SnO2 as electron mediator to pass light through and promote interfacial charge transportation, a novel Z-scheme photocatalyst Si-SnO2-TiOx (1<x<2) was constructed. The Z-scheme photocatalyst displayed an order of magnitude higher photocurrent density and a 4-fold increase in open-circuit potential compared to those of Si. Moreover, the onset potential shifted negatively for approximately 2.2 V. Benefiting from these advantages, this Z-scheme Si-SnO2-TiOx exhibited efficient photocatalytic performance toward phenol degradation and mineralization. 75% of the phenol was degraded without bias potential and 70% of the TOC was removed during phenol degradation. Other typical pollutants such as bisphenol A and atrazine could also be degraded without bias potential. Introducing a transparent and conductive electron mediator to construct Z-scheme photocatalyst gives a new sight to the improvement of photocatalytic performance in Z scheme.  相似文献   

4.
• Bi2O3 cannot directly activate PMS. • Bi2O3 loading increased the specific surface area and conductivity of CoOOH. • Larger specific surface area provided more active sites for PMS activation. • Faster electron transfer rate promoted the generation of reactive oxygen species. 1O2 was identified as dominant ROS in the CoOOH@Bi2O3/PMS system. Cobalt oxyhydroxide (CoOOH) has been turned out to be a high-efficiency catalyst for peroxymonosulfate (PMS) activation. In this study, CoOOH was loaded on bismuth oxide (Bi2O3) using a facile chemical precipitation process to improve its catalytic activity and stability. The result showed that the catalytic performance on the 2,4-dichlorophenol (2,4-DCP) degradation was significantly enhanced with only 11 wt% Bi2O3 loading. The degradation rate in the CoOOH@Bi2O3/PMS system (0.2011 min1) was nearly 6.0 times higher than that in the CoOOH/PMS system (0.0337 min1). Furthermore, CoOOH@Bi2O3 displayed better stability with less Co ions leaching (16.4% lower than CoOOH) in the PMS system. These phenomena were attributed to the Bi2O3 loading which significantly increased the conductivity and specific surface area of the CoOOH@Bi2O3 composite. Faster electron transfer facilitated the redox reaction of Co (III) / Co (II) and thus was more favorable for reactive oxygen species (ROS) generation. Meanwhile, larger specific surface area furnished more active sites for PMS activation. More importantly, there were both non-radical (1O2) and radicals (SO4•, O2•, and OH•) in the CoOOH@Bi2O3/PMS system and 1O2 was the dominant one. In general, this study provided a simple and practical strategy to enhance the catalytic activity and stability of cobalt oxyhydroxide in the PMS system.  相似文献   

5.
• PANI/Ti(OH)n(4n)+ exhibited excellent adsorption capacity and reusability. • Adsorption sites of Cr(VI) were hydroxyl, amino/imino group and benzene rings. • Sb(V) was adsorbed mainly through hydrogen bonds and Ti-O-Sb. • The formation of Cr-O-Sb in dual system demonstrated the synergistic adsorption. • PANI/TiO2 was a potential widely-applied adsorbent and worth further exploring. Removal of chromium (Cr) and antimony (Sb) from aquatic environments is crucial due to their bioaccumulation, high mobility and strong toxicity. In this work, a composite adsorbent consisting of Ti(OH)n(4n)+ and polyaniline (PANI) was designed and successfully synthesized by a simple and eco-friendly method for the uptake of Cr(VI) and Sb(V). The synthetic PANI/TiO2 composites exhibited excellent adsorption capacities for Cr(VI) and Sb(V) (394.43 mg/g for Cr(VI) and 48.54 mg/g for Sb(V)), wide pH applicability and remarkable reusability. The adsorption of Cr(VI) oxyanions mainly involved electrostatic attraction, hydrogen bonding and anion-π interactions. Based on X-ray photoelectron spectroscopy and FT-IR analysis, the adsorption sites were shown to be hydroxyl groups, amino/imino groups and benzene rings. Sb(V) was adsorbed mainly through hydrogen bonds and surface complexation to form Ti-O-Sb complexes. The formation of Cr-O-Sb in the dual system demonstrated the synergistic adsorption of Cr(VI) and Sb(V). More importantly, because of the different adsorption sites, the adsorption of Cr(VI) and Sb(V) occurred independently and was enhanced to some extent in the dual system. The results suggested that PANI/TiO2 is a promising prospect for practical wastewater treatment in the removal of Cr(VI) and Sb(V) from wastewater owing to its availability, wide applicability and great reusability.  相似文献   

