首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Genetic variation in the mangrove periwinkle Littorina angulifera   总被引:2,自引:0,他引:2  
Twenty populatios of Littorina angulifera, inhabiting islands composed of the mangrove tree Rhizophora mangle, were assayed at an esterase locus to determine whether genetic differentiation was associated with distance between populations. It was predicted, on the basis of larval dispersal in this species, that genetic differentiation between populations on islands separated by long distances should be greater than those on islands located near each other. A chi0square test of homogeneity revealed significant differences in esterase gene frequencies among the 20 island populations. However, there was no association of distance between islands and genetic heterogeneity. In addition, a cline in gene frequency was found to be assiciated with latitude. Factors responsible for the observed pattern of heterogeneity at the esterase locus are discussed.  相似文献   

2.
Variations at 22 enzyme coding loci were surveyed in 11 populations of the oyster Ostrea edulis L., which were sampled between 1988 and 1990 along the Atlantic and Mediterranean coasts of Europe. Atlantic oyster beds suffered a steady decline during the last century, and restocking of beds with oysters of foreign origin has probably resulted in a high degree of interbreeding of natural oyster stocks from all Atlantic Europe. Our study confirms the low levels of genetic variability previously reported for the oyster populations from the Atlantic coasts, and extends it to the Mediterranean coasts. The locus arginine-kinase (ARK *) exhibited a high degree of interpopulation differentiation (F ST=0.289), resulting from extensive variation in gene frequencies along a geographical cline. However, the overall genetic differentiation between populations was slight, and similar to that reported for other local populations of bivalves (mean genetic distance between populations is 0.010, mean F ST=0.062). A general pattern of increasing differentiation along the coastline in an Atlantic-mediterranean direction emerged; but genetic differentiation among the Atlantic populations was not significantly lower than that observed among the Mediterranean populations. This and other results suggest that the effects of extensive transplantation of oysters among various areas in Europe are detectable only in some particular localities. The geographical distribution of low-frequency alleles suggests a restriction to gene flow outwards from the Mediterranean Sea, across the Straits of Gibraltar.  相似文献   

3.
To determine the genetic population structure of blue crabs (Callinectes sapidus Rathbun), electrophoretic allozyme analysis was performed on 750 individuals collected from 16 nearshore locations ranging from New York to Texas, USA. Twenty enzymes and non-enzymatic proteins coded by 31 presumptive loci were examined. Twenty-two loci were either monomorphic or polymorphic at less than theP 95 level; alleles for these polymorphic loci were geographically dispersed. Allele frequencies for three of the remaining polymorphic loci were homogeneous over all populations, as were levels of polymorphism and heterozygosity. Phenograms generated by the UPGMA (unweighted pair-group method using arithmetic averages) and distance Wagner methods exhibited no geographic pattern in the clustering of populations. Estimates ofN em (effective number of migrants per generation between populations) indicated substantial gene flow, with aalues sufficiently high to infer panmixia between all blue crab populations from New York to Texas. However, despite this high level of gene flow, two striking patterns of geographic differentiation occurred: genetic patchiness and clinal variation. Allele frequencies atEST-2, GP-1, IDHP-2, DPEP-1, DPEP-2, andTPEP exhibited genetic patchiness on local and range-wide geographic scales, and allele frequencies atEST-2 varied temporally. Genetic patchiness in blue crabs is likely to be the result of the pre-settlement formation and subsequent settlement of genetically heterogeneous patches of larvae; allele frequencies of those larval patches may then be further modified through ontogeny by localized selection. In the Atlantic Ocean, a regional latitudinal cline ofEST-2 allele frequencies was superimposed on the range-wide genetic patchiness exhibited by that locus. This pattern against a background of high gene flow is highly likely to be maintained by selection. In estuaries along the Atlantic Ocean coast, a combination of low adult long-distance migration and a high retention rate of locally spawned larvae could serve to segregate populations and allow for the development of the geographic cline inEST-2. The Gulf of Mexico showed no apparent cline, perhaps due to long-distance migration of females in some regions of the Gulf, or to masking by genetic patchiness. These results emphasize the importance of both ecological and evolutionary time scales and structuring mechanisms in determining genetic population structure.  相似文献   

