首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
• Optimal growth of Chlorella in inland saline-alkaline water was achieved by blue LED. • Lipids of Chlorella sp. HQ were mainly composed of C16:0 and C18:2 under various LEDs. • The BiodieselAnalyzer© software was used to evaluate the Chlorella biodiesel quality. Chlorella sp. HQ was a high-quality feedstock for biodiesel production. Inland saline-alkaline water can be used for the low-cost cultivation of microalgae, but whether algal biomass under various light sources has the potential to produce biodiesel remains to be developed. Herein, the influence of different light-emitting diode (LEDs) light colors (blue, red, white, mixed blue-red, and mixed blue-white LED) on the growth performance, lipid accumulation, and fatty acid composition of Chlorella sp. HQ cultivated in inland saline-alkaline water was investigated. The highest algal density was obtained under blue LEDs at the end of cultivation, reaching 1.93±0.03 × 107 cells/mL. White LEDs can improve biomass yield, total lipid yield, and triacylglycerol yield per algal cell. The main fatty acid components of Chlorella from inland saline-alkaline water were palmitic acid and linoleic acid. The BiodieselAnalyzer© software was used to predict algal biodiesel quality by estimating different quality parameters. The cetane number, kinematic viscosity, and density of Chlorella biodiesel were 51.714–67.69, 3.583–3.845 mm2/s, and 0.834–0.863 g/cm3, respectively. This further proved that the Chlorella biomass obtained from inland saline-alkaline water has the potential to be used as a high-quality biodiesel feedstock.  相似文献   

2.
Heterotrophic cultivation caused high level of ROS and high lipids accumulation. HMTC is the best culture strategy for improving the microalgal biomass. Chlorella sp. HQ had great nutrient removal capacity under five culture strategies. The effects of cultivation strategies (including autotrophic cultivation (AC), heterotrophic cultivation (HC), fed-batch cultivation (FC), heterotrophic+ autotrophic two-stage cultivation (HATC), and heterotrophic+ mixotrophic two-stage cultivation (HMTC)) on the growth and lipid accumulation of Chlorella sp. HQ and its total nitrogen (TN) and total phosphorus (TP) removal in secondary effluent were investigated in column photoreactors. The results showed that the TN and TP removal rates ranged between 93.72%–95.82% and 92.73%–100%, respectively, under the five different strategies. The microalgal growth potential evaluated by the maximal growth rate (Rmax) was in the order of HMTC>HC>FC>AC>HATC. The values of biomass, total lipid yield, triacylglycerols (TAGs) yield, and total lipid content of the microalga cultivated in the last 5 d increased significantly, but the TAGs productivities of the five strategies were lower than those in the first 7 d. Compared with all the other cultivation strategies, the TAGs productivity and yield after 12 d of cultivation under the heterotrophic condition reached the highest values accompanying the highest level of intracellular reactive oxygen species (ROS), in which the TAGs yield reached 40.81 mg/L at the end of the cultivation period. The peaks in TAGs yield and ROS level suggested that HC was beneficial for lipids accumulation via regulating the cellular redox status and exerting ROS stress on microalgal cells. In summary, HMTC was the best cultivation strategy for improving the microalgal biomass and HC was the best strategy for microalgal TAGs accumulation to produce biodiesel.  相似文献   

3.
The effective disposal of redundant tea waste is crucial to environmental protection and comprehensive utilization of trash resources. In this work, the removal of methyl orange (MO) from aqueous solution using spent tea leaves as the sorbent was investigated in a batch experiment. First, the effects of various parameters such as temperature, adsorption time, dose of spent tea leaves, and initial concentration of MO were investigated. Then, the response surface methodology (RSM), based on Box- Behnken design, was employed to obtain the optimum adsorption conditions. The optimal conditions could be obtained at an initial concentration of MO of 9.75 mg·L-1, temperature of 35.3℃, contact time of 63.8 min, and an adsorbent dosage 3.90 g· L-1. Under the optimized condi- tions, the maximal removal of MO was 58.2%. The results indicate that spent tea leaves could be used as an effective and economical adsorbent in the removal of MO from aqueous solution.  相似文献   

