首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
重金属和有机磷农药污染物在水域环境中普遍存在。以卤虫(Artemiasalina)为受试生物,采用固定浓度比法,研究了重金属Zn、Cd与辛硫磷和敌百虫2种农药以毒性单位比为4∶1、3∶2、1∶1、2∶3和1∶4构成的二元混合体系对卤虫的联合毒性,采用等效线图解法判定毒物间的相互作用类型。同时,基于单一化合物的浓度-效应曲线,运用浓度加和(CA)和独立作用(IA)2种模型对不同配比二元混合物的联合毒性进行预测。结果表明,Zn-Cd混合物联合毒性随Zn比例的增加而增强。低Zn比例的混合物(1∶4、2∶3)表现为拮抗效应,中、高Zn比例的混合物(1∶1、3∶2和4∶1)为加和效应。5种不同配比的有机磷农药混合物均表现为加和效应。金属-农药混合物则均为拮抗作用。模型预测结果表明,CA能够较好地预测辛硫磷与敌百虫二元混合物的联合毒性,而IA则更适用于对金属-农药混合物联合毒性的预测。以上结果表明,混合体系中各组分的比例是影响联合毒性的因素之一,毒性评估时应该充分考虑其影响。CA及IA模型同样适用于评估和预测包含相同或完全独立作用机制组分的混合物对非单细胞生物体(如卤虫)的联合毒性。  相似文献   

2.
污染物在环境中普遍以混合物的形式存在,其累积毒性与毒性相互作用具有潜在的环境风险。因此,本研究以水环境中普遍存在的氨基糖苷类抗生素(硫酸链霉素、硫酸安普霉素和双氢链霉素)和重金属锌(Zn)为目标污染物,以蛋白核小球藻(Chlorella pyrenoidosa,C. pyrenoidosa)为指示生物,应用直接均分射线法设计3种抗生素与Zn的3个二元混合物体系,应用时间毒性微板分析法系统测定3种抗生素和重金属Zn及其二元混合物射线的时间-浓度-毒性数据,以浓度加和(concentration addition,CA)与独立作用(independent action,IA)为标准加和参考模型,分析混合物毒性相互作用及其随时间变化规律。结果表明,随着暴露时间延长,3种抗生素和重金属Zn对C. pyrenoidosa的毒性逐渐增强; 2种模型对3个二元混合物体系的毒性相互作用评估基本一致,即在低浓度区域始终呈现加和作用,而在高浓度区域随暴露时间延长由协同作用逐渐转变为加和作用;而对于同一混合物体系,CA和IA模型预测毒性之间的差距随着浓度增加而增加,且IA预测曲线始终位于CA预测曲线上方,显示了IA模型在评估具有相异组分混合物的毒性时较CA模型接近实际观测值。  相似文献   

3.
基于单一污染物的毒性研究无法准确评估真实环境中多污染物共存的生态与健康风险,因此大量研究开始关注混合物联合毒性这一更具挑战性和现实性的课题.本文围绕当前毒理学领域的主要研究对象——重金属、纳米材料,综述了重金属混合物、纳米颗粒混合物、以及两者混合物的联合作用评价方法,包括基于重金属间无相互作用或相互作用可忽略的浓度加和(concentrationaddition,CA)模型、独立作用(independent action,IA)模型及其改进模型,基于生物生理过程的生物配体模型(biotic ligand model,BLM)、毒代-毒效动力学模型(toxicokinetictoxicodynamic,TK-TD)、动态能量平衡(dynamic energy budget,DEB)理论,基于颗粒物结构性质的定量纳米结构-活性关系(quantitative nano structure-activity relationships,QNAR,或nano-QSAR)模型等,介绍了各类模型的基本原理、适用条件和应用情况.最后对重金属-纳米颗粒联合毒性的未来研究方向进行了展望.  相似文献   