6.
• Functional groups of AM and EDTA in composite increased removal of Cr(VI) and CR. • Removal process reached equilibrium within 30 min and was minimally affected by pH. • Elimination of Cr(VI) was promoted by coexisting CR. • Adsorption process of CR was less influenced by the presence of Cr(VI). • Mechanisms were electrostatic attraction, surface complexation and anion exchange. We prepared ethylenediaminetetraacetic acid (EDTA)-intercalated MgAl-layered double hydroxide (LDH-EDTA), then grafted acrylamide (AM) to the LDH-EDTA by a cross-linking method to yield a LDH-EDTA-AM composite; we then evaluated its adsorptive ability for Congo red (CR) and hexavalent chromium (Cr(VI)) in single and binary adsorption systems. The adsorption process on LDH-EDTA-AM for CR and Cr(VI) achieved equilibrium quickly, and the removal efficiencies were minimally affected by initial pH. The maximum uptake quantities of CR and Cr(VI) on LDH-EDTA-AM were 632.9 and 48.47 mg/g, respectively. In mixed systems, chromate removal was stimulated by the presence of CR, while the adsorption efficiency of CR was almost not influenced by coexisting Cr(VI). The mechanisms involved electrostatic attraction, surface complexation, and anion exchange for the adsorption of both hazardous pollutants. In the Cr(VI) adsorption process, reduction also took place. The removal efficiencies in real contaminated water were all higher than those in the laboratory solutions.  相似文献   

7.
•ZnO/Perlite inactivated 72% of bioaerosols in continuous gas phase. •TiO2 triggered the highest level of cytotoxicity with 95% dead cells onto Poraver. •Inactivation mechanism occurred by membrane damage, morphological changes and lysis. •ZnO/Poraver showed null inactivation of bioaerosols. •Catalysts losses at the outlet of the photoreactor for all systems were negligible. Bioaerosols are airborne microorganisms that cause infectious sickness, respiratory and chronic health issues. They have become a latent threat, particularly in indoor environment. Photocatalysis is a promising process to inactivate completely bioaerosols from air. However, in systems treating a continuous air flow, catalysts can be partially lost in the gaseous effluent. To avoid such phenomenon, supporting materials can be used to fix catalysts. In the present work, four photocatalytic systems using Perlite or Poraver glass beads impregnated with ZnO or TiO2 were tested. The inactivation mechanism of bioaerosols and the cytotoxic effect of the catalysts to bioaerosols were studied. The plug flow photocatalytic reactor treated a bioaerosol flow of 460×1 06 cells/m3air with a residence time of 5.7 s. Flow Cytometry (FC) was used to quantify and characterize bioaerosols in terms of dead, injured and live cells. The most efficient system was ZnO/Perlite with 72% inactivation of bioaerosols, maintaining such inactivation during 7.5 h due to the higher water retention capacity of Perlite (2.8 mL/gPerlite) in comparison with Poraver (1.5 mL/gPerlite). However, a global balance showed that TiO2/Poraver system triggered the highest level of cytotoxicity to bioaerosols retained on the support after 96 h with 95% of dead cells. SEM and FC analyses showed that the mechanism of inactivation with ZnO was based on membrane damage, morphological cell changes and cell lysis; whereas only membrane damage and cell lysis were involved with TiO2. Overall, results highlighted that photocatalytic technologies can completely inactivate bioaerosols in indoor environments.  相似文献   