4.
Attachment of Scenedesmus sp. LX1 was tested on certain materials. A criterion for selection of materials was used to choose seven materials. The amount of S. sp. LX1 attached on polyurethane foam was 51.74 mg/L. Materials’ surface influenced the attachment of microalgae. Hydrophilic and hydrophobic properties also affected the attachment of S. sp. LX1. Attached cultivation systems in the literature do not present a methodology to screen materials for microalgal growth. Hence, a method is needed to find suitable materials for attached cultivation that may enhance attachment of microalgae. In this paper, we have tested seven materials culturing Scenedesmus sp. LX1 (S. sp. LX1) to evaluate the attachment of microalgae on the material surface, its growth in suspension phase and the properties of the materials. Two materials showed attachment of S. sp. LX1, polyurethane foam and loofah sponge, and allowed microalgae to grow both in the surface of the material and suspended phase. Polyurethane foam proved to be a good material for attachment of S. sp. LX1 and the amount of attached microalgae obtained was 51.73 mg/L when adding 100 pieces/L. SEM images showed that the surface and the pore size of the materials affected the attachment of the microalgae, increasing its attachment in scaffold-like materials. Furthermore, the hydrophilic and hydrophobic properties of the materials also affected the attachment of microalgae. This research can be used as a methodology to search for the assessment of a material suitable for attachment of microalgae.  相似文献   

5.
A mulfistep conversion system composed of phenol hydroxylase (PHrND) and 2,3-dihydroxy-biphenyl 1,2-dioxygenase (BphCLA_4) was used to synthesize methylcatechols and semialdehydes from o- and m-cresol for the first time. Docking studies displayed by PyMOL predicted that cresols and methylcatechols could be theoretically transformed by this multistep conversion system~ High performance liquid chromatography mass spectrometry (HPLC-MS) analysis also indicated that the products formed from multistep conversion were the corresponding 3-methylcatechol, 4-methylcatechol, 2- hydroxy-3-methyl-6-oxohexa-2,4-dienoic acid (2- hydroxy-3-methyl-ODA) and 2-hydroxy-5-methyl-6-oxo- hexa-2,4-dienoic acid (2-hydroxy-5-methyl-ODA). The optimal cell concentrations of the recombinant E. coli strain BL21 (DE3) expressing phenol hydroxylase (PHrND) and 2,3-dihydroxy-biphenyl 1,2-dioxygenase (BphCLA_4) and pH for the multistep conversion of o- and m-cresol were 4.0 (g-L-1 cell dry weight) and pH 8.0, respectively. For the first step conversion, the formation rate of 3- methylcatechol (0.29μmol·L-1·min-1·mg-1cell dry weight) from o-cresol was similarly with that ofmethylca- techols (0.28 μmol·L-1·min-1·mg-1 cell dry weight) from m-cresol by strain PHrND. For the second step conversion, strain BphCLA_4 showed higher formation rate (0.83 μmol·L-1·min-1·mg-1 cell dry weight) for 2-hydroxy-3-methyl- ODA and 2-hydroxy-5-methyl-ODA from m-cresol, which was 1.1-fold higher than that for 2-hydroxy-3-methyl- ODA (0.77 μmol·L-1·min-1·mg-1. mglcell dry weight) from ocresol. The present study suggested the potential application of the multistep conversion system for the production of chemical synthons and high-value products.  相似文献   