4.
理论非线性联合毒性评价模型(the theoretical non-linear combined toxicity assessment model, TNL)源于混合物联合作用的定义,研究者也从生化水平检测验证了其正确性。为验证该模型在混合物联合作用评价方面的能力,本研究采用微孔板检测法测试了7种不同类型环境污染物对费氏弧菌(Vibrio fischeri)的一元、二元急性毒性,选取浓度加和模型(concentration addition model,CA)、独立作用模型(independent action model,IA)及TNL模型进行混合物联合毒性的评价。结果表明,7种环境污染物的一元、二元剂量效应曲线能够很好地被Hill方程拟合。CA、IA和TNL模型的评价结果存在较大差异,有8组混合物作用方式评价出现分歧。Hill方程的拟合参数m在一定程度上反映了曲线中部的斜率。当组分剂量效应曲线的拟合参数m值差异较小时,可选用CA模型进行评价。若CA模型出现预测盲点时,可直接选用IA模型。当m值差异较大时,宜使用TNL模型进行评价。TNL模型作为补充模型,联合CA、IA模型共同应用于二元混合物联合作用评价,可得到准确的结果。  相似文献   

5.
针对上海地区地表水中混合并持久残留的抗生素对水生态的危害,测试了3种主要被使用的抗生素(磺胺甲恶唑,SMZ;土霉素,OTC;氟苯尼考,FF)对4个不同营养级的水生生物代表种(蛋白核小球藻、费氏弧菌、大型蚤和斑马鱼胚胎)的单一毒性和联合毒性,并进一步对生态风险进行评估来探究抗生素对水生态系统的综合作用。研究表明:水生生物对单一抗生素暴露的毒性敏感顺序为:蛋白核小球藻斑马鱼胚胎费氏弧菌大型蚤。用联合指数(CI)来评价抗生素二元混合物之间的相互作用时发现对于不同水生模式生物,抗生素之间的相互作用方式以拮抗作用(CI1)为主。通过与浓度加和(CA)和独立作用(IA)2个传统模型的预测效果比较,发现CI模型能准确预测到抗生素联合毒性偏离相加作用。由于养殖废水中这3种抗生素的含量均远高于其他水体(如黄浦江、长江口、工厂废水),其对不同营养级的水生生物均表现出较高的风险性,需要对养殖废水采取相应的风险削减措施;相比之下,其他水体中抗生素对费氏弧菌、斑马鱼胚胎、大型蚤均表现出低风险,但是对蛋白核小球藻仍具有一定的风险性,需要警惕抗生素对水体初级生产者的风险性。  相似文献   

6.
重金属与农药共同暴露产生的联合毒性作用可以对实际环境产生潜在的风险。为了研究重金属与农药混合物在不同浓度比毒性相互作用(协同、拮抗与加和)及其定量评估相互作用大小,根据单个物质无观测浓度(NOEC)、5%效应浓度(EC5)、10%效应浓度(EC10)和50%效应浓度(EC50),设计3组混合物体系(即农药-农药、重金属-重金属和农药-重金属)分别按NOEC、EC5、EC10和EC50浓度比的12条混合物射线,测试单个化合物及混合物对以费氏弧菌的发光抑制急性毒性,利用浓度加和(CA)、独立作用(IA)、模型偏差比(MDR)及其观测值置信区间定性和定量评估12条混合物射线的毒性相互作用。结果表明,农药-农药二元混合物体系和农药-重金属六元混合物体系均产生明显的协同作用,其中农药-农药混合物体系中,混合物射线EE-NOEC在50%效应下协同作用大小达到30.6(MDRCA和MDRIA数值);混合物射线EE5、EE10的协同作用大小接近于混合物射线EE-NOEC,混合物射线EE50的效应大于15%时CA和IA计算的MDR值均在置信区间上限的上方,即混合物发生协同作用;农药-重金属混合物体系的4条混合物射线EE-NOEC、EE5、EE10和EE50在所有测试浓度水平的MDR值均在置信区间上限的上方,呈现出明显的协同作用;在50%效应下,混合物射线EE-NOEC、EE5、EE10和EE50的MDRCA和MDRIA值分别为4.05和4.91、6.12和7.98、3.70和4.60、2.62和2.59。重金属-重金属四元混合物体系除了EC50浓度比混合物表现出拮抗作用,其余混合物在所有测试浓度范围的MDR值均在置信区间范围内,均为加和作用。因此,混合物的毒性相互作用大小随着组分浓度比变化而发生变化。  相似文献   