4.
Relatively few insects have invaded the marine environment, and only five species of sea skaters, Halobates Eschscholtz (Hemiptera: Gerridae), have successfully colonized the surface of the open ocean. All five species occur in the Pacific Ocean, H. germanus White also occurs in the Indian Ocean, whereas H. micans Esch- scholtz is the only species found in the Atlantic Ocean. We sequenced a 780 bp long region of the mitochondrial cytochrome oxidase subunit I gene (COI) for a total of 66 specimens of the five oceanic Halobates species. Our purpose was to investigate the genetic variation within species and estimate the amount of gene flow between populations. We defined 27 haplotypes for H. micans and found that haplotype lineages from each of the major oceans occupied by this species are significantly different, having sequences containing five to seven unique base substitutions. We conclude that gene flow between populations of H. micans inhabiting the Atlantic, Pacific, and Indian Ocean is limited and hypothesize that these populations have been separated for 1 to 3 million years. Similarly, there may be limited gene flow between H. germanus populations found in the Pacific and Indian Ocean and between H. sericeus populations inhabiting the northern and southern parts of the Pacific Ocean. Finally, we discuss our findings in relation to recent hypotheses about the influence of oceanic diffusion on the distribution and population structure of oceanic Halobates spp. Received: 29 July 1999 / Accepted: 23 November 1999  相似文献   

5.
The results of tagging studies conducted to determine the relationship between estuarine (juvenile) populations and adults at sea suggest that maturing Metapenaeus macleayi leave the estuaries and move along the coast in a northerly direction; the longest migration recorded was 120 km, but most prawns appear to disperse in shallow water (<40 m) within about 70 km of their juvenile habitat. There are approximately 60 estuarine populations of M. macleayi in south-east Australia; the geographical range of prawns emigrating from most estuarine populations overlap (at sea) to some degree with that of adjacent or nearby populations, but there is little or no overlap between any two of the 6 major populations. The mixing of individuals from a major population and from nearby smaller populations is negligible for the purposes of fisheries management, hence the prawns in each of the major estuarine populations and the adults in the coastal area north for about 70 km may be regarded as a unit stock.  相似文献   

6.
A new method is presented for measuring the rate of release of dissolved organic matter (DOM) produced by natural populations of marine phytoplankton. The method has been field-tested using natural populations of estuarine, coastal, and oceanic phytoplankton. Problems associated with the necessity for long incubation times, high initial activity of the inorganic 14C added to the sample, and self-absorption are overcome. Improved sensitivity is obtained by utilizing a large portion of the sample filtrate, Results from sampling at different times of day and for different lengths of incubation suggest that these problems should be reexamined in terms of both the percent and rate of relase of DOM from natural populations of phytoplankton. The rate of release of DOM from natural populations of marine phytoplankton decreases seaward. Phytoplankton in Georgia (USA) estuaries release <1 to 40 mg C m-3 day-1, in southeastern USA coastal waters from 0 to 19 mg C m-3 day-1, and in the westernmost Sargasso Sea from 0 to 2 mg C m-3 day-1. The percent of photoassimilated carbon released as DOM increases seaward. The percents are less than 7% in the Georgia estuaries, generally less than 13% in southeastern USA surface coastal waters, generally less than 21% for these coastal waters below the surface, and less than 44% for the westernmost Sargasso Sea. The results of this study and of other studies suggest that the measurement of primary productivity in estuarine and nearshore coastal waters is not seriously in error because of the absence of measurements on the rate of release of DOM from such phytoplankton. However, the estimation of primary-productivity values for oceanic waters is underestimated in some cases by about 50%.Contribution No. 595 from the Department of Oceanography, University of Washington, Seattle, Washington, USA and Contribution No. 224 from the University of Georgia Marine Institute, Sapelo Island, Georgia, USA.Extracted in part from a dissertation submitted to the Graduate Faculty of the University of Georgia in partial fulfillment of the requirements for the degree of Doctor of Philosophy.  相似文献   