8.
• Cu and Cr can be mostly incorporated into CuFexAlyCr2xyO4 with a spinel structure. • Spinel phase is the most crucial structure for Cu and Cr co-stabilization. • Compared to Al, Fe and Cr are easier to be incorporated into the spinel structure. • ‘Waste-to-resource’ by thermal process at attainable temperatures can be achieved. Chromium slag usually contains various heavy metals, making its safe treatment difficult. Glass-ceramic sintering has been applied to resolve this issue and emerged as an effective method for metal immobilization by incorporating heavy metals into stable crystal structures. Currently, there is limited knowledge about the reaction pathways adopted by multiple heavy metals and the co-stabilization functions of the crystal structure. To study the Cu/Cr co-stabilization mechanisms during thermal treatment, a simulated system was prepared using a mixture with a molar ratio of Al2O3:Fe2O3:Cr2O3:CuO= 1:1:1:3. The samples were sintered at temperatures 600–1300°C followed by intensive analysis of phase constitutions and microstructure development. A spinel phase (CuFexAlyCr2xyO4) started to generate at 700°C and the incorporation of Cu/Cr into the spinel largely complete at 900°C, although the spinel peak intensity continued increasing slightly at temperatures above 900°C. Fe2O3/Cr2O3 was more easily incorporated into the spinel at lower temperatures, while more Al2O3 was gradually incorporated into the spinel at higher temperatures. Additionally, sintered sample microstructures became more condensed and smoother with increased sintering temperature. Cu / Cr leachability substantially decreased after Cu/Cr incorporation into the spinel phase at elevated temperatures. At 600°C, the leached ratios for Cu and Cr were 6.28% and 0.65%, respectively. When sintering temperature was increased to 1300°C, the leached ratios for all metal components in the system were below 0.2%. This study proposes a sustainable method for managing Cu/Cr co-exist slag at reasonable temperatures.  相似文献   

9.
• UV-LED with shorter wavelength was beneficial for photocatalytic degradation. • SRNOM dramatically inhibit the degradation. • ·OH acts as the active radical in photocatalytic degradation. • Degradation mainly undergoes oxidation, hydrolysis and chain growth reactions. In this work, LED-based photocatalysis using mixed rutile and anatase phase TiO2 (P25) as the photocatalyst could effectively remove 5-chloro-2-methyl-4-isothiazolin-3-one (CMIT) and methylisothiazolone (MIT) simultaneously, with removal efficiencies above 80% within 20 min. The photocatalytic degradation of both CMIT and MIT could be modeled using a pseudo-first-order rate equation. The photocatalytic degradation rates of CMIT and MIT under LED280 illumination were higher than under LED310 or LED360 illumination. At concentrations below 100 mg/L, the degradation rate of CMIT and MIT under LED illumination significantly increased with increasing catalyst dosage. Additionally, the effects of the chloride ion concentration, alkalinity and dissolved organic matter on the photocatalytic degradation reaction were also investigated. The ·OH free radicals were determined to play the primary role in the photocatalytic degradation reaction, with a degradation contribution of >95%. The photocatalytic degradation of CMIT and MIT mainly occurred via oxidation, hydrolysis, and chain growth reactions. Finally, the possible photocatalytic degradation pathways of CMIT and MIT over LED/P25 are proposed.  相似文献   