7.
环境中抗生素复合污染产生的毒性效应具有潜在风险。为系统考察磺胺类抗生素(SAs)混合物的联合毒性效应,以环境中常见的磺胺吡啶(SPY)、磺胺甲基嘧啶(SMR)、磺胺二甲嘧啶(SM2)、磺胺甲氧哒嗪(SMP)、磺胺甲恶唑(SMZ)和磺胺喹噁啉(SQ) 6种SAs及其二元混合物体系(共75条混合物射线)为研究对象,利用96孔微板测定6种SAs及其二元混合物对斜生栅藻(So)的生长抑制毒性,通过浓度加和(CA)、独立作用(IA)模型和模型偏移率(MDR)分析混合物的联合毒性及毒性相互作用。结果表明,6种SAs及其混合物射线对So在96 h呈现明显的毒性,但不同SAs的毒性大小不同,以半数效应浓度的负对数(pEC_(50))为毒性大小指标,6种SAs的毒性大小顺序为:SQ(pEC_(50)=5.311)>SPY(pEC_(50)=3.757)≈SMZ(pEC_(50)=3.749)>SMP(pEC_(50)=3.680)>SM2(pEC_(50)=3.090)>SMR(pEC_(50)=2.595);不同组分SAs混合物对So的联合毒性存在差异,大部分混合物毒性存在组分浓度依赖性,而有小部分混合物毒性则不存在组分浓度依赖性;15个SAs混合物体系以拮抗作用和协同作用为主。混合体系组分的浓度比不同会产生不同的相互作用类型。在10%效应下,含有组分SPY的混合体系大多呈现协同作用,且随组分SPY浓度比的增大,协同作用增强。含有组分SMR的混合体系均呈现拮抗作用,且随着组分SMR浓度比的增大,拮抗作用增强。研究成果为抗生素的生态风险评估提供重要的基础数据。  相似文献   

8.
序言     
<正>"环境计算化学与预测毒理学"是近年来在环境化学、环境毒理学、计算化学、计算生物学和分子生物学等学科之间形成的一个新兴的前沿研究领域,主要应用计算化学和大数据分析的方法开展化学品在环境介质中的转化行为、毒物在生物体内与大分子的相互作用机制以及毒性预测等方面的工作,已成为研究化学污染物的环境行为、毒理作用机制的重要手段,也是化学品生态风险评价与管理的必要工具,可为环境友好的  相似文献   

9.
环境雌激素对生命健康影响受到广泛关注,现行污染物环境标准制订和风险评价只针对单一化合物而非混合物效应,不足以保护生命安全与人类健康。为探讨环境雌激素的混合物效应,选择对雌激素敏感的人乳腺癌MCF-7细胞增殖实验,检测雌二醇(E2)、邻苯二甲酸酯类化合物(DBP和DEHP)的单一及其联合雌激素活性;基于单一化合物的浓度-反应曲线,运用浓度相加(CA)和独立作用(IA)模型对混合物的毒性进行预测,并将模型预测结果与混合物实验数据进行比较分析。结果表明,E2、DBP、DEHP对MCF-7细胞的单一作用数据可通过Weibull方程拟合,由拟合方程得到的半数效应浓度(EC50)及95%置信区间分别为3.450×10-6(2.373×10-6~1.675×10-5)、5.138(1.489~1.082×10)、1.186(4.478×10-1~2.24)μmol·L-1;3种化合物的混合物数据亦可通过Weibull、Logistic和Exp Gro1方程进行有效拟合,混合物效应与化合物单独作用产生的效应具有显著性差异;3种化合物表现非相似联合作用,利用独立作用(IA)模型预测混合物效应较为可靠,外源性环境雌激素与内源性雌激素联合作用产生的混合效应显著。环境雌激素混合物毒性可以通过相加作用模型预测,为环境复合污染的风险评价和管理提供基础数据。  相似文献   