7.
Spring distributions of some numerically dominant copepods reflect associations with two distinct water masses separated along the 80- to 100-m isobaths. Seaward of this middle shelf front, the oceanic Bering Sea hosts populations of Calanus cristatus, C. plumchrus, and Eucalanus bungii bungii; Metridia pacifica, Oithona similis, and Pseudocalanus spp. are also present. The large oceanic species are much less abundant in waters shallower than 80 m where the community is seasonally dominated by smaller copepods, O. similis, Acartia longiremis, and Pseudocalanus spp. Experimental and field-derived estimates of carbon ingestion indicate that the oceanic/outer shelf copepods can occasionally graze the equivalent of the daily plant production and probably routinely remove 20–30% of the primary productivity. Conversely, stocks of middle shelf copepods rarely ingest more than 5% of the plant carbon productivity. During 45 d between mid April to late May, 1979, approximately three times more organic matter was ingested m-2 by the outer shelf/oceanic copepod community than by middle shelf species. This imbalance in cross-shelf grazing permits middle shelf phytoplankton stocks to grow rapidly to bloom proportions, and to sink ungrazed to the seabed. Over the outer shelf and particularly along the shelf break, a much closer coupling to phytoplankton supports a large biomass of oceanic grazers. Here, copepod stocks approaching 45 g dry wt m-2 occur in late spring as a narrow band at the shelf break.Supported by National Science Foundation Grant DPP 76-23340Contribution no. 485, Institute of Marine Science, University of Alaska, Fairbanks  相似文献   

8.
The cobblerCnidoglanis macrocephalus (Valenciennes) is an endemic marine and estuarine catfish from southern Australia. Conflicting views on the degree of isolation of the estuarine populations underscore general questions about genetic divergence in coastal species. Although estuaries are widely recognized as ecologically important, little work has been done on their role in favouring genetic divergence. In order to estimate the extent of genetic subdivision among nearshore marine and estuarine populations, electrophoretic variation of enzymes was examined in seven marine and six estuarine populations of cobbler from sites spanning 1500 km along the southwest Australian coastline. Among all populations, the mean standardized variance in allelic frequencies (F ST) for six polymorphic loci was 0.277, a high value comparable to those of other shallow-water teleosts whose life-history characteristics and habitat preferences restrict their dispersal capability. The pattern of genetic identities between populations showed divergence between west and south coast sites. Within these regional groups, however, there was substantial heterogeneity, much of which was associated with estuaries. Among all six estuarine sites, the averageF ST was 0.333, 40% higher than the value of 0.237 for the marine sites. Low estimates of the genetically effective number of migrants suggest population subdivision between marine and estuarine environments and between similar habitat types. This study indicates the importance of habitat in affecting the connectedness of populations, even in apparently open marine systems.  相似文献   

9.
The genetic structure of Patagonian toothfish populations in the Atlantic and western Indian Ocean Sectors of the Southern Ocean (SO) were analysed using partial sequences of the mitochondrial 12S rRNA gene and seven microsatellite loci. Both haplotype frequency data (F ST>0.906, P<0.01) and microsatellite genotype frequency data (F ST=0.0141–0.0338, P<0.05) indicated that populations of toothfish from around the Falkland Islands were genetically distinct from those at South Georgia (eastern Atlantic Sector SO), around Bouvet Island (western Atlantic Sector SO) and the Ob Seamount (western Indian Ocean Sector of the SO). Genetic differentiation between these populations is thought to result from hydrographic isolation, as the sites are separated by two, full-depth, ocean-fronts and topographic isolation, as samples are separated by deep water. The South Georgia, Bouvet and Ob Seamount samples were characterised by an identical haplotype. However, microsatellite genotype frequencies showed genetic differentiation between South Georgia samples and those obtained from around Bouvet Island and nearby seamounts (F ST=0.0037, P<0.05). These areas are separated by large geographic distance and water in excess of 3,000 m deep, below the distributional range of toothfish (<2,200 m). No significant genetic differentiation was detected between samples around Bouvet Island and the Ob Seamount although comparisons may have been influenced by low sample size. These localities are linked by topographic features, including both ridges and seamounts, that may act as oceanic “stepping stones” for migration between these populations. As for other species of deep-sea fish, Patagonian toothfish populations are genetically structured at the regional and sub-regional scales.  相似文献   