10.
Shewanella oneidensis MR-1 was acclimated to grow with Cr(VI) of 190 mg/L. • Whole genomes from 7 populations at different acclimation stages were sequenced. • Gene mutations mainly related to efflux pumps and transporters. • An adaptation mechanism of MR-1 to high concentration of Cr(VI) was proposed. Acclimation is the main method to enhance the productivity of microorganisms in environmental biotechnology, but it remains uncertain how microorganisms acquire resistance to high concentrations of pollutants during long-term acclimation. Shewanella oneidensis MR-1 was acclimated for 120 days with increasing hexavalent chromium (Cr(VI)) concentrations from 10 to 190 mg/L. The bacterium was able to survive from the highly toxic Cr(VI) environment due to its enhanced capability to reduce Cr(VI) and the increased cell membrane surface. We sequenced 19 complete genomes from 7 populations of MR-1, including the ancestral strain, the evolved strains in Cr(VI) environment on days 40, 80 and 120 and their corresponding controls. A total of 27, 49 and 90 single nucleotide polymorphisms were found in the Cr(VI)-evolved populations on days 40, 80 and 120, respectively. Nonsynonymous substitutions were clustered according to gene functions, and the gene mutations related to integral components of the membrane, including efflux pumps and transporters, were the key determinants of chromate resistance. In addition, MR-1 strengthened the detoxification of Cr(VI) through gene variations involved in adenosine triphosphate binding, electron carrier activity, signal transduction and DNA repair. Our results provide an in-depth analysis of how Cr(VI) resistance of S. oneidensis MR-1 is improved by acclimation, as well as a genetic understanding of the impact of long-term exposure of microorganisms to pollution.  相似文献   

11.
• Wide occurrence of Cr(VI) in US source drinking water. • A strong dependence of occurrence on groundwater sources. • Elucidate Redox and equilibrium chemistry of Cr(VI). • Sn(II)-based and TiO2-based reductive treatments hold extreme promise. • Key challenges include residual waste, Cr(VI) re-generation and socioeconomic drivers. Chromium (Cr) typically exists in either trivalent and hexavalent oxidation states in drinking water, i.e., Cr(III) and Cr(VI), with Cr(VI) of particular concern in recent years due to its high toxicity and new regulatory standards. This Account presented a critical analysis of the sources and occurrence of Cr(VI) in drinking water in the United States, analyzed the equilibrium chemistry of Cr(VI) species, summarized important redox reaction relevant to the fate of Cr(VI) in drinking water, and critically reviewed emerging Cr(VI) treatment technologies. There is a wide occurrence of Cr(VI) in US source drinking water, with a strong dependence on groundwater sources, mainly due to naturally weathering of chromium-containing aquifers. Challenges regarding traditional Cr(VI) treatment include chemical cost, generation of secondary waste and inadvertent re-generation of Cr(VI) after treatment. To overcome these challenges, reductive Cr(VI) treatment technologies based on the application of stannous tin or electron-releasing titanium dioxide photocatalyst hold extreme promise in the future. To moving forward in the right direction, three key questions need further exploration for the technology implementation, including effective management of residual waste, minimizing the risks of Cr(VI) re-occurrence downstream of drinking water treatment plant, and promote the socioeconomic drivers for Cr(VI) control in the future.  相似文献   

12.
• A novel and multi-functional clay-based oil spill remediation system was constructed. • TiO2@PAL functions as a particulate dispersant to break oil slick into tiny droplets. • Effective dispersion leads to the direct contact of TiO2 with oil pollutes directly. • TiO2 loaded on PAL exhibits efficient photodegradation for oil pollutants. • TiO2@PAL shows a typical dispersion-photocatalysis synergistic remediation. Removing spilled oil from the water surface is critically important given that oil spill accidents are a common occurrence. In this study, TiO2@Palygorskite composite prepared by a simple coprecipitation method was used for oil spill remediation via a dispersion-photodegradation synergy. Diesel could be efficiently dispersed into small oil droplets by TiO2@Palygorskite. These dispersed droplets had an average diameter of 20–30 mm and exhibited good time stability. The tight adsorption of TiO2@Palygorskite on the surface of the droplets was observed in fluorescence and SEM images. As a particulate dispersant, the direct contact of TiO2@Palygorskite with oil pollutants effectively enhanced the photodegradation efficiency of TiO2 for oil. During the photodegradation process, •O2and •OH were detected by ESR and radical trapping experiments. The photodegradation efficiency of diesel by TiO2@Palygorskite was enhanced by about 5 times compared with pure TiO2 under simulated sunlight irradiation. The establishment of this new dispersion-photodegradation synergistic remediation system provides a new direction for the development of marine oil spill remediation.  相似文献   