10.
有机磷农药对蛋白核小球藻的毒性相互作用研究   总被引:1,自引:0,他引:1  
水体中农药复合污染产生的毒性效应具有潜在风险。为系统考察有机磷农药(OPs)混合物对淡水生态系统中绿藻的联合毒性效应,以马拉硫磷(MIT)、敌敌畏(DDVP)、敌百虫(TRC)、乐果(DIT)和氧乐果(OMT)等5种OPs作为混合物组分,运用直接均分射线法设计9组二元混合物体系共45条混合物射线。利用96孔微板测定5种OPs及其二元混合物对蛋白核小球藻(C. pyrenoidosa)的生长抑制毒性,通过基于置信区间的组合指数法分析混合物的联合毒性及毒性相互作用。结果表明,以p EC50为毒性指标,5种OPs对C. pyrenoidosa的毒性大小顺序为:TRCMITDDVPOMTDIT,OPs对C. pyrenoidosa的毒性大小受其中心磷原子的电正性影响;因混合组分的不同,部分OPs混合物对C. pyrenoidosa的联合毒性依赖于组分浓度比; OPs混合物对C. pyrenoidosa的毒性相互作用以加和为主,部分发生拮抗作用,发生拮抗作用的混合体系具有低效应区域呈加和作用,高效应区域呈拮抗作用的规律;与MIT混合的体系均有发生拮抗作用,且依赖于MIT浓度,MIT浓度比例越高,拮抗作用越强,OPs混合物的毒性相互作用与组分浓度比相关; OPs混合物的毒性相互作用组分浓度比依赖性与其联合毒性的组分浓度比依赖性规律不相关。  相似文献   

11.
Ecosystems and biocoenoses are exposed to multiple mixtures of environmental pollutants, but the usual risk assessment of chemical toxicities is focussed only on the judgement of single substance toxicity. With the two biometrical models concentration-addition and independent action known from pharmacology and toxicology, a pragmatic way for the analysis of combined effects is possible using the experimental knowledge of single substance toxicity. A short introduction to the models is given and an appropriate experimental design for mixture toxicity analysis is outlined. The principal suitability of the concepts was verifed in two different bioassays (green alga; luminescent bacterium) with the analysis of binary and multiple mixture toxicities of environmental chemicals. In this paper we present the results obtained with the green algae bioassay. Congruent results from the bioluminescence inhibition assay can be found in Grimme (1998). The results obtained indicate that the toxicities of mixtures of chemicals can be studied experimentally, even at low concentrations of the individual components. Mixture toxicities were detected at low, statistically non-significantly acting concentrations of the single compounds. These results force one to take mixture toxicities into account when environmental standards are established.  相似文献   

12.
Many studies have demonstrated that heavy metals existing as a mixture in the atmospheric environment cause adverse effects on human health and are important key factors of cytotoxicity; however, little investigation has been conducted on a toxicological study of a metal mixture from atmospheric fine particulate matter. The objective of this study was to predict the combined effects of heavy metals in aerosol by using in vitro human cells and obtain a suitable mixture toxicity model. Arsenic, nickel, and lead were selected for mixtures exposed to A549 human lung cancer cells. Cell proliferation (WST-1), glutathione (GSH), and interleukin (IL)-8 inhibition were observed and applied to the prediction models of mixture toxicity, concentration addition (CA) and independent action (IA). The total mixture concentrations were set by an IC10-fixed ratio of individual toxicity to be more realistic for mortality and enzyme inhibition tests. The results showed that the IA model was statistically closer to the observed results than the CA model in mortality, indicating dissimilar modes of action. For the GSH inhibition, the results predicted by the IA and CA models were highly overestimated relative to mortality. Meanwhile, the IL-8 results were stable with no significant change in immune reaction related to inflammation. In conclusion, the IA model is a rapid prediction model in heavy metals mixtures; mortality, as a total outcome of cell response, is a good tool for demonstrating the combined toxicity rather than other biochemical responses.  相似文献   

13.
大量缺乏毒性信息的化学品最终进入环境水体,对人类及生态生物产生潜在的危害与风险。提高化学品生物毒性测试与评估技术的通量和效率,是实现毒害化学物质环境与生态健康风险防控的关键。作为一种可以实现高通量测试的脊椎动物模型,斑马鱼胚胎测试在化学品的毒性评估中应用广泛。随着组学技术的发展,毒理基因组学可有效提取毒害化学品致毒过程中干扰生物学通路的信息。这些机制信息可用于对单物质或复合污染物生物毒性的筛选和预测。本文综述了不同斑马鱼胚胎测试技术在化学品毒性筛选评估管理与水环境复合污染毒性监测中的发展和应用,详细介绍了一种新型斑马鱼胚胎简化转录组学技术的方法流程和优势,并探讨了综合斑马鱼胚胎毒性测试、行为分析和组学等不同测试技术在化学品毒性测试、环境监测与评价中的应用前景。  相似文献   