10.
Direct-developing intertidal Lasaea spp. occur in the North Atlantic as both continental margin and oceanic island populations. We conducted a molecular phylogenetic analysis of representative populations in order to test colonization hypotheses for North Atlantic oceanic islands. Thirty individuals each were collected in 1995 and 1996 from two continental putative source populations (Florida, Iberia) and two oceanic island populations (Bermuda, Azores). They were sequenced for a 462 nucleotide portion of the mitochondrial large ribosomal subunit (16S) gene. No amphi-Atlantic genotypes were detected: Bermudan lineages co-clustered exclusively with Floridian congeners, and Azorean samples formed an exclusive clade with Iberian haplotypes. Our data indicate that geographical proximity to continental source populations is a better predictor of phylogenetic relationships in North Atlantic Lasaea spp. than present-day oceanic surface circulation patterns. The phylogenetic trees generated are not consistent with colonization of oceanic islands by indirect-developing ancestral lineages or by truly trans-oceanic rafting events. However, they are consistent with predicted topologies resulting from limited (≤ 2000 km), long-distance colonization by rafting (against present-day circulation patterns in the case of the Azores) and from anthropogenic introductions. Received: 17 December 1998 / Accepted: 7 June 1999  相似文献   

11.
Genetic population structures along the Japanese coast, analyzed by sequence data from the mitochondrial DNA COI region, were determined for four intertidal brachyuran species in the superfamily Thoracotremata (Ocypode ceratophthalma, Gaetice depressus, Chiromantes dehaani and Deiratonotus japonicus), which were characterized by different habitat requirements. O. ceratophthalma (seashore; supratidal sand) and C. dehaani (estuarine; supratidal marsh) showed no significant genetic differentiation among Japanese populations. The Japanese populations of O. ceratophthalma, however, were found to genetically differentiated from the Philippine population. G. depressus (seashore; intertidal cobbles) exhibited significant genetic differentiation between the Amami-Ohshima population and other local populations. D. japonicus (estuarine; intertidal cobbles) showed significant genetic differentiation among many local populations separated by about 30–1,200 km. The different patterns of genetic population structure recorded for the four species, thus, do not simply correspond to habitat type. An erratum to this article can be found at  相似文献   

12.
Marine communities are experiencing unprecedented rates of species homogenization due to the increasing success of invasive species, but little is known about the mechanisms that allow a species to invade and persist in a new habitat. In central California, native (Mytilus trossulus Gould 1850) and invasive (Mytilus galloprovincialis Lamarck 1819) blue mussels and their hybrids co-exist, providing an opportunity to analyze the mechanisms that determine the distributions of these taxa. Spatial and temporal variation in temperature and salinity and the relative frequencies of these mussel taxa were examined between 2000 and 2004 at four sites in San Francisco Bay and four in Monterey Bay, which were chosen for their different positions along inferred estuarine/oceanic gradients in the hybrid zone. Mussels were genetically identified as the parent species or hybrids by amplifying regions of two species-specific loci: the adhesive byssal thread protein (Glu-5′) and the internal transcribed spacer region of ribosomal DNA (ITS 1). The proportion of M. trossulus at the eight hybrid zone sites correlated negatively with average salinity (R 2=0.60) and positively with maximal temperature (R 2≥0.72), a somewhat unexpected result given what is known about the phylogeography of this species. The proportion of M. galloprovincialis showed the opposite pattern. The proportion of hybrids was correlated neither with habitat temperature nor salinity. Genotypes of mussel populations at an additional 13 sites from Coos Bay, Oregon (latitude 43.35°N) to Long Beach, California (latitude 33.72°N), sampled at various intervals between 2000 and 2004, were also determined. This survey confirmed previous reports that the hybrid zone lies between Monterey and the Cape Mendocino region (latitudes 36.63°N–40.5°N). Within Monterey and San Francisco Bays, however, the temporal comparisons (1990s vs. 2000s) revealed abrupt changes in the proportions of the two parent species and their hybrids on annual and decadal time scales. These changes indicate that the blue mussel populations are in a highly dynamic state. The survey also showed that, regardless of habitat, M. trossulus is consistently of smaller average size than either M. galloprovincialis or hybrids.
Caren E. BrabyEmail:
  相似文献   