13.
• A V2O5/TiO2 granular catalyst for simultaneous removal of NO and chlorobenzene. • Catalyst synthesized by vanadyl acetylacetonate showed good activity and stability. • The kinetic model was established and the synergetic activity was predicted. • Both chlorobenzene oxidation and SCR of NO follow pseudo-first-order kinetics. • The work is of much value to design of multi-pollutants emission control system. The synergetic abatement of multi-pollutants is one of the development trends of flue gas pollution control technology, which is still in the initial stage and facing many challenges. We developed a V2O5/TiO2 granular catalyst and established the kinetic model for the simultaneous removal of NO and chlorobenzene (i.e., an important precursor of dioxins). The granular catalyst synthesized using vanadyl acetylacetonate precursor showed good synergistic catalytic performance and stability. Although the SCR reaction of NO and the oxidation reaction of chlorobenzene mutually inhibited, the reaction order of each reaction was not considerably affected, and the pseudo-first-order reaction kinetics was still followed. The performance prediction of this work is of much value to the understanding and reasonable design of a catalytic system for multi-pollutants (i.e., NO and dioxins) emission control.  相似文献   

14.
• Size and shape-dependent MnFe2O4 NPs were prepared via a facile method. • Ligand-exchange chemistry was used to prepare the hydrophilic MnFe2O4 NPs. • The catalytic properties of MnFe2O4 NPs toward dye degradation were fully studied. • The catalytic activities of MnFe2O4 NPs followed Michaelis–Menten behavior. • All the MnFe2O4 NPs exhibit selective degradation to different dyes. The magnetic nanoparticles that are easy to recycle have tremendous potential as a suitable catalyst for environmental toxic dye pollutant degradation. Rationally engineering shapes and tailoring the size of nanocatalysts are regarded as an effective manner for enhancing performances. Herein, we successfully synthesized three kinds of MnFe2O4 NPs with distinctive sizes and shapes as catalysts for reductive degradation of methylene blue, rhodamine 6G, rhodamine B, and methylene orange. It was found that the catalytic activities were dependent on the size and shape of the MnFe2O4 NPs and highly related to the surface-to-volume ratio and atom arrangements. Besides, all these nanocatalysts exhibit selectivity to different organic dyes, which is beneficial for their practical application in dye pollutant treatment. Furthermore, the MnFe2O4 NPs could be readily recovered by a magnet and reused more than ten times without appreciable loss of activity. The size and shape effects of MnFe2O4 nanoparticles demonstrated in this work not only accelerate further understanding the nature of nanocatalysts but also contribute to the precise design of nanoparticles catalyst for pollutant degradation.  相似文献   

15.
• Mechanism of DCM disproportionation over mesoporous TiO2 was studied. • DCM was completely eliminated at 350℃ under 1 vol.% humidity. • Anatase (001) was the key for disproportionation. • A competitive oxidation route co-existed with disproportionation. • Disproportionation was favored at low temperature. Mesoporous TiO2 was synthesized via nonhydrolytic template-mediated sol-gel route. Catalytic degradation performance upon dichloromethane over as-prepared mesoporous TiO2, pure anatase and rutile were investigated respectively. Disproportionation took place over as-made mesoporous TiO2 and pure anatase under the presence of water. The mechanism of disproportionation was studied by in situ FTIR. The interaction between chloromethoxy species and bridge coordinated methylenes was the key step of disproportionation. Formate species and methoxy groups would be formed and further turned into carbon monoxide and methyl chloride. Anatase (001) played an important role for disproportionation in that water could be dissociated into surface hydroxyl groups on such structure. As a result, the consumed hydroxyl groups would be replenished. In addition, there was another competitive oxidation route governed by free hydroxyl radicals. In this route, chloromethoxy groups would be oxidized into formate species by hydroxyl radicals transfering from the surface of TiO2. The latter route would be more favorable at higher temperature.  相似文献   