14.
3种氯酚化合物对大型溞的联合毒性   总被引:4,自引:1,他引:4  
氯酚类化合物是我国水体中广泛存在的一类优先控制污染物,以大型溞(Daphnia magna)为试验生物,测定了2,4-二氯酚、2,4,6-三氯酚和五氯酚对大型溞的48 h致死的单一毒性和联合毒性.基于单一氯酚化合物的浓度-效应曲线,运用浓度加和(CA)与独立作用(IA)2个模型对2种等毒性浓度比的混合物(Mix-LC5...  相似文献   

15.
由于包含复杂的毒害化学污染物质,水体复合污染一直威胁着人类健康和水生生态安全。对复合污染水体进行监测、评估和治理是水环境管理的重点之一。监测并识别水体关键毒害污染因子是进行水质管理的前提,也是复合污染研究的难点。目前国内外在水复合污染毒性监测研究上主要基于动物活体试验或者生物体外测试。由于受限于毒理学测试方法,常见的应用通常仅关注于某方面的毒性效应或者少数的分子指标,因而受到质疑和挑战。有害结局路径(Adverse outcome pathway, AOP)的概念将化学污染物的结构、致毒的分子启动事件和生物毒性的有害结局建立关联,为污染物的毒性测试、预测和评估提供了新的模式。本文旨在论述有害结局路径在复合污染毒性评估和关键毒害物质鉴别中的指导性价值和意义。在有害结局路径的指导框架下,借助于生物体外高通量测试技术、化学分析的靶向和非靶向分析技术、和生物信息学技术,可以系统地分析化学混合物在分子、细胞水平上健康相关指标的响应水平,评估水体中复杂结构污染物,与不同生态和健康有害结局之间的关联,为水环境评价和优先污染物的筛选管理提供有效支撑。本文通过综述AOP框架在复合水体中毒害物质风险研究的现状和优势,对AOP在水环境环境管理上的应用前景提出展望。  相似文献   

16.
水体复合污染包含低浓度、种类复杂的毒害化学污染物,威胁人类健康和生态安全。监测并识别水体关键毒害污染因子是进行水质管理的前提,也是复合污染研究的难点。目前国内外在水复合污染毒性监测研究上主要基于动物活体试验或者生物体外测试。由于受限于毒理学测试方法,常见的应用通常仅关注于某方面的毒性效应或者少数的分子指标,因而受到质疑和挑战。有害结局路径(Adverse outcome pathway,AOP)的概念将化学污染物的结构、致毒的分子启动事件和生物毒性的有害结局建立关联,为污染物的毒性测试、预测和评估提供了新的模式。本文旨在论述有害结局路径在复合污染毒性评估和关键毒害物质鉴别中的指导性价值和意义。在有害结局路径的指导框架下,借助于生物体外高通量测试技术、化学分析的靶向和非靶向分析技术和生物信息学技术,可以系统地分析化学混合物在分子、细胞水平上健康相关指标的响应水平,评估水体中复杂结构污染物,与不同生态和健康有害结局之间的关联,为水环境评价和优先污染物的筛选管理提供有效支撑。本文通过综述AOP框架在复合水体中毒害物质风险研究的现状和优势,对AOP在水环境环境管理上的应用前景提出展望。  相似文献   

17.
大量存在于环境中的有毒污染物仍然缺乏足够的毒理学数据来对其进行有效的监管,为了满足海量化合物毒性评价的需要,基于离体生物测试的高通量毒性筛选方法在近些年得到了迅猛的发展。高内涵筛选技术是新型的高通量化合物毒性筛选方法,该方法最显著的特点是能够在保持细胞结构和功能完整的基础上同时获取多种毒性指标。因此在简介高内涵筛选技术原理的基础上,综述了其在生态毒理学领域已有的应用,并针对性地对高内涵筛选技术的发展和挑战进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号