13.
Biochemical genetic variation at a leucine aminopeptidase (LAP) locus is related to salinity variation in several marine bivalve molluscs. This paper details an investigation of the Long Island Sound model of LAP selection (LAP genotype-dependent mortality occurring among newly settled Mytilus edulis mussels) carried out in 1997 among three M. galloprovincialis mussel populations along the salinity gradient of Wellington Harbour, New Zealand. Significant LAP genotypic heterogeneity was observed at the LAP locus between small (<25 mm shell length) and large (>25 mm shell length) M. galloprovincialis from Petone and Eastbourne (the two sites experiencing the greatest salinity variation), whereas genotypic heterogeneity was not significantly different between small and large mussels from Seatoun (the site experiencing the least salinity variation). The Lap 3 allele decreased in frequency and the Lap 4 allele increased in frequency at Petone and Eastbourne, whereas the Lap 3 and Lap 4 allele frequencies remained effectively constant at Seatoun. Both these findings are consistent with the Long Island Sound model of selection. At all three locations, the Lap 3,3 genotype decreased in frequency from small to large mussels, whereas the Lap 3,4 genotype increased in frequency from small to large mussels. All other LAP genotypes occurred at low frequencies (<0.10) at all three locations and showed no evidence of frequency change from small to large-size mussels nor evidence of clinal change among the three locations. These genotype frequency data possibly indicate that the Lap 3,3 genotype is at a selective disadvantage compared to the Lap 3,4 genotype at all three locations, and that this selective disadvantage is related to the extent of salinity variation which exists at each location. Further investigation is required before it can be determined if the Long Island Sound model of selection best describes the size-dependent and location-specific changes in LAP allele and genotype frequencies along this salinity gradient. Comparison of the population genetic structure at the LAP locus in 1995 and in 1997 revealed a profound change from heterozygote excesses to heterozygote deficiencies for all three M. galloprovincialis populations. The reason for the change is unknown, but the change indicates that population genetic structure at the LAP locus is highly variable in time, but consistent in space, among these M.␣galloprovincialis populations. Received: 5 February 1998 / Accepted: 27 May 1998  相似文献   

14.
Randomly amplified polymorphic DNA (RAPD) banding patterns were compared between samples of the netted dogwhelk Nassarius reticulatus from 11 locations along the NW Iberian Peninsula coast. To detect if rias (estuaries formed by drowned river valleys) might promote genetic differentiation, five sampling sites were located within a ria (ria of Muros) and the remaining six were scattered along open-coast areas at increasing distances from the ria mouth. Population differentiation statistics (Φ-values) were estimated using a hierarchical analysis of molecular variance (AMOVA) with samples sorted into two groups: open-coast and ria populations. Despite a high potential to disperse, AMOVA demonstrated a modest, statistically significant genetic heterogeneity among N. reticulatus populations. Most of the genetic structure resided in differences among open-coast populations; ria populations were genetically homogeneous. No obvious geographical pattern was detected for the pairwise genetic distances (non-metric multidimensional scaling; UPGMA tree; Mantel test). Unlike previous studies with other species at a variety of estuarine systems other than rias, there was no evidence that the ria of Muros may enhance the genetic divergence of N. reticulatus populations. This discrepancy is discussed in relation to the biological features of the species (high dispersal potential and a preference for mid-low estuarine habitat) and the strong hydrographic connectivity between ria and neighbouring off-shore waters.  相似文献   