6.
The current work focused on the investigation of charge and separation characteristics of nanofiltration (NF) membrane embracing dissociated functional groups under different electrolyte solutions. The electro-kinetic method was carried out to assess the membrane volume charge density (X) with different salt concentrations ranging from 0.1 to 10 mol. m-3 and different electrolyte species, such as type 1-1, type 2-1 and type 3-1. The Donnan steric pore model-dielectric exclusion (DSPM- DE) model was employed to evaluate the separation characteristics of the NF membrane for wide range of electrolyte concentration (from 25.7 to 598.9mol·m^-3). The results indicated that the dissociation of the hydro- philic functional groups and the specific adsorption contributed to charge formation on membrane surface. The former played a dominant role in type 1-1 and type 2-1 electrolytes at dilute aqueous solutions (0.1-0.5 mol · m^3). However, for type 3-1 electrolyte, specific adsorp- tion should contribute to the charge effect to a large extent. Moreover, the correlation between the volume charge density and feed concentration was in accordance with Freundlich isotherm. Furthermore, it was found that the separation characteristic of NF membrane could be evaluated well by DSPM-DE model coupling with electro-kinetic method in a whole concentration range.  相似文献   

7.
Precise and sensitive methods for the simultaneous determination of different classes of antibiotics, including sulphonamides, fluoroquinolones, macrolides, tetracyclines, and trimethoprim in surface water, sediments, and fish muscles were developed. In water samples, drugs were extracted with solid-phase extraction (SPE) by passing 1000 mL of water through hydrophilic lipophilic balanced (HLB) SPE cartridges. Sediment samples were solvent-extracted, followed by tandem SPE (strong anion exchange (SAX) + HLB) clean-ups. Fish muscles were extracted by a mixture of acetonitrile and citric buffer (80:20, v/v) solution, and cleaned by SPE. Liquid chromatography–tandem mass spectrometry (LC-MS/MS) with multiple reaction monitoring (MRM) detection was employed to quantify all compounds. The recoveries for the antibiotics in the spiked water, sediment, and fish samples were 60.2%–95.8%, 48.1%–105.3%, and 59.8%–103.4%, respectively. The methods were applied to samples taken from Dianchi Lake, China. It showed that concentrations of the detected antibiotics ranged from limits of quantification (LOQ) to 713.6 ng·L-1 (ofloxacin) in surface water and from less than LOQ to 344.8 μg·kg-1 (sulphamethoxazole) in sediments. The number of detected antibiotics and the overall antibiotic concentrations were higher in the urban area than the rural area, indicating the probable role of livestock and human activities as important sources of antibiotic contamination. In fish muscles, the concentration of norfloxacin was the highest (up to 38.5 μg·kg-1), but tetracyclines and macrolides were relatively low. Results showed that the methods were rapid and sensitive, and capable of determining several classes of antibiotics from each of the water, sediment, and fish matrices in a single run.  相似文献   

8.
This study aims to determine heavy-metal levels in soil from the banks of Lake Nasser, the ability of Tamarix nilotica to accumulate such metals from soil and hence its potential for phytoextraction. Soil and Tamarix samples were collected from the banks of four bights around Lake Nasser and analysed for Fe, Mn, Ca, Mg, Cr, Cu, Ni, Zn, Cd and Pb by atomic absorption spectrometry, whereas Na and K were measured by atomic emission spectrophotometry. Three different methods of extraction were used for the soil samples. Lead, copper and zinc were equally distributed between the exchangeable phase and Fe/Mn oxide-bound form, while other measured metals were mainly present in the Fe/Mn oxide fraction. With the exception of iron, all metals studied showed total concentrations within the geochemical background values. T. nilotica exhibited elevated concentrations of Na (36.2-48.5 mg g-1) and K (2.74-4.33 mg g-1) in stems, and relatively high concentrations of Pb, Cd and Co (0.39-1.03 µg g-1, 0.24-1.3 µg g-1 and 1.94-5.3 µg g-1, respectively) are found in plant leaves. Bioaccumulation factors of Na and K (9.3 and 12.63, respectively) were high in T. nilotica stems. While the bioaccumulation of Pb, Cd, Co and Ni (2870.1, 2035.4, 10.5 and 5313.2, respectively) was high in plant leaves, Fe, Mn, Ca and Mg were accumulated relatively equally in plant stems and leaves. T. nilotica was found to secrete high amounts of Na, Ca and K, in addition to small amounts of all accumulated metals except Cd and Cu. These secreted metals appeared as salt crystals (67.5% Na; 25.8% Ca; 5% Mg; 1.5% K and 0.16% trace and minor elements) on the plant surface. The concentrations of all the metals studied in T. nilotica were higher than in the salt crystals. Statistical analysis of the database suggests bioaccumulation of these metals from soil to T. nilotica. This reflects the importance of using T. nilotica as a model in the phytoremediation process as an established environmental clean-up technology.  相似文献   