16.
• Photocatalytic activity was improved in TiO2 thin film by rapid thermal annealing. • Photoreactor was designed for TiO2 thin film. • Considerable reusability and durability of prepared photocatalysts were studied. Un-biodegradable pharmaceuticals are one of the major growing threats in the wastewaters. In the current study, TiO2 thin film photocatalysts were designed by nanocrystal engineering and fabricated for degradation of the acetaminophen (ACE) in a photocatalytic reaction under UV light irradiation in batch and continuous systems. The photocatalyst was prepared by sputtering and then engineered by thermal treatment (annealing at 300℃ (T300) and 650℃ (T650)). The annealing effects on the crystallinity and photocatalytic activity of the TiO2 film were completely studied; it was found that annealing at higher temperatures increases the surface roughness and grain size which are favorable for photocatalytic activity due to the reduction in the recombination rate of photo-generated electron-hole pairs. For the continuous system, a flat plate reactor (FPR) was designed and manufactured. The photocatalytic performance was decreased with the increase of flow rate because the higher flow rate caused to form the thicker film of the liquid in the reactor and reduced the UV light received by photocatalyst. The reusability and durability of the samples after 6 h of photocatalytic reaction showed promising performance for the T650 sample (annealed samples in higher temperatures).  相似文献   

17.
• Synthesized few-layered MoS2 nanosheets via surfactant-assisted hydrothermal method. • Synthesized MoS2 nanosheets show petal-like morphology. • Adsorbent showed 93% of mercury removal efficiency. • The adsorption of mercury is attributed to negative zeta potential (-21.8 mV). Recently, different nanomaterial-based adsorbents have received greater attention for the removal of environmental pollutants, specifically heavy metals from aqueous media. In this work, we synthesized few-layered MoS2 nanosheets via a surfactant-assisted hydrothermal method and utilized them as an efficient adsorbent for the removal of mercury from aqueous media. The synthesized MoS2 nanosheets showed petal-like morphology as confirmed by scanning electron microscope and high-resolution transmission electron microscopic analysis. The average thickness of the nanosheets is found to be about 57 nm. Possessing high stability and negative zeta potential makes this material suitable for efficient adsorption of mercury from aqueous media. The adsorption efficiency of the adsorbent was investigated as a function of pH, contact time and adsorbent dose. The kinetics of adsorption and reusability potential of the adsorbent were also performed. A pseudo-second-order kinetics for mercury adsorption was observed. As prepared MoS2 nanosheets showed 93% mercury removal efficiency, whereas regenerated adsorbent showed 91% and 79% removal efficiency in the respective 2nd and 3rd cycles. The adsorption capacity of the adsorbent was found to be 289 mg/g at room temperature.  相似文献   

18.
• A high-efficiency N-doped porous carbon adsorbent for Cr(VI) was synthesized. • The maximum adsorption capacity of Cr(VI) reached up to 285.71 mg/g at 318K. • The potential mechanism for Cr(VI) adsorption by NHPC was put forward. • DFT analyzed the adsorption energy and interaction between NHPC and Cr(VI). To develop highly effective adsorbents for chromium removal, a nitrogen-doped biomass-derived carbon (NHPC) was synthesized via direct carbonation of loofah sponge followed by alkali activation and doping modification. NHPC possessed a hierarchical micro-/mesoporous lamellar structure with nitrogen-containing functional groups (1.33 at%), specific surface area (1792.47 m2/g), and pore volume (1.18 cm3/g). NHPC exhibited a higher Cr(VI) adsorption affinity than the HPC (without nitrogen doping) or the pristine loofah sponge carbon (LSC) did. The influence of process parameters, including pH, dosage, time, temperature, and Cr(VI) concentration, on Cr(VI) adsorption by NHPC were evaluated. The Cr(VI) adsorption kinetics matched with the pseudo-second-order model (R2≥0.9983). The Cr(VI) adsorption isotherm was fitted with the Langmuir isotherm model, which indicated the maximum Cr(VI) adsorption capacities: 227.27, 238.10, and 285.71 mg/g at 298K, 308K, and 318K, respectively. The model analysis also indicated that adsorption of Cr(VI) on NHPC was a spontaneous, endothermal, and entropy-increasing process. The Cr(VI) adsorption process potentially involved mixed reductive and adsorbed mechanism. Furthermore, computational chemistry calculations revealed that the adsorption energy between NHPC and Cr(VI) (−0.84 eV) was lower than that of HPC (−0.51 eV), suggesting that nitrogen doping could greatly enhance the interaction between NHPC and Cr(VI).  相似文献   