15.
A dual-isotope method was developed to measure grazing rates and food preferences of individual species of heterotrophic dinoflagellates from natural populations, collected from the Slope, Gulf Stream, and Sargasso Sea and from a transect from Iceland to New England, in 1983. The isotope method measures the grazing rates of microzooplankton which cannot be separated in natural populations on the basis of size. Tritiated-thymidine and 14C-bicarbonate were used to label natural heterotrophic and autotrophic food, respectively. Nine oceanic dinoflagellate species in the genera Protoperidinium, Podolampas, and Diplopsalis fed on both heterotrophic and autotrophic food particles with clearance rates of 0.4 to 8.0 l cell-1 h-1, based on 3H incorporation, and 0.0 to 28.3 l cell-1 h-1, based on 14C incorporation. Two dinoflagellate species, Protoperidinium ovatum and Podolampas palmipes, fed only on 3H-labelled food particles. Several species of dinoflagellates fed on bacteria (<1 m) which had been prelabelled with 3H-thymidine. The clearance rates of heterotrophic dinoflagellates and ciliates were similar and within the range of tintinnid ciliate clearance rates reported in the literature. As heterotrophic dinoflagellates and ciliates can have comparable abundances in oceanic waters, we conclude that heterotrophic dinoflagellates may have an equally important impact as microheterotrophic grazers of phytoplankton and bacteria in oceanic waters.Partially supported by a grant from the National Science Foundation, OCE-81-17744  相似文献   

16.
Nanoplankton and picoplankton primary production has been studied at two oceanic stations in the Porcupine Sea-bight and at one shelf station in the Celtic Sea. At both sites, low wind conditions in June and July 1985 resulted in greatly reduced vertical turbulent mixing and a secondary, temporary thermocline developed in what is usually a well-mixed surface layer; as a result, there was physical separation of the phytoplankton within two zones of the surface mixed layer. The photosynthetic characteristics of three size fractions (>5 m, <5 to >1 m and <1 to >0.2 m) of phytoplankton populations from the two zones have been measured. Phytoplankton was more abundant at the oceanic stations and chlorophyll a values were between 1.3 and 2.2 mg chlorophyll a m-3, compared with 0.3 to 0.6 mg chlorophyll a m-3 at the shelf station; at both stations, numbers of cyanobacteria were slightly higher in the lower zone of the surface mixed layer. There was no effect of the temporary thermocline on the vertical profiles of primary production and most phtosynthesis occurred in the surface 10 m. Photosynthetic parameters of the three size fractions of phytoplankton have been determined; there was considerable day-to-day variation in the measured photosynthetic parameters. Assimilation number (P m B ) of all >5 m phytoplankton was lower for the deeper than for the surface populations, but there was little change in initial slope (a B ). The small oceanic nanoplankton (<5 to >1 m) showed changes similar to the >5 m phytoplankton, but the same size fraction from the shelf station showed changes that were more like those shown by the picoplankton (<1 m) viz, little change in P m B but an increase in a B with depth. Values of a B were generally greater for the picoplankton fraction than for the larger phytoplankton, but values of adaptation parameter (I k )(=P m B /) were not always less. There was little evidence to support the hypothesis that these populations of picoplankton were significantly more adapted to low light conditions than the larger phytoplankton cells. When photosynthetic parameters of the picoplankton were normalised to cell number (P m C /a C ) rather than chlorophyll a, P m C was comparable to other published data for picoplankton, but a C was much lower. The maximum doubling time of the picoplankton at saturating irradiance is calculated to be ca. 8.5 h for the oceanic population and ca. 6.2 h for the shelf population.  相似文献   