9.
Ferric oxyhydroxide loaded anion exchanger (FOAE) hybrid adsorbent was prepared by loading nanosized ferric oxyhydroxide (FO) on anion exchanger resin for the removal of phosphate from wastewater. TEM and XRD analysis confirmed the existence of FO on FOAE. After FO loading, the adsorption capacity of the hybrid adsorbent increased from 38.70 to 51.52mg.g-1. Adsorption processes for both FOAE and anion resin were better fit to the pseudo first order model. Batch adsorption experiments revealed that higher temperature (313K), higher initial phosphate concentration (50 mg.L-1) and lower solution pH (pH value of 2) would be more propitious to phosphate adsorption. Competition effect of coexisting anions on phosphate removal can be concluded as sulfate 〉 nitrate 〉 chloride. Freundlich isotherm model can describe the adsorption of phosphate on FOAE more accurately, which indicated the heterogeneous adsorption occurred on the inner-surface of FOAE.  相似文献   

10.
The objective of this study is to select and characterize the candidate for synchronous water purification and lipid production from eight freshwater microalgae strains (Chlorella sp. HQ, C. emersonii, C. pyrenoidosa, C. vulgaris, Scenedesmus dimorphus, S. quadricauda, S. obiquus, Scenedesmus sp. LX1). The strains Chlorella sp. HQ, C. pyrenoidesa, and S. obliquus showed superiority in biomass accumulation, while the top biomass producers did not correspond to the top lipid producers. S. quadricauda achieved higher lipid content (66.1%), and Chlorella sp. HQ and S. dimorphus ranked down in sequence, with lipid content above 30%. Considering nutrient removal ability (total nitrogen (TN): 52.97%; total phosphorus (TP): 84.81%), the newly isolated microalga Chlorella sp. HQ was the possible candidate for water purification coupled with lipid production. To further investigate the lipid producing and nutrient removal mechanism of candidate microalga, the ultra structural changes especially the lipid droplets under different water qualities (different TN and TP concentrations) were characterized. The results elucidate the nutrient-deficiency (TN: 3.0 mg·L–1; TP: 0.3 mg·L–1) condition was in favor of forming lipid bodies in Chlorella sp. HQ at the subcellular level, while the biomass production was inhibited due to the decrease in chloroplast number which could further suppress the nutrient removal effect. Finally, a twophase cultivation process (a nutrient replete phase to produce biomass followed by a nutrient deplete phase to enhance lipid content) was conducted in a photo-bioreactor for Chlorella sp. HQ to serve for algae-based synchronous biodiesel production and wastewater purification.  相似文献   

11.
利用城市污水培养能源微藻可以实现水质净化和生物质生产的耦合,备受关注。生物质生产效率较低是限制其大规模应用的主要因素之一,混合培养是提高微藻生物质产率的一种潜在方法。为筛选出城市二级出水条件下合适的能源微藻混合藻种,考察了二级出水条件下3株高含油脂藻种栅藻LX1(Scenedesmussp. LX1)、椭圆小球藻YJ1(Chlorella ellipsoidea YJ1)和雨生红球藻(Haematococcus pluvislis)单一藻种和两两混合培养时的生长特性,比较了各微藻单一藻种及两两混合培养时的生长特性参数及生物质产量。研究结果表明,3种微藻的两两混合组合均能在二级出水条件下正常生长,各微藻干物质量浓度在第10天左右均能达到100 mg·L^-1左右。与栅藻LX1和椭圆小球藻YJ1相比,雨生红球藻在两两混合培养条件下表现出更高的藻细胞干物质量浓度增长趋势。3种微藻的内禀生长速率均显著高于各自的单一培养,栅藻 LX1和雨生红球藻混合培养时分别达到最高内禀增长速率(分别为1.36 d^-1、0.97 d^-1)。栅藻LX1与雨生红球藻混合培养时比生长速率分别为0.59 d^-1和0.42 d^-1,分别比栅藻LX1和雨生红球藻的单一藻种培养提高了36%、9.0%。与单一藻种相比,混合培养促进了微藻的生物质产量,栅藻LX1和雨生红球藻混合藻种的生物质产量(277 mg·L^-1)分别比栅藻LX1、雨生红球藻的单一藻种培养提高了64%和42%。栅藻LX1与雨生红球藻藻种组合具备作为二级出水条件下能源微藻培养合适混合藻种的潜力。  相似文献   