19.
• LDHs and MMOs was synthesized by ultrasound-assisted one-step co-precipitation. • MMOs performs the best for Cr(VI) and E. coliNDM-1 simultaneous removal. • Possible antibacterial pathways of Cr-MMOs were proposed. Herein we provide a novel high-efficiency nanocomposite for bacterial capture based on mixed metal oxides (MMOs) with deleterious chromium properties. With both the layer structure of layered double hydroxides (LDHs) and the magnetic properties of Fe, MMOs enrich the location of ionic forms on the surface, providing a good carrier for adsorption of the heavy metal Cr(VI). The capacity for adsorption of Cr(VI) by MMOs can be as high as 98.80 mg/g. The prepared Cr(VI)-MMOs achieved extremely expeditious location of gram-negative antibiotic-resistant E. coliNDM-1 by identifying lipid bilayers. Cr-MMOs with a Cr loading of 19.70 mg/g had the best bactericidal effect, and the concentration of E. coliNDM-1 was decreased from ~108 to ~103 CFU/mL after 30 min of reaction. The binding of nitrogen and phosphorus hydrophilic groups to chromate generated realistic models for density functional theory (DFT) calculations. The specific selectivity of MMOs toward bacterial cells was improved by taking Cr(VI) as a transferable medium, thereby enhancing the antibacterial activity of Cr-MMOs. Under the combined action of chemical and physical reactions, Cr(VI)-MMOs achieved high capacity for inactivation of bacteria. Moreover, the metallic elements ratio in Cr-MMOs remained stable in their initial valence states after inactivation. This guaranteed high removal efficiency for both heavy metals and bacteria, allowing recycling of the adsorbent in practical applications.  相似文献   

20.
• Pd nanoparticles could be reduced and supported by activated sludge microbes. • The effect of biomass on Pd adsorption by microbes is greater than Pd reduction. • More biomass reduces Pd particle size, which is more dispersed on the cell surface. • When the biomass/Pd add to 6, the catalytic reduction rate of Cr(VI) reaches stable. Palladium, a kind of platinum group metal, owns catalytic capacity for a variety of hydrogenations. In this study, Pd nanoparticles (PdNPs) were generated through enzymatic recovery by microbes of activated sludge at various biomass/Pd, and further used for the Cr(VI) reduction. The results show that biomass had a strong adsorption capacity for Pd(II), which was 17.25 mg Pd/g sludge. The XRD and TEM-EDX results confirmed the existence of PdNPs associated with microbes (bio-Pd). The increase of biomass had little effect on the reduction rate of Pd(II), but it could cause decreasing particle size and shifting location of Pd(0) with the better dispersion degree on the cell surface. In the Cr(VI) reduction experiments, Cr(VI) was first adsorbed on bio-Pd with hydrogen and then reduced using active hydrogen as electron donor. Biomass improved the catalytic activity of PdNPs. When the biomass/Pd (w/w) ratio increased to six or higher, Cr(VI) reduction achieved maximum rate that 50 mg/L of Cr(VI) could be rapidly reduced in one minute.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号