17.
Limited dispersal should result in genetic differences between populations proportional to geographic distances of separation. This association between gene flow and distance can be disrupted by (1) continuing genetic exchange among distant populations, (2) historical changes in gene flow, and (3) physical barriers or corridors to dispersal. The movements of larvae are thought to determine dispersal capability in benthic marine invertebrates. The solitary scleractinian Balanophyllia elegans Verrill possesses crawling larvae capable of only limited dispersal. Paradoxically, however, inferred levels of gene flow between pairs of localities spread over much of the 4000 km range of B. elegans exhibited a weaker relationship with geographical separation than that expected for a linear array of populations in which all genetic exchange takes place between adjacent populations. In this paper, I examined the pattern of gene flow (inferred from the frequencies of eight polymorphic allozyme loci) in B. elegans at a smaller (1 to 50 km) spatial scale to determine (1) whether gene flow at this spatial scale conformed to the expectations of the stepping-stone model, and (2) whether continuing long-distance gene flow or historical changes in gene flow were responsible for the weak relationship between gene flow and distance observed previously at the rangewide spatial scale. Between May and August 1992, I collected 75 adults from each of 18 localities along the coast of Sonoma County, California, USA. These populations of B. elegans were significantly subdivided both among localities separated by 1 to 50 km (F LT =0.053, Se=0.0075) and among patches separated by 4 to 8 m (F PL=0.026, SE=0.0023). The observed slope and correlation (r 2=0.54) between inferred levels of gene flow and the geographic distance at the 1 to 50 km spatial scale conformed to equilibrium expectations (obtained by simulation) for a linear stepping-stone model, although those from the rangewide spatial scale did not. This implies that the mechanisms conferring patterns of inferred genetic differentiation between localities in B. elegans differ fundamentally with spatial scale. At a scale of 1 to 50 km, continuing gene flow and drift have equilibrated and the process of isolation-bydistance may facilitate local adaptive change. At a broader spatial scale, historical changes in gene flow, perhaps affected by late Pleistocene climatic fluctuations, disrupt the equilibration of gene flow and genetic drift, so that genetic differentiation may not increase continuously with separation between populations.  相似文献   

18.
Recent evaluations of estuarine and coastal nutrient budgets implicate atmospheric deposition as a potentially significant (20 to 30%) source of biologically available nitrogen. We examined the potential growth stimulating impact of atmospheric nitrogen loading (ANL), as local rainfall, in representative shallow, nitrogen limited North Carolina mesohaline estuarine and euhaline coastal Atlantic Ocean habitats. From July 1988 to December 1989, using in situ bioassays, we examined natural phytoplankton growth responses, as14CO2 assimilation and chlorophylla production, to rain additions over a range of dilutions mimicking actual input levels. Rainfall at naturally occurring dilutions (0.5 to 5%) stimulated both14CO2 assimilation and chlorophylla production, in most cases in a highly significant manner. Parallel nutrient enrichments consistently pointed to nitrogen as the growth stimulating nutrient source. Generally, more acidic rainfall led to greater magnitudes of growth stimulation, especially at lower dilutions. Nutrient analyses of local rainfall from May 1988 to January 1990 indicated an inverse relationship between pH and NO 3 - content. There have been growing concerns regarding increasing coastal and estuarine eutrophication, including ecologically and economically devastating phytoplankton blooms bordering urban and industrial regions of North America, Europe, Japan, and Korea. It appears timely, if not essential, to consider atmospheric nutrient loading in the formulation and implementation of nutrient management strategies aimed at mitigating coastal eutrophication.  相似文献   

19.
Genetic population structures along the Japanese coast, analyzed by sequence data from the mitochondrial DNA COI region, were determined for four intertidal brachyuran species in the superfamily Thoracotremata (Ocypode ceratophthalma, Gaetice depressus, Chiromantes dehaani and Deiratonotus japonicus), which were characterized by different habitat requirements. O. ceratophthalma (seashore; supratidal sand) and C. dehaani (estuarine; supratidal marsh) showed no significant genetic differentiation among Japanese populations. The Japanese populations of O. ceratophthalma, however, were found to genetically differentiated from the Philippine population. G. depressus (seashore; intertidal cobbles) exhibited significant genetic differentiation between the Amami-Ohshima population and other local populations. D. japonicus (estuarine; intertidal cobbles) showed significant genetic differentiation among many local populations separated by about 30–1,200 km. The different patterns of genetic population structure recorded for the four species, thus, do not simply correspond to habitat type.  相似文献   

20.
Photosynthate incorporation into lipids, low molecular weight compounds, polysaccharides and proteins by individual phytoplankton species isolated from natural populations is described. This sensitive method uses serial solvent extraction and liquid scintillation counting and gives results indentical to those obtained from filtering large numbers of cells from suspension. The time course of incorporation of 14C into these polymers for algae isolated from estuarine and coastal populations shows (i) considerable differences in the carbon metabolism among species, (ii) the pattern of incorporation by any individual species may not reflect that of the phytoplankton community and (iii) significant reallocation of cell carbon among carbon pools and net protein synthesis at night. This technique permits the in-situ carbon metabolism of individual species to be examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号