12.
As low oxygen and high ultraviolet (UV) exposure might significantly affect the microbial existence in plateau, it could lead to a specialized microbial community. To determine the abundance and distribution of ammonia-oxidizing archaea (AOA) in agricultural soil of plateau, seven soil samples were collected respectively from farmlands in Tibet and Yunnan cultivating the wheat, highland-barley, and colza, which are located at altitudes of 3200-3800 m above sea level. Quantitative PCR (q-PCR) and clone library targeting on amoA gene were used to quantify the abundances of AOA and ammonia-oxidizing bacteria (AOB), and characterize the community structures of AOA in the samples. The number of AOA cells (9.34 × 10^7-2.32× 10^8 g^-1 soil) was 3.86-21.84 times greater than that of AOB cells (6.91 × 10^6-1.24 × 10^8 g^-1 soil) in most of the samples, except a soil sample cultivating highland- barley with an AOA/AOB ratio of 0.90. Based Kendall's correlation coefficient, no remarkable correlation between AOA abundance and the environmental factor was observed. Additionally, the diversities of AOA community were affected by total nitrogen and organic matter concentration in soils, suggesting that AOA was probably sensitive to several environmental factors, and could adjust its community structure to adapt to the environmental variation while maintaining its abundance.  相似文献   

13.
The occurrence, distribution and nature of ambient thiobacilli along with their ability to oxidize different sulphur species under simulated natural and in vitro culture conditions were studied in the polluted and unpolluted sites of the River Ganga.

Thiobacillus thioparus, T. thiooxidans and T. denitrificans were isolated from the river water. the former two occurred in both polluted and unpolluted sites, while T. denitrificans occurred in polluted areas only. the paper pulp mill effluent discharge area contained the highest population of T. thioparus. the sewage drainage area showed relatively higher populations of T. thiooxidans and T. denitrificans.

The present study revealed that only biological oxidation of either thiosulphate or elemental sulphur occurred in the river water. All the thiobacilli screened oxidized thiosulphate, and three-fourths of them oxidized elemental sulphur. Some strains were found to be very good acidifiers. in spite of such acidification by the ambient thiobacilli, the pH of the river water remained alkaline. the specific rates of thiosulphate (0.18 -0.51 μMmolh-1 mg-1 cell) and sulphur (1.3 - 6.2 Normality day-1 mg-1 biomass) oxidations under simulated natural condition were found to be higher in polluted areas when compared with the unpolluted one (sulphur: 0.8 - 1.0 Normality day-1 mg-1).

Further, addition of thiouslphate or elemental sulphur in the river water in simulated in vitro condition resulted in the increase of respective oxidation rates. the variations in the natae of pollutants discharged into the river water influenced the oxidation rate of thiosulphate or sulphur.  相似文献   

14.
A biocathode with microbial catalyst in place of a noble metal was successfully developed for hydrogen evolution in a microbial electrolysis cell (MEC). The strategy for fast biocathode cultivation was demonstrated. An exoelectrogenic reaction was initially extended with an H2-full atmosphere to enrich Ha-utilizing bacteria in a MEC bioanode. This bioanode was then inversely polarized with an applied voltage in a half-cell to enrich the hydrogen-evolving biocathode. The electrocatalytic hydrogen evolution reaction (HER) kinetics of the biocathode MEC could be enhanced by increasing the bicarbonate buffer concentration from 0.05 mol·L-1 to 0.5 mol· L-1 and/or by decreasing the cathode potential from -0.9 V to - 1.3 V vs. a saturated calomel electrode (SCE). Within the tested potential region in this study, the HER rate of the biocathode MEC was primarily influenced by the microbial catalytic capability. In addition, increasing bicarbonate concentration enhances the electric migration rate of proton carriers. As a consequence, more mass H+ can be released to accelerate the biocathode-catalyzed HER rate. A hydrogen production rate of 8.44 m3. m 3. d1 with a current density of 951.6 A. m-3 was obtained using the biocathode MEC under a cathode potential of - 1.3 V vs. SCE and 0.4 mol· L-1 bicarbonate. This study provided information on the optimization of hydrogen production in biocathode MEC and expanded the practical applications thereof.  相似文献   

15.
The complex capacity of different types of organic matters (OMs) for Cu was quantitatively studied by simulation experiments using different adsorbents prepared from the sediment in Taihu Lake. The free Cu was measured with ion selective electrode (ISE) and complex capacity was calculated using a conditional formation constant model. The result indicated that the complex capacity was 0.048 mmol·g-1, 0.009 and 0.005 mmol.g-1for raw sediment, sediment without DOM, sediment without insoluble organic matters but with DOM and sediment without OM. Insoluble organic matter played a major role in the sorption of Cu in sediment and it can adsorb most Cu from water column. In the solution, Cu mainly existed as a complex with DOM and the DOM-Cu complexation capacity was 327.87 mg. g-1. The change of TOC and pH indicated ion-exchange in the interaction between free Cu and DOM. When the Cu concentration in the experiment reached the complex capacity of DOM, precipitation was the major mechanism to remove Cu from water phase, which was observed from UV absorbance change of DOM, that is, its aromaticity increased while molecular weight decreased. The desorption result indi- cated that DOM was more capable of desorbing Cu from adsorbents without OM than adsorbent with OM. The desorbed quantity with DOM was 1.65, 1.78 and 2.25 times higher than that with water for adsorbents without OM, raw adsorbents (sediment) and adsorbents without DOM.  相似文献   

16.
A series of mesocosms was exposed to a suite of light treatments and nutrient enrichment in order to generate algal communities of varying biomass. the influence of this biomass on the speciation of copper (II) was studied. Distribution coefficients (Kd,Lkg-1) were relatively high (logKd = 5 to 7), indicative of robust trace metal sequestration, and were likely controlled by the particulate organic carbon content (foc). Differences in Kd over time and among treatments were significant, as was the relationship between Kd and foc. Fluorescence quenching was used to determine binding capacities (Lt, M) and their associated binding constants (Kcond,M-1) in order to model the solid phase copper speciation. the Kcond ranged between 2.1 and 5.2 × 1012M-1, indicating a very strong copper-ligand complex, and was higher in mesocosms that received more light. the light Lt increased over time, dramatically after the nutrient enrichment, but did not vary systematically among light treatments. Lt ranged from 7.2 × 10- 7 to 4.9 × 10- 5 M. the large magnitudes of Kd, Kcond and Lt ensured that greater than 97% of total copper in the mesocosms was complexed by organic matter. the total copper concentration ([Cu]T, M) needed to reach a target dissolved copper concentration of 10-12.5 M (pCu = 12.5) was determined for each mesocosm over time. [Cu]T was between 8.02 × 10-5 and 3.41 × 10-2 M, and increased over time. the [Cu]T normalized to the target pCu (Effective Dose Ratio, EDR) increased directly with increases in algal biomass, indicating a direct link between system productivity and copper exposure. Approximately 45% of the variance in EDR was explained by variance in total biomass, while the residual variance in EDR was due likely to differences in the strengths of particle associations and magnitude of binding capacities.  相似文献   

17.
The adsorption of some heavy metals onto the walls of harvested, washed, and dried non-living biomass cells of different Pseudomonas strains was studied at optimum experimental conditions using a simplified single component system. The Langmuir adsorption model was found to be a suitable approach to describe the system via multi-step processes. Isotherms measured at 30.0°C and pH 5.5 with [M]total = 10-100 mM for tight, reversible Cr6+(aq), Ni2+(aq), Cu2+(aq) and Cd2+(aq) binding by the cell walls of the investigated biomass fit the Langmuir model and give the pH-independent stoichiometric site capacities νi and equilibrium constants Ki for metal binding at specific biomass sites i = A, B, C, and D. Tight binding sites A, B, and D of the non-living biomass are occupied by CrVI, sites A and C by NiII, sites A and D by CdII, and only site B by CuII. It is concluded that νi is a stoichiometric parameter that is independent of the magnitude of Ki for binding site i and that the studied heavy metals selectively and tightly bind at different biomass sites.  相似文献   

18.
Bed expansion serves an important function in the design and operation of an upflow anaerobic reactor. An analysis of the flow pattern of expanded granular sludge bed (EGSB) reactors shows that most EGSB reactors do not behave as expanded bed reactors, as is widely perceived. Rather, these reactors behave as fluidized bed reactors based on the classic chemical reactor theory. In this paper, four bed expansion modes, divided as static bed, expanded bed, suspended bed, and fluidized bed, for bioreactors are proposed. A high-rate anaerobic suspended granular sludge bed (SGSB) reactor was then developed. The SGSB reactor is an upflow anaerobic reactor, and its expansion degree can be easily controlled within a range to maintain the suspended status of the sludge bed by controlling upfiow velocity. The results of the full-scale reactor confirmed that the use of SGSB reactors is advantageous. The full-scale SGSB reactor runs stably and achieves high COD removal efficiency (about 90%) at high loading rates (average 40 kg-COD·m^-3·d^-1, maximum to 52 kg·COD·m^-3 ·d^-1) based on the SGSB theory, and its expansion degree is between 22% and 37%.  相似文献   

19.
基于微藻在资源化大规模培养过程中,其胞外产物对藻细胞生长影响的不确定性,对比研究了两株高含油脂藻种,栅藻LX1(Scenedesmus sp.LX1)和雨生红球藻(Haematococcus pluvislis)的生长特征、胞外产物的产生特性,以及胞外产物对藻细胞生长的影响。研究结果表明,在相同培养条件下,栅藻LX1与雨生红球藻的内禀生长速率基本相当,分别为0.16和0.17 d-1。两株藻在不同生长期的胞外产物(以DOC值表征)产生速率不同,其中栅藻LX1胞外产物的对数期产生速率(1.4 mg·L-1·d-1)﹥稳定期后期产生速率(0.56 mg·L-1·d-1)﹥稳定期产生速率(0.48 mg·L-1·d-1);雨生红球藻胞外产物的稳定期后期产生速率(2.3 mg·L-1·d-1)﹥稳定期产生速率(0.88 mg·L-1·d-1)﹥对数期产生速率(0.66 mg·L-1·d-1)。栅藻LX1胞外产物对其整个生长过程都有明显抑制;雨生红球藻胞外产物则在稳定期后期才对其生长产生明显抑制作用。  相似文献   

20.
The potential of commonly available green alga Ulva lactuca was investigated as viable biomaterials for removal of synthetic azo dye (Direct Yellow 12, DY-12) from aqueous solution. The results obtained from the batch experiments revealed that the ability of the U. lactuca to remove DY-12 from its aqueous solution was dependent on the dye concentration, pH, and algal biomass but less dependent on the particle size of the U. lactuca. The equilibrium conditions and kinetics of adsorption were investigated, and the adsorption kinetic was consistent with the pseudo-second-order model (R2=1). The adsorption isotherm followed only the Freundlich model with a correlation coefficient R2=0.99. This study demonstrated that the U. lactuca could be used as an effective biosorbent for the removal of DY-12 from its